Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China
Abstract
:1. Introduction
2. Methodology
2.1. Site Description
2.2. Rainwater Sampling and Hg Analysis
2.3. Hg Wet Deposition Flux
2.4. Analysis Method and Data Acquisition
3. Results and Discussion
3.1. Characteristics of Hg Wet Deposition Flux
3.2. Impacts of Anthropogenic Emissions on Hg Wet Deposition Flux
3.3. Impact of Meteorological Conditions on Hg Wet Deposition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lin, C.J.; Pehkonen, S.O. The chemistry of atmospheric mercury: A review. Atmos. Environ. 1999, 2067–2079. [Google Scholar] [CrossRef]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Lindberg, S.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Holmes, C.D.; Fisher, J.A.; Wang, Q.; Yantosca, R.M.; Corbitt, E.S.; Galarneau, E.; Rutter, A.P.; Gustin, M.S.; et al. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmos. Chem. Phys. 2012, 12, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Gustin, M.S.; Huang, J.; Miller, M.B.; Peterson, C.; Jaffe, D.A.; Ambrose, J.; Finley, B.D.; Lyman, S.N.; Call, K.; Talbot, R.; et al. Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX. Environ. Sci. Technol. 2013, 47, 7295–7306. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Cheng, I.; Wright, L.P.; Olson, M.L.; Gay, D.A.; Risch, M.R.; Brooks, S.; Castro, M.S.; Conley, G.D.; et al. The Estimated Six-Year Mercury Dry Deposition Across North America. Environ. Sci. Technol. 2016, 50, 12864–12873. [Google Scholar] [CrossRef]
- Zhang, L.; Lyman, S.; Mao, H.; Lin, C.-J.; Gay, D.A.; Wang, S.; Sexauer Gustin, M.; Feng, X.; Wania, F. A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys. 2017, 17, 9133–9144. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Yang, X.; Lang, X.; Zhou, J.; Zhang, H.; Yu, B.; Yan, H.; Lin, C.-J.; Feng, X. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmos. Chem. Phys. 2016, 16, 11547–11562. [Google Scholar] [CrossRef] [Green Version]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’Amore, F.; Angot, H.; Barbante, C.; Brunke, E.-G.; Arcega-Cabrera, F.; Cairns, W.; Comero, S.; et al. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. 2017, 17, 2689–2708. [Google Scholar] [CrossRef] [Green Version]
- UNEP. Global Mercury Assessment 2018. Available online: https://www.unenvironment.org/resources/publication/global-mercury-assessment-2018 (accessed on 30 November 2020).
- Prestbo, E.M.; Gay, D.A. Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmos. Environ. 2009, 43, 4223–4233. [Google Scholar] [CrossRef]
- Zhang, Y.; Jacob, D.J.; Horowitz, H.M.; Chen, L.; Amos, H.M.; Krabbenhoft, D.P.; Slemr, F.; St Louis, V.L.; Sunderland, E.M. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc. Natl. Acad. Sci. USA 2016, 113, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horowitz, H.M.; Jacob, D.J.; Amos, H.M.; Streets, D.G.; Sunderland, E.M. Historical Mercury releases from commercial products: Global environmental implications. Environ. Sci. Technol. 2014, 48, 10242–10250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.L.; Wang, T.J.; Talbot, R.; Mao, H.T.; Yang, X.; Fu, C.; Sun, J.; Zhuang, B.; Li, S.; Han, Y.; et al. Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmos. Chem. Phys. 2014, 14, 2233–2244. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.R.; Wang, S.X.; Li, G.L.; Liang, S.; Lin, C.J.; Wang, Y.; Cai, S.Y.; Liu, K.Y.; Hao, J.M. Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. Environ. Sci. Technol. 2016, 50, 13428–13435. [Google Scholar] [CrossRef]
- Liu, K.Y.; Wu, Q.R.; Wang, L.; Wang, S.X.; Liu, T.H.; Ding, D.; Tang, Y.; Li, G.L.; Tian, H.Z.; Duan, L.; et al. Measure-Specific Effectiveness of Air Pollution Control on China’s Atmospheric Mercury Concentration and Deposition during 2013–2017. Environ. Sci. Technol. 2019, 53, 8938–8946. [Google Scholar] [CrossRef]
- Wu, Q.; Li, G.; Wang, S.; Liu, K.; Hao, J. Mitigation options of atmospheric Hg emissions in China. Environ. Sci. Technol. 2018, 52, 12368–12375. [Google Scholar] [CrossRef]
- National Bureau of Statiatics of China. China Statistical Yearbook. 2019. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 30 November 2020).
- Zhang, L.; Wang, L.; Wang, S.; Dou, H.; Li, J.; Li, S.; Hao, J. Characteristics and Sources of Speciated Atmospheric Mercury at a Coastal Site in the East China Sea Region. Aerosol. Air Qual. Res. 2017, 17, 2913–2923. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the hysplit-4 modeling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Dorling, S.R.; Davis, T.D.; Pierce, C.E. Cluster analysis: A technique for estimating the synoptic meteorological controls on air and precipitation chemistry—Method and applications. Atmos. Environ. 1992, 26, 2581–2585. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, S.; Wu, Q.; Liu, K.; Wang, L.; Li, S.; Gao, W.; Zhang, L.; Zheng, H.; Li, Z.; et al. Recent decrease trend of atmospheric mercury concentrations in East China: The influence of anthropogenic emissions. Atmos. Chem. Phys. 2018, 18, 8279–8291. [Google Scholar] [CrossRef] [Green Version]
- Cole, A.S.; Steffen, A.; Pfaffhuber, K.A.; Berg, T.; Pilote, M.; Poissant, L.; Tordon, R.; Hung, H. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmos. Chem. Phys. 2013, 13, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Chen, Z.; Teng, J.; Li, Y. Spatio-temporal variation of total mercury in precipitation in the largest industrial base in China: Impacts of meteorological factors and anthropogenic activities. Tellus B Chem. Phys. Meteorol. 2015, 67, 25660. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.S.P.; Sheu, G.-R. Four-year Measurements of Wet Mercury Deposition at a Tropical Mountain Site in Central Taiwan. Aerosol Air Qual. Res. 2019, 19, 2043–2055. [Google Scholar] [CrossRef]
- Sheu, G.-R.; Lin, N.-H. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean. Atmos. Environ. 2013, 77, 474–481. [Google Scholar] [CrossRef]
- Huang, J.; Kang, S.; Wang, S.; Wang, L.; Zhang, Q.; Guo, J.; Wang, K.; Zhang, G.; Tripathee, L. Wet deposition of mercury at Lhasa, the capital city of Tibet. Sci. Total Environ. 2013, 447, 123–132. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Liu, C.; Guo, L.; Wang, X. Wet deposition of mercury in Qingdao, a coastal urban city in China: Concentrations, fluxes, and influencing factors. Atmos. Environ. 2018, 174, 204–213. [Google Scholar] [CrossRef]
- Seo, Y.-S.; Han, Y.-J.; Choi, H.-D.; Holsen, T.M.; Yi, S.-M. Characteristics of total mercury (TM) wet deposition: Scavenging of atmospheric mercury species. Atmos. Environ. 2012, 49, 69–76. [Google Scholar] [CrossRef]
- Sakata, M.; Marumoto, K. Wet and dry deposition fluxes of mercury in Japan. Atmos. Environ. 2005, 39, 3139–3146. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.X.; Wang, L.; Wu, Y.; Duan, L.; Wu, Q.R.; Wang, F.Y.; Yang, M.; Yang, H.; Hao, J.M.; et al. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environ. Sci. Technol. 2015, 49, 3185–3194. [Google Scholar] [CrossRef]
- Fu, X.W.; Zhang, H.; Yu, B.; Wang, X.; Lin, C.J.; Feng, X.B. Observations of atmospheric mercury in China: A critical review. Atmos. Chem. Phys. 2015, 15, 9455–9476. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, H.M.; Jacob, D.J.; Zhang, Y.; Dibble, T.S.; Slemr, F.; Amos, H.M.; Schmidt, J.A.; Corbitt, E.S.; Marais, E.A.; Sunderland, E.M. A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget. Atmos. Chem. Phys. Discuss. 2017, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.D.; Krishnamurthy, N.P.; Caffrey, J.M.; Landing, W.M.; Edgerton, E.S.; Knapp, K.R.; Nair, U.S. Thunderstorms Increase Mercury Wet Deposition. Environ. Sci. Technol. 2016, 50, 9343–9350. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.D.; Jacob, D.J.; Corbitt, E.S.; Mao, J.; Yang, X.; Talbot, R.; Slemr, F. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 2010, 10, 12037–12057. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.Y.; Wang, S.X.; Wu, Q.R.; Wang, L.; Ma, Q.; Zhang, L.; Li, G.L.; Tian, H.Z.; Duan, L.; Hao, J.M. A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants. Environ. Sci. Technol. 2018, 52, 2400–2408. [Google Scholar] [CrossRef]
- Hong, Y.W.; Chen, J.S.; Deng, J.J.; Tong, L.; Xu, L.L.; Niu, Z.C.; Yin, L.Q.; Chen, Y.T.; Hong, Z.Y. Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environ. Pollut. 2016, 218, 259–268. [Google Scholar] [CrossRef]
- Kim, K.-H.; Brown, R.J.C.; Kwon, E.; Kim, I.-S.; Sohn, J.-R. Atmospheric mercury at an urban station in Korea across three decades. Atmos. Environ. 2016, 131, 124–132. [Google Scholar] [CrossRef]
- Marumoto, K.; Suzuki, N.; Shibata, Y.; Takeuchi, A.; Takami, A.; Fukuzaki, N.; Kawamoto, K.; Mizohata, A.; Kato, S.; Yamamoto, T.; et al. Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape Hedo, Okinawa, Japan. Atmosphere 2019, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; McNamara, S.M.; Moore, C.W.; Obrist, D.; Steffen, A.; Shepson, P.B.; Staebler, R.M.; Raso, A.R.W.; Pratt, K.A. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion. Proc. Natl. Acad. Sci. USA 2019, 116, 14479–14484. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Tang, Y.; Wang, S.; Li, L.; Deng, K.; Tang, G.; Liu, K.; Ding, D.; Zhang, H. Developing a statistical model to explain the observed decline of atmospheric mercury. Atmos. Environ. 2020, 243, 117868. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’Amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, E.; Weigelt, A.; et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 2016, 16, 11915–11935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Ye, Z.; Driscoll, C. Meteorological effects on Hg wet deposition in a forested site in the Adirondack region of New York during 2000–2015. Atmos. Environ. 2017, 168, 90–100. [Google Scholar] [CrossRef]
- Shanley, J.B.; Engle, M.A.; Scholl, M.; Krabbenhoft, D.P.; Brunette, R.; Olson, M.L.; Conroy, M.E. High Mercury Wet Deposition at a “Clean Air” Site in Puerto Rico. Environ. Sci. Technol. 2015, 49, 12474–12482. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.S.P.; Sheu, G.R.; Lin, D.W.; Lin, N.H. Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006–2016. Sci. Total Environ. 2019, 686, 1049–1056. [Google Scholar] [CrossRef]
- Kaulfus, A.S.; Nair, U.; Holmes, C.D.; Landing, W.M. Mercury Wet Scavenging and Deposition Differences by Precipitation Type. Environ. Sci. Technol. 2017, 51, 2628–2634. [Google Scholar] [CrossRef]
- Yang, L.H.; Yin, H.P.; Wang, H.; Tao, L. Statistical analysis of severe convective weather in shanghai area during period of recent 10 years. Atmos. Sci. Res. Appl. 2007, 2, 84–91. [Google Scholar]
- Li, J.; Wu, Z.; Jiang, Z.; He, J. Can Global Warming Strengthen the East Asian Summer Monsoon? J. Clim. 2010, 23, 6696–6705. [Google Scholar] [CrossRef]
- Li, J.P.; Zeng, Q.C. A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci. 2003, 20, 299–302. [Google Scholar]
Name | Site Description | Longitude (°) | Latitude (°) | Period | Rain Depth (mm) | VWM Conc. (ng L−1) | Wet Deposition (μg m−2) | Reference |
---|---|---|---|---|---|---|---|---|
Chongming | Remote | 121.96 | 31.52 | 2014–2018 | 857 | 7.6 | 4.9 | This study |
Chongming | Remote | - | - | 2008–2009 | - | 62 | - | [24] |
Lulin | Remote | 120.87 | 23.47 | 2010–2013 | 3421 | 9.2 | 32.3 | [25] |
Pengjiayu | Remote | 122.08 | 25.63 | 2010 | 1438 | 8.9 | 10.2 | [26] |
Mt. Waliguan | Remote | 100.898 | 36.287 | 2012–2014 | 290 | 6.9 | 2.0 | [8] |
Mt. Leigong | Remote | 108.203 | 26.387 | 2008–2009 | 1533 | 4.0 | 6.1 | [8] |
Mt. Ailao | Remote | 101.107 | 24.533 | 2011–2014 | 1931 | 3.7 | 7.2 | [8] |
Mt. Damei | Remote | 121.565 | 29.632 | 2012–2014 | 1621 | 3.7 | 6.0 | [8] |
Mt. Changbai | Remote | 128.112 | 42.403 | 2011–2014 | 751 | 7.4 | 5.6 | [8] |
Bayinbuluk | Remote | 83.717 | 42.893 | 2013–2014 | 266 | 7.7 | 2.0 | [8] |
Lhasa | Urban | 91.12 | 29.63 | 2010 | 359 | 24.9 | 8.2 | [27] |
Guiyang | Urban | 106.724 | 26.573 | 2012–2013 | 1057 | 11.9 | 12.6 | [8] |
Chongqing | Rural | 106.58 | 29.52 | 2010–2014 | 1104 | 34.3 | 37.83 | [28] |
Seoul, Korea | Rural | 127 | 37.51 | 2006–2007 | 1235–1645 | 10.1–16.3 | 16.8–20.2 | [29] |
10 sites around Japan | - | - | - | 2004–2015 | 583–2147 | 5.8–18.0 | [30] | |
17 sites of GMOS | Remote | - | - | 2011–2015 | 47–1364 | 2.6–15.0 | 0.1–10 | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Wu, Q.; Gao, W.; Wang, S.; Li, Z.; Liu, K.; Han, D. Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China. Atmosphere 2020, 11, 1301. https://doi.org/10.3390/atmos11121301
Tang Y, Wu Q, Gao W, Wang S, Li Z, Liu K, Han D. Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China. Atmosphere. 2020; 11(12):1301. https://doi.org/10.3390/atmos11121301
Chicago/Turabian StyleTang, Yi, Qingru Wu, Wei Gao, Shuxiao Wang, Zhijian Li, Kaiyun Liu, and Deming Han. 2020. "Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China" Atmosphere 11, no. 12: 1301. https://doi.org/10.3390/atmos11121301
APA StyleTang, Y., Wu, Q., Gao, W., Wang, S., Li, Z., Liu, K., & Han, D. (2020). Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China. Atmosphere, 11(12), 1301. https://doi.org/10.3390/atmos11121301