New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
Abstract
:1. Introduction
2. Experiments
2.1. Regional Settings
2.2. Study Site
2.3. Age Model
2.4. Fossil Assemblages
3. Dust Proxies
4. Results
4.1. Age Model Constraints
- -
- -
- the absence of Globigerinoides ruber pink below 15.8 m (Groeneveld pers. comm.);
- -
- the first occurrence of Emiliania huxleyi at 17.85 m;
- -
- the last occurrence of Pseudoemiliana lacunosa at ≈55 m;
- -
- the main changes on δ18O measured in G. menardii and their correlation with the δ18O stack from Lisiecki and Raymo (2005) [47]. The stable isotope stratigraphy is very relative since the record is not continuous. The isotope ratios mainly served to identify the glacial stages vs. interglacial, the internal oscillation within a single stage was not considered.
4.2. Benthic Foraminifera Assemblages
4.3. Corals and Bryozoans
4.4. Radiogenic Isotopes (Nd), Major Elements (X-ray Fluorescence) and REE (Y/Ho)
5. Discussion
5.1. Faunal Assemblages and Bathymetric Estimates
5.2. Aeolian Versus Fluvial Inputs
- -
- The signature of the REE and, more precisely, the ratio of Y/Ho suggests significant terrestrial input during interglacial periods;
- -
- The XRF and NGR data, especially the Ti/Ca ratio and the K%, show a strong influence of the Australian Summer Monsoon (ASM), with strong precipitation and riverine input during the interglacial periods. Whereas, the log(Zr/Fe) ratio, the log(Zr + Fe + Ti)/(Al + K) ratio, and the U% are showing arid periods dominated by aeolian inputs during glacial phases;
- -
- The εNd values are significantly more radiogenic during the glacial periods than during the interglacials.
5.3. Composition of Surface Sediments in the Australian Continent: Insights from Radiogenic Isotopes Distribution
5.4. Reconstruction of Middle to Late Pleistocene Changes of the Main Source Sediment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- De Deckker, P. An evaluation of Australia as a major source of dust. Earth Sci. Rev. 2019, 194, 536–567. [Google Scholar] [CrossRef]
- Shulmeister, J. Australasian evidence for mid-Holocene climate change implies precessional control of Walker Circulation in the Pacific. Quat. Int. 1999, 57, 81–91. [Google Scholar] [CrossRef]
- Ellerton, D.; Shulmeister, J.; Woodward, C.; Moss, P. Last Glacial Maximum and Last Glacial–Interglacial Transition pollen record from northern NSW, Australia: Evidence for a humid late Last Glacial Maximum and dry deglaciation in parts of eastern Australia. J. Quat. Sci. 2017, 32, 717–728. [Google Scholar] [CrossRef]
- Petherick, L.; Shulmeister, J.; Knight, J.; Rojas, M. SHeMax: The Last Glacial Maximum in the southern hemisphere. Quat. Australas. 2016, 33, 32. [Google Scholar]
- Betzler, C.; Eberli, G.; Lüdmann, T.; Reolid, J.; Kroon, D.; Reijmer, J.; Swart, P.; Wright, J.; Young, J.; Alvarez-Zarikian, C. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean). Prog. Earth Planet. Sci. 2018, 5, 5. [Google Scholar] [CrossRef]
- Tada, R.; Zheng, H.; Clift, P.D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog. Earth Planet. Sci. 2016, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-J.; Cheng, H.; Edwards, R.L.; An, Z.; Wu, J.; Shen, C.-C.; Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [Green Version]
- Meneghini, B.; Simmonds, I.; Smith, I.N. Association between Australian rainfall and the southern annular mode. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 109–121. [Google Scholar] [CrossRef]
- Ehlert, C.; Frank, M.; Haley, B.; Boeniger, U.; De Deckker, P.; Gingele, F. Current transport versus continental inputs in the eastern Indian Ocean: Radiogenic isotope signatures of clay size sediments. Geochem. Geophys. Geosystems 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Stuut, J.B.W.; De Deckker, P.; Saavedra-Pellitero, M.; Bassinot, F.; Drury, A.J.; Walczak, M.H.; Nagashima, K.; Murayama, M. A 5.3-million-year history of monsoonal precipitation in northwestern Australia. Geophys. Res. Lett. 2019, 46, 6946–6954. [Google Scholar] [CrossRef] [Green Version]
- Stuut, J.-B.W.; Temmesfeld, F.; De Deckker, P. A 550 ka record of aeolian activity near North West Cape, Australia: Inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 2014, 83, 83–94. [Google Scholar] [CrossRef]
- Hallenberger, M.; Reuning, L.; Gallagher, S.J.; Back, S.; Ishiwa, T.; Christensen, B.A.; Bogus, K. Increased fluvial runoff terminated inorganic aragonite precipitation on the Northwest Shelf of Australia during the early Holocene. Sci. Rep. 2019, 9, 18356. [Google Scholar] [CrossRef]
- Chase, B.M.; Meadows, M.E. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci. Rev. 2007, 84, 103–138. [Google Scholar] [CrossRef]
- Stuut, J.-B.W.; Prins, M.A.; Schneider, R.R.; Weltje, G.J.; Jansen, J.F.; Postma, G. A 300-kyr record of aridity and wind strength in southwestern Africa: Inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar. Geol. 2002, 180, 221–233. [Google Scholar] [CrossRef]
- Stuut, J.-B.W.; Lamy, F. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quat. Res. 2004, 62, 301–309. [Google Scholar] [CrossRef]
- Lamy, F.; Gersonde, R.; Winckler, G.; Esper, O.; Jaeschke, A.; Kuhn, G.; Ullermann, J.; Martínez-Garcia, A.; Lambert, F.; Kilian, R. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 2014, 343, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, A.; Sigman, D.M.; Ren, H.; Anderson, R.F.; Straub, M.; Hodell, D.A.; Jaccard, S.L.; Eglinton, T.I.; Haug, G.H. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 2014, 343, 1347–1350. [Google Scholar] [CrossRef]
- Lambert, F.; Delmonte, B.; Petit, J.-R.; Bigler, M.; Kaufmann, P.R.; Hutterli, M.A.; Stocker, T.F.; Ruth, U.; Steffensen, J.P.; Maggi, V. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 2008, 452, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Bowler, J. Aridity in Australia: Age, Origins and Expression in Aeolian Landforms and Sediments; Elsevier: Amsterdam, The Netherlands, 1976; Volume 12, pp. 279–310. [Google Scholar]
- De Deckker, P.; Norman, M.; Goodwin, I.D.; Wain, A.; Gingele, F.X. Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 205–223. [Google Scholar] [CrossRef]
- Hesse, P.P.; McTainsh, G.H. Australian dust deposits: Modern processes and the Quaternary record. Quat. Sci. Rev. 2003, 22, 2007–2035. [Google Scholar] [CrossRef]
- McTainsh, G. Quaternary aeolian dust processes and sediments in the Australian region. Quat. Sci. Rev. 1989, 8, 235–253. [Google Scholar] [CrossRef]
- De Deckker, P. Airborne dust traffic from Australia in modern and Late Quaternary times. Glob. Planet. Chang. 2020, 184, 103056. [Google Scholar] [CrossRef]
- Marx, S.K.; McGowan, H.A.; Kamber, B.S. Long-range dust transport from eastern Australia: A proxy for Holocene aridity and ENSO-type climate variability. Earth Planet. Sci. Lett. 2009, 282, 167–177. [Google Scholar] [CrossRef]
- Revel-Rolland, M.; De Deckker, P.; Delmonte, B.; Hesse, P.; Magee, J.; Basile-Doelsch, I.; Grousset, F.; Bosch, D. Eastern Australia: A possible source of dust in East Antarctica interglacial ice. Earth Planet. Sci. Lett. 2006, 249, 1–13. [Google Scholar] [CrossRef]
- Hesse, P.P. The record of continental dust from Australia in Tasman Sea sediments. Quat. Sci. Rev. 1994, 13, 257–272. [Google Scholar] [CrossRef]
- Wengler, M.; Lamy, F.; Struve, T.; Borunda, A.; Boening, P.; Geibert, W.; Kuhn, G.; Pahnke, K.; Roberts, J.; Tiedemann, R. A geochemical approach to reconstruct modern dust fluxes and sources to the South Pacific. Geochim. Et Cosmochim. Acta 2019, 264, 205–223. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Harrison, S.P. DIRTMAP: The geological record of dust. Earth Sci. Rev. 2001, 54, 81–114. [Google Scholar] [CrossRef]
- Hesse, P.P.; Magee, J.W.; van der Kaars, S. Late Quaternary climates of the Australian arid zone: A review. Quat. Int. 2004, 118, 87–102. [Google Scholar] [CrossRef]
- Fitzsimmons, K.E.; Cohen, T.J.; Hesse, P.P.; Jansen, J.; Nanson, G.C.; May, J.-H.; Barrows, T.T.; Haberlah, D.; Hilgers, A.; Kelly, T. Late Quaternary palaeoenvironmental change in the Australian drylands. Quat. Sci. Rev. 2013, 74, 78–96. [Google Scholar] [CrossRef]
- Karlson, L.; Greene, R.; Scott, K.; Stelcer, E.; O’Loingsigh, T. Characteristics of aeolian dust across northwest Australia. Aeolian Res. 2014, 12, 41–46. [Google Scholar] [CrossRef]
- Potemra, J.T. Indonesian Throughflow transport variability estimated from satellite altimetry. Oceanography 2005, 18, 98–107. [Google Scholar] [CrossRef]
- Feng, M.; Meyers, G. Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep Sea Res. Part Ii Top. Stud. Oceanogr. 2003, 50, 2263–2284. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, M.; Godfrey, J.S. Regional Oceanography: An Introduction; Elsevier: Amsterdam, The Netherlands, 2013; p. 437. [Google Scholar]
- Feng, M.; Waite, A.; Thompson, P. Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia. J. R. Soc. West. Aust. 2009, 92, 67. [Google Scholar]
- Gentilli, J. Climates of Australia and New Zealand; Elsevier Pub. Co.: Washington, DC, USA, 1971. [Google Scholar]
- Gimeno, L.; Drumond, A.; Nieto, R.; Trigo, R.M.; Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Suppiah, R. The Australian summer monsoon: A review. Prog. Phys. Geogr. 1992, 16, 283–318. [Google Scholar] [CrossRef]
- McBride, J.L. The Australian summer monsoon. Monsoon Meteorol. 1987, 203, 13. [Google Scholar]
- Gallagher, S.J.; Wallace, M.W.; Li, C.L.; Kinna, B.; Bye, J.T.; Akimoto, K.; Torii, M. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. Paleoceanography 2009, 24. [Google Scholar] [CrossRef] [Green Version]
- Kuhnt, W.; Holbourn, A.; Xu, J.; Opdyke, B.; De Deckker, P.; Röhl, U.; Mudelsee, M. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene. Nat. Commun. 2015, 6, 5916. [Google Scholar] [CrossRef] [Green Version]
- Denniston, R.F.; Asmerom, Y.; Lachniet, M.; Polyak, V.J.; Hope, P.; An, N.; Rodzinyak, K.; Humphreys, W.F. A Last Glacial Maximum through middle Holocene stalagmite record of coastal Western Australia climate. Quat. Sci. Rev. 2013, 77, 101–112. [Google Scholar] [CrossRef]
- Gallagher, S.; Fulthorpe, C.; Bogus, K.; Auer, G.; Baranxal, S.; Castañeda, I.S.; Christensen, B.A.; de Vleeschouwer, D.; Franco, D.R.; Groeneveld, J.; et al. Expedition 356 summary. Proc. Int. Ocean Discov. Program 2017, 356. [Google Scholar] [CrossRef]
- Ishiwa, T.; Yokoyama, Y.; Reuning, L.; McHugh, C.M.; De Vleeschouwer, D.; Gallagher, S.J. Australian Summer Monsoon variability in the past 14,000 years revealed by IODP Expedition 356 sediments. Prog. Earth Planet. Sci. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Kucera, M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev. Mar. Geol. 2007, 1, 213–262. [Google Scholar]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20. [Google Scholar] [CrossRef] [Green Version]
- Raffi, I.; Backman, J.; Fornaciari, E.; Pälike, H.; Rio, D.; Lourens, L.; Hilgen, F. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 2006, 25, 3113–3137. [Google Scholar] [CrossRef]
- Holbourn, A.; Henderson, A.S.; MacLeod, N. Atlas of Benthic Foraminifera; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Hanagata, S.; Nobuhara, T. Illustrated guide to Pliocene foraminifera from Miyakojima, Ryukyu Island Arc, with comments on biostratigraphy. Palaeontol. Electron. 2015, 1, 1–140. [Google Scholar]
- Panchang, R.; Nigam, R. Benthic ecological mapping of the Ayeyarwady delta shelf off Myanmar, using foraminiferal assemblages. J. Palaeontol. Soc. India 2014, 59, 121–168. [Google Scholar]
- Hammer, Ř.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Phleger, F.B. Ecology and Distribution of Recent Foraminifera; Johns Hopkins Press: Baltimore, MD, USA, 1960. [Google Scholar]
- Boltovskoy, E.; Wright, R. Recent Foraminifera.–The Hague; Dr. W. Junk bv Publishers: The Hague, The Netherlands, 1976. [Google Scholar]
- Dumas, C.; Aubert, D.; De Madron, X.D.; Ludwig, W.; Heussner, S.; Delsaut, N.; Menniti, C.; Sotin, C.; Buscail, R. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea). Environ. Geochem. Health 2014, 36, 995–1014. [Google Scholar] [CrossRef]
- Hamilton, P.; O’nions, R.; Bridgwater, D.; Nutman, A. Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth Planet. Sci. Lett. 1983, 62, 263–272. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; OSTI: Oak Ridge, TN, USA, 1985.
- Jaeschke, A.; Rühlemann, C.; Arz, H.; Heil, G.; Lohmann, G. Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography 2007, 22. [Google Scholar] [CrossRef]
- Folk, R.L. Reddening of desert sands; Simpson Desert, NT, Australia. J. Sediment. Res. 1976, 46, 604–615. [Google Scholar]
- Bullard, J.E.; White, K. Quantifying iron oxide coatings on dune sands using spectrometric measurements: An example from the Simpson-Strzelecki Desert, Australia. J. Geophys. Res. Solid Earth 2002, 107, ECV 5-1–ECV 5-11. [Google Scholar] [CrossRef]
- Mackie, D.S.; Peat, J.M.; McTainsh, G.H.; Boyd, P.W.; Hunter, K.A. Soil abrasion and eolian dust production: Implications for iron partitioning and solubility. Geochem. Geophys. Geosystems 2006, 7. [Google Scholar] [CrossRef]
- De Vleeschouwer, D.; Dunlea, A.G.; Auer, G.; Anderson, C.H.; Brumsack, H.; de Loach, A.; Gurnis, M.; Huh, Y.; Ishiwa, T.; Jang, K.; et al. Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution. Geochem. Geophys. Geosyst. 2017, 18, 1053–1064. [Google Scholar] [CrossRef]
- Christensen, B.A.; Renema, W.; Henderiks, J.; De Vleeschouwer, D.; Groeneveld, J.; Castañeda, I.S.; Reuning, L.; Bogus, K.; Auer, G.; Ishiwa, T. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene. Geophys. Res. Lett. 2017, 44, 6914–6925. [Google Scholar] [CrossRef] [Green Version]
- Groeneveld, J.; Henderiks, J.; Renema, W.; McHugh, C.M.; De Vleeschouwer, D.; Christensen, B.A.; Fulthorpe, C.S.; Reuning, L.; Gallagher, S.J.; Bogus, K. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies. Sci. Adv. 2017, 3, e1602567. [Google Scholar] [CrossRef] [Green Version]
- Schofield, A. Uranium Content of Igneous Rocks of Australia: 1: 5 000 000 Maps-Explanatory Notes and Discussion; Geoscience Australia: Canberra, ACT, Australia, 2009.
- Thompson, P.R.; Bé, A.W.; Duplessy, J.-C.; Shackleton, N.J. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature 1979, 280, 554. [Google Scholar] [CrossRef]
- Integrated Ocean Drilling Program Expedition 346 Preliminary Report. Available online: http://publications.iodp.org/preliminary_report/346/index.html (accessed on 18 November 2020).
- Cairns, S.D. The azooxanthellate Scleractinia (Coelenterata: Anthozoa) of Australia. Rec. Aust. Mus. 2004, 56, 329. [Google Scholar] [CrossRef] [Green Version]
- Hoeksema, B.; Best, M. New observations on scleractinian corals from Indonesia: 2. Sipunculan-associated species belonging to the genera Heterocyathus and Heteropsammia. Zool. Meded. 1991, 65, 221–245. [Google Scholar]
- Baccaert, J. Distribution Patterns and Taxonomy of Benthic Foraminifera in the Lizard Island Reef Complex, Northern Great Barrier Reef, Australia. Ph.D. Thesis, University of Liege, Liège, Belgium, 1987; p. 661. [Google Scholar]
- Collins, A.C. Foraminifera. Great Barrier Reef Expedition 1928-29. Sci. Rep. 1958, 6, 335–437. [Google Scholar]
- Switzer, A.; Mamo, B.; Dominey-Howes, D.; Strotz, L.; Courtney, C.; Jones, B.; Haslett, S.; Everett, D. On the possible origins of an unusual (mid to late Holocene) coastal deposit, Old Punt Bay, south-east Australia. Geogr. Res. 2011, 49, 408–430. [Google Scholar] [CrossRef]
- Narayan, Y.R.; Pandolfi, J.M. Benthic foraminiferal assemblages from Moreton Bay, South-East Queensland, Australia: Applications in monitoring water and substrate quality in subtropical estuarine environments. Mar. Pollut. Bull. 2010, 60, 2062–2078. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, N. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 1987, 6, 183–190. [Google Scholar] [CrossRef]
- Spratt, R.M.; Lisiecki, L.E. A Late Pleistocene sea level stack. Clim. Past 2016, 12, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; De Deckker, P.; Lambeck, K.; Johnston, P.; Fifield, L.K. Sea-level at the Last Glacial Maximum: Evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 165, 281–297. [Google Scholar] [CrossRef]
- Morigi, C.; Jorissen, F.J.; Fraticelli, S.; Horton, B.P.; Principi, M.; Sabbatini, A.; Capotondi, L.; Curzi, P.V.; Negri, A. Benthic foraminiferal evidence for the formation of the Holocene mud-belt and bathymetrical evolution in the central Adriatic Sea. Mar. Micropaleontol. 2005, 57, 25–49. [Google Scholar] [CrossRef]
- Wright, R. 41. Neogene paleobathymetry of the Mediterranean based on benthic foraminifers from DSDP Leg 42a. Initial. Rep. Dsdp 1978, 42, 837–847. [Google Scholar]
- Moissette, P. Changes in bryozoan assemblages and bathymetric variations. Examples from the Messinian of northwest Algeria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 155, 305–326. [Google Scholar] [CrossRef]
- Amini, Z.Z.; Adabi, M.H.; Burrett, C.F.; Quilty, P.G. Bryozoan distribution and growth form associations as a tool in environmental interpretation, Tasmania, Australia. Sediment. Geol. 2004, 167, 1–15. [Google Scholar] [CrossRef]
- Dix, G.R. High-energy, inner shelf carbonate facies along a tide-dominated non-rimmed margin, northwestern Australia. Mar. Geol. 1989, 89, 347–362. [Google Scholar] [CrossRef]
- Stuut, J.-B.W.; Crosta, X.; Van Der Borg, K.; Schneider, R. Relationship between Antarctic sea ice and southwest African climate during the late Quaternary. Geology 2004, 32, 909–912. [Google Scholar] [CrossRef]
- Wyrwoll, K.-H.; Miller, G.H. Initiation of the Australian summer monsoon 14,000 years ago. Quat. Int. 2001, 83, 119–128. [Google Scholar] [CrossRef]
- Bayon, G.; De Deckker, P.; Magee, J.W.; Germain, Y.; Bermell, S.; Tachikawa, K.; Norman, M.D. Extensive wet episodes in Late Glacial Australia resulting from high-latitude forcings. Sci. Rep. 2017, 7, 44054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 2015, 170, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.J.; Jacobsen, S.B. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol. Isot. Geosci. Sect. 1987, 66, 245–272. [Google Scholar] [CrossRef]
- Grousset, F.E.; Biscaye, P.E.; Revel, M.; Petit, J.-R.; Pye, K.; Joussaume, S.; Jouzel, J. Antarctic (Dome C) ice-core dust at 18 ky BP: Isotopic constraints on origins. Earth Planet. Sci. Lett. 1992, 111, 175–182. [Google Scholar] [CrossRef]
- Kamber, B.S.; Greig, A.; Collerson, K.D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim. Et Cosmochim. Acta 2005, 69, 1041–1058. [Google Scholar] [CrossRef]
- Liu, E.; Wang, X.-C.; Zhao, J.-x.; Wang, X. Geochemical and Sr–Nd isotopic variations in a deep-sea sediment core from Eastern Indian Ocean: Constraints on dust provenances, paleoclimate and volcanic eruption history in the last 300,000 years. Mar. Geol. 2015, 367, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Vroon, P.; Van Bergen, M.; Klaver, G.; White, W. Strontium, neodymium, and lead isotopic and trace-element signatures of the East Indonesian sediments: Provenance and implications for Banda Arc magma genesis. Geochim. Cosmochim. Acta 1995, 59, 2573–2598. [Google Scholar] [CrossRef]
- McGowan, H.; Clark, A. Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmos. Environ. 2008, 42, 6915–6925. [Google Scholar] [CrossRef]
- Gingele, F.; De Deckker, P.; Hillenbrand, C.-D. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses: Clay mineral evidence. Aust. J. Earth Sci. 2001, 48, 867–874. [Google Scholar] [CrossRef]
- Gingele, F.X.; De Deckker, P.; Hillenbrand, C.-D. Clay mineral distribution in surface sediments between Indonesia and NW Australia—Source and transport by ocean currents. Mar. Geol. 2001, 179, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Spooner, M.I.; De Deckker, P.; Barrows, T.T.; Fifield, L.K. The behaviour of the Leeuwin Current offshore NW Australia during the last five glacial–interglacial cycles. Glob. Planet. Chang. 2011, 75, 119–132. [Google Scholar] [CrossRef]
- Howard, W.R. Palaeoclimatology: A warm future in the past. Nature 1997, 388, 418. [Google Scholar] [CrossRef]
- Van der Kaars, S.; De Deckker, P. A Late Quaternary pollen record from deep-sea core Fr10/95, GC17 offshore Cape Range Peninsula, northwestern Western Australia. Rev. Palaeobot. Palynol. 2002, 120, 17–39. [Google Scholar] [CrossRef]
- Johnson, B.; Miller, G.H.; Fogel, M.L.; Magee, J.; Gagan, M.; Chivas, A. 65,000 years of vegetation change in central Australia and the Australian summer monsoon. Science 1999, 284, 1150–1152. [Google Scholar] [CrossRef]
- Fitzsimmons, K.E.; Rhodes, E.J.; Magee, J.W.; Barrows, T.T. The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia. Quat. Sci. Rev. 2007, 26, 2598–2616. [Google Scholar] [CrossRef]
- Fujioka, T.; Chappell, J.; Fifield, L.K.; Rhodes, E.J. Australian desert dune fields initiated with Pliocene–Pleistocene global climatic shift. Geology 2009, 37, 51–54. [Google Scholar] [CrossRef]
- Hesse, P.P.; McTainsh, G.H. Last glacial maximum to early Holocene wind strength in the mid-latitudes of the Southern Hemisphere from aeolian dust in the Tasman Sea. Quat. Res. 1999, 52, 343–349. [Google Scholar] [CrossRef]
- Sime, L.S.; Hodgson, D.; Bracegirdle, T.J.; Allen, C.; Perren, B.; Roberts, S.; de Boer, A.M. Sea ice led to poleward-shifted winds at the Last Glacial Maximum: The influence of state dependency on CMIP5 and PMIP3 models. Clim. Past 2016, 12, 2241–2253. [Google Scholar] [CrossRef] [Green Version]
- De Deckker, P.; Moros, M.; Perner, K.; Jansen, E. Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nat. Geosci. 2012, 5, 266. [Google Scholar] [CrossRef]
- Hesse, P.P. How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields. Quat. Int. 2016, 410, 11–29. [Google Scholar] [CrossRef]
- Bard, E.; Rickaby, R.E. Migration of the subtropical front as a modulator of glacial climate. Nature 2009, 460, 380. [Google Scholar] [CrossRef]
Samples | Depth | 143Nd/144Nd | Standard Error | εNd |
---|---|---|---|---|
CSF-A (m) | ||||
1F-1W | 0.4 | 0.511444 | 17 × 10−6 | −23.3 |
2H-2W | 3.5 | 0.511531 | 12 × 10−6 | −21.6 |
3F-1W | 6.7 | 0.511518 | 12 × 10−6 | −21.8 |
4H-1W | 11.4 | 0.511685 | 6 × 10−6 | −18.6 |
4H-3W | 14.25 | 0.511861 | 4 × 10−6 | −15.2 |
4F-7W | 19.85 | 0.511731 | 6 × 10−6 | −17.7 |
5H-3W | 23.9 | 0.51183 | 12 × 10−6 | −15.8 |
6H-1W | 30.4 | 0.511707 | 9 × 10−6 | −18.2 |
6H-4W | 34.9 | 0.511742 | 10 × 10−6 | −17.5 |
7H-4W | 44.4 | 0.511554 | 40 × 10−6 | −21.1 |
7H-6W | 47.4 | 0.511632 | 14 × 10−6 | −19.6 |
8H-2W | 50.9 | 0.511566 | 28 × 10−6 | −20.9 |
9F-1W | 54.55 | 0.511834 | 13 × 10−6 | −15.7 |
11F-1W | 57.6 | 0.512152 | 12 × 10−6 | −9.5 |
11F-2W | 59.1 | 0.512336 | 110 × 10−6 | −5.9 |
11F-3W | 60.6 | 0.511974 | 11 × 10−6 | −13 |
12F-1W | 62.3 | 0.511803 | 9 × 10−6 | −16.3 |
12F-2W | 63.8 | 0.511685 | 6 × 10−6 | −18.6 |
12F-3W | 65.3 | 0.511653 | 18 × 10−6 | −19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courtillat, M.; Hallenberger, M.; Bassetti, M.-A.; Aubert, D.; Jeandel, C.; Reuning, L.; Korpanty, C.; Moissette, P.; Mounic, S.; Saavedra-Pellitero, M. New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene. Atmosphere 2020, 11, 1251. https://doi.org/10.3390/atmos11111251
Courtillat M, Hallenberger M, Bassetti M-A, Aubert D, Jeandel C, Reuning L, Korpanty C, Moissette P, Mounic S, Saavedra-Pellitero M. New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene. Atmosphere. 2020; 11(11):1251. https://doi.org/10.3390/atmos11111251
Chicago/Turabian StyleCourtillat, Margot, Maximilian Hallenberger, Maria-Angela Bassetti, Dominique Aubert, Catherine Jeandel, Lars Reuning, Chelsea Korpanty, Pierre Moissette, Stéphanie Mounic, and Mariem Saavedra-Pellitero. 2020. "New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene" Atmosphere 11, no. 11: 1251. https://doi.org/10.3390/atmos11111251
APA StyleCourtillat, M., Hallenberger, M., Bassetti, M.-A., Aubert, D., Jeandel, C., Reuning, L., Korpanty, C., Moissette, P., Mounic, S., & Saavedra-Pellitero, M. (2020). New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene. Atmosphere, 11(11), 1251. https://doi.org/10.3390/atmos11111251