Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = bryozoans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8610 KiB  
Article
Marine Bryozoans from the Northern Pacific Coast of Costa Rica
by Beatriz Antillón-Obando, Jorge Cortés and Jeffrey A. Sibaja-Cordero
Diversity 2025, 17(7), 451; https://doi.org/10.3390/d17070451 - 26 Jun 2025
Viewed by 393
Abstract
Although diverse and abundant, the phylum Bryozoa has been the subject of few studies in Costa Rica. Nearly 50 years have passed since Banta and Carson identified, described, and published twenty-four bryozoan species, including scanning electron microscope (SEM) images. To expand the knowledge [...] Read more.
Although diverse and abundant, the phylum Bryozoa has been the subject of few studies in Costa Rica. Nearly 50 years have passed since Banta and Carson identified, described, and published twenty-four bryozoan species, including scanning electron microscope (SEM) images. To expand the knowledge of bryozoan diversity in the region, we sampled shallow coastal waters along the northern Pacific coast of Costa Rica and extracted tissue for DNA barcoding using the mitochondrial COI marker. Photographs of living specimens and SEM images were taken for morphological identification. We identified fifteen individuals belonging to nine bryozoan species from the orders Cyclostomatida and Cheilostomatida. Five of these species represent new records for Costa Rica (Savignyella lafontii, Bugula neritina, Watersipora arcuata, Smittipora levinseni, and Biflustra tenuis), while the remaining four (Disporella sp., Parasmittina crosslandi, Cigclisula sp., and Biflustra sp.) had been previously reported. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

14 pages, 1685 KiB  
Article
Benthic Infauna in the Shallow-Water Hydrothermal System of Banderas Bay, Mexico: A Two-Period Comparison
by María Carolina Rodríguez-Uribe, Rosa María Chávez-Dagostino, Patricia Salazar-Silva, Jani Jarquín-González, Alma Rosa Raymundo-Huizar and Fátima Maciel Carrillo-González
Diversity 2025, 17(7), 440; https://doi.org/10.3390/d17070440 - 20 Jun 2025
Viewed by 709
Abstract
At a depth of approximately 9 m off the coast of Banderas Bay, hydrothermal activity occurs through various seabed vents, discharging liquids and gases that reach temperatures of up to 89 °C and pH values lower than the surrounding seawater. This study examines [...] Read more.
At a depth of approximately 9 m off the coast of Banderas Bay, hydrothermal activity occurs through various seabed vents, discharging liquids and gases that reach temperatures of up to 89 °C and pH values lower than the surrounding seawater. This study examines the composition of the benthic infauna inhabiting the sediments of this hydrothermal system in two time periods: November 2017 (previously reported) and September 2023 (recorded for this study). In total, for both samplings, we identified 17 benthic infaunal groups—amphipods, isopods, cumaceans, tanaidaceans, crabs, shrimps, copepods, snails, limpets, caecids, chitons, bivalves, scaphopods, polychaetes, amphioxus, ophiuroids, and bryozoans—belonging to these ten taxonomic classes: Malacostraca, Maxillopoda, Gastropoda, Polyplacophora, Bivalvia, Scaphopoda, Polychaeta, Leptocardii, Ophiuroidea, and Stenolaemata. Additionally, we identified galleries of polychaetes, vermetids, and peracarids. Despite the stressful hydrothermal conditions, statistical analyses of both sampling campaigns revealed no significant differences in abundance, highlighting the potential persistence and adaptability of benthic communities in hydrothermally influenced habitats. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

17 pages, 3604 KiB  
Article
The Overlooked Suspension Feeders: The Filtering Activity of the Bryozoans Schizoporella errata and Bugula neritina in the Northern Adriatic
by Ana Fortič, Borut Mavrič, Petra Slavinec and Lovrenc Lipej
J. Mar. Sci. Eng. 2025, 13(6), 1052; https://doi.org/10.3390/jmse13061052 - 27 May 2025
Viewed by 509
Abstract
Marine fouling communities, characterized by a high abundance of suspension feeders, play a crucial role in regulating ecosystem services, particularly in improving seawater quality. While not typically prioritized in conservation due to their prevalence in degraded or artificial habitats, fouling communities are important [...] Read more.
Marine fouling communities, characterized by a high abundance of suspension feeders, play a crucial role in regulating ecosystem services, particularly in improving seawater quality. While not typically prioritized in conservation due to their prevalence in degraded or artificial habitats, fouling communities are important for their ecological functions under increasing urbanization and climate change. Bryozoans are an important component of these communities, although their filtering activity is less understood compared to some other groups, such as bivalves and ascidians. In this paper, we aimed to investigate the filtration activity of two widespread fouling bryozoan species, namely Schizoporella errata and Bugula neritina in the northern Adriatic (Slovenia). We measured the clearance rates (CR) of both the species when fed with microalgae to assess their filtration capacity and determine the most suitable units for quantifying the biofiltration. B. neritina exhibited a higher average CR than S. errata. The maximum CR was 32 mL/(h·cm2) for the S. errata and 52 mL/(h·cm2) for the B. neritina. Due to the morphological and growth differences between the species, the surface area was determined to be the most appropriate unit for expressing the CR. We also examined the CR of the S. errata exposed to fluorescent microplastic beads and identified active feeding areas within the colonies. Feeding zooids in S. errata were concentrated at the terminal growth margins and elevated areas of the frontal budding, as indicated by a higher fluorescence and microsphere density. These results contribute to the existing knowledge on fouling bryozoans in coastal habitats and provide further insights into their potential role as biofilters and contributors to ecosystem functioning. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

17 pages, 1911 KiB  
Article
Structure of Non-Indigenous Fouling Assemblages and Biocontamination Levels in Portuguese Recreational Marinas Under Different Salinity Conditions
by Jesús Fernández-Gutiérrez, Marcos Rubal, Leandro Sampaio, Juan Moreira, Fran Ramil, Isabel Sousa-Pinto and Puri Veiga
Diversity 2025, 17(4), 245; https://doi.org/10.3390/d17040245 - 29 Mar 2025
Cited by 2 | Viewed by 430
Abstract
The number of recreational marinas has increased in recent years due to the growing demand for leisure boating. Recreational marinas are key points for the introduction of non-indigenous species (NIS), which are considered a source of biocontamination. However, there is scarce knowledge on [...] Read more.
The number of recreational marinas has increased in recent years due to the growing demand for leisure boating. Recreational marinas are key points for the introduction of non-indigenous species (NIS), which are considered a source of biocontamination. However, there is scarce knowledge on the influence of environmental features on NIS fouling assemblages, especially regarding different salinity conditions. The aim of this study is to explore the effect of salinity on the structure of NIS fouling assemblages and biocontamination levels. Therefore, fouling assemblages associated with floating pontoons were studied in recreational marinas located in fully marine and brackish habitats on the Northern Portuguese coast. Twenty-four NIS were found, of which arthropods and bryozoans represented the most abundant taxa. Except for NIS abundance, univariate and multivariate analyses showed that NIS assemblage structure was shaped by salinity conditions. Thus, NIS richness and the ratio between NIS richness and total richness were significantly higher in marine than in brackish habitats. Similarly, consistently higher biocontamination levels were found in marine habitats, compromising their ecological status. Quantitative data provided here will be useful in the development of NIS management strategies. Thus, in Northern Portugal, efforts should be focused on marinas under fully marine salinity conditions because they harbor a greater number of NIS and, consequently, a worse ecological status. Full article
Show Figures

Figure 1

13 pages, 6567 KiB  
Article
Palaeostomate Bryozoans from Glacial Erratics in the Tvären Region, Sweden
by Baopeng Song, Yue Liang, Lars E. Holmer, Luke C. Strotz, Junye Ma and Zhifei Zhang
Minerals 2025, 15(2), 136; https://doi.org/10.3390/min15020136 - 29 Jan 2025
Viewed by 971
Abstract
The post-impact fauna of the Dalby Limestone of Tvären Bay has been extensively examined, with the exception of the Palaeostomate bryozoan taxa present. Here, we report three palaeostomate bryozoans found in limestone boulders recovered from glacial deposits on Ringsö Island derived from Tvären [...] Read more.
The post-impact fauna of the Dalby Limestone of Tvären Bay has been extensively examined, with the exception of the Palaeostomate bryozoan taxa present. Here, we report three palaeostomate bryozoans found in limestone boulders recovered from glacial deposits on Ringsö Island derived from Tvären Bay, Sweden. The bryozoan fauna includes Pachydictya bifurcata, Hallopora sp., and Trematoporid sp. indet. Pachydictya bifurcata has bifoliate zoaria with two layers of zooecia oriented in opposite directions along the mesotheca. Hallopora sp. is characterized by the presence of mesozooecia, tubular autozooecia with rounded apertures, thin walls, and possessing diaphragms. The zoaria of Trematoporid sp. indet are loosely arranged and slightly ambiguous, but lack further identifying features. The report of Pachydictya bifurcata herein represents an extension of its stratigraphic range within the late Ordovician. These findings enhance our understanding of the bryozoan diversity in the region, providing the first detailed report of the presence of these taxa in this geological context. Full article
Show Figures

Figure 1

22 pages, 14587 KiB  
Article
Response of Hard-Bottom Macro-Zoobenthos to the Transition of a Mediterranean Mariculture Fish Plant (Mar Grande of Taranto, Ionian Sea) into an Integrated Multi-Trophic Aquaculture (IMTA) System
by Roberta Trani, Cataldo Pierri, Antonella Schiavo, Tamara Lazic, Maria Mercurio, Isabella Coccia, Adriana Giangrande and Caterina Longo
J. Mar. Sci. Eng. 2025, 13(1), 143; https://doi.org/10.3390/jmse13010143 - 15 Jan 2025
Cited by 4 | Viewed by 1039
Abstract
This study investigates the effects on hard-bottom macro-zoobenthic communities of converting a mariculture plant into an Integrated Multi-Trophic Aquaculture (IMTA) system. This study was conducted from 2018 to 2021 in the semi-enclosed Mar Grande basin of Taranto (northern Ionian Sea), on a facility [...] Read more.
This study investigates the effects on hard-bottom macro-zoobenthic communities of converting a mariculture plant into an Integrated Multi-Trophic Aquaculture (IMTA) system. This study was conducted from 2018 to 2021 in the semi-enclosed Mar Grande basin of Taranto (northern Ionian Sea), on a facility located 600 m off the coastline, with a production capacity of 100 tons per year of seabass (Dicentrarchus labrax) and seabream (Sparus aurata). The results from seasonal sampling performed in a treatment site, where bioremediators (filter-feeding invertebrates such as sponges, polychaetes, mussels, and macroalgae) were deployed, and a control site without bioremediators were compared. Before the IMTA installation, the hard substrates under the cages were sparsely inhabited, with significant sediment coverage. By 2021, the treatment site exhibited revitalized and more diverse macro-zoobenthic communities, with species richness increasing from 83 taxa in 2018 to 104 taxa, including notable growth in sponges, annelids, mollusks, and bryozoans. In contrast, the control site showed no substantial changes in biodiversity over the same period. Biodiversity indices, including Shannon and Margalef indices, improved significantly at the treatment site, particularly during summer months, highlighting a more resilient and balanced benthic environment. Taxonomic distinctness (delta+) and multivariate analyses (PERMANOVA, PCO) confirmed significant spatial and temporal shifts in community structure at the treatment site, driven by IMTA implementation. SIMPER analysis identified key taxa contributing to these changes, which played a pivotal role in structuring the community. The emergence of filter feeders, predators, and omnivores at the treatment site suggests enhanced nutrient cycling and trophic complexity, while the decline in opportunistic species further supports improved environmental conditions. These findings demonstrate the potential of IMTA to promote recovery and sustainable mariculture practices, also offering a comprehensive understanding of its positive effects on hard-bottom benthic community dynamics. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 13198 KiB  
Article
Microfacies and Evolution of the Carbonate Factory During the Middle Permian in Northwest Sichuan Basin, China
by Siyu Zhou, Dakang Zhong, Haitao Sun, Xiaojie Huang, Chenguang Wang and Xuanwei Liu
Minerals 2024, 14(10), 1037; https://doi.org/10.3390/min14101037 - 17 Oct 2024
Viewed by 1434
Abstract
Located in the eastern Paleo-Tethys Ocean and near the equator, carbonate sedimentation widely developed in the Sichuan Basin in the Permian Guadalupian period. Although the growth and decline of carbonate particles are closely related to the surrounding sedimentary environment, the relationships between the [...] Read more.
Located in the eastern Paleo-Tethys Ocean and near the equator, carbonate sedimentation widely developed in the Sichuan Basin in the Permian Guadalupian period. Although the growth and decline of carbonate particles are closely related to the surrounding sedimentary environment, the relationships between the grain composition and distribution of the northwest Sichuan Basin and the sedimentary environment are not clear. This study explored the particle type, particle content, and sedimentary structure of 300 thin sections from 19 wells and seven field profiles of the Guadalupian period in the northwest Sichuan Basin, identified seven microfacies and four microfacies associations, analyzed the sedimentary environment, and established a sedimentary evolution model. The results show that there was a warm-water Dasycladaceae-dominated and foraminifera-dominated open platform developed in the early Roadian era in the research area. As the climate cooled during the late Roadian era, the warm-water carbonate sedimentary environment was replaced by a cold-water bryozoan-dominated and echinoid-dominated marginal sedimentary environment. As the climate continued to cool and the sea level dropped, the platform margin grain beach sediment underwent further development in the early Wordian era. In the late Wordian era stage, the sedimentary environment was influenced by the Dongwu movement, resulting in sea level changes and acidification caused by hydrothermal activities, which reduced the degree of grain beach development. During the Capitanian era, the climate became warmer due to the eruption of the ELIP. The uplift caused by the Dongwu movement resulted in a relative shallowing of the platform margin region, and hence, the grain beach sediment only developed in the southwest, while the northeast was dominated by deepwater basin sediments. The sudden transition from a warm-water, autotroph-dominated carbonate open platform to a cold-water, heterozoan-dominated carbonate platform margin resulted from a combination of tectonic movements, rapid sea level changes, and sedimentary environment changes during the Guadalupian era. Full article
Show Figures

Figure 1

22 pages, 26818 KiB  
Article
Depositional Environment and Ecological Response of Bioconstructions: A Case Study of Southern China (Guizhou Province) in Moscovian–Gzhelian
by Xiao Li, Enpu Gong, Yongli Zhang, Changqing Guan and Wentao Huang
Life 2024, 14(9), 1150; https://doi.org/10.3390/life14091150 - 11 Sep 2024
Viewed by 1055
Abstract
From the late Carboniferous to the early Permian, multiple pulses of glaciation and deglaciation have been caused by the LPIA. The Pennsylvanian period experienced phases of recovery, proliferation, and decline, ultimately forming a reef system distinctly different from that of the Mississippian period. [...] Read more.
From the late Carboniferous to the early Permian, multiple pulses of glaciation and deglaciation have been caused by the LPIA. The Pennsylvanian period experienced phases of recovery, proliferation, and decline, ultimately forming a reef system distinctly different from that of the Mississippian period. During the late Bashkirian to Moscovian, the metazoan reef experienced a limited resurgence, with reef predominantly formed by chaetetid developing in the United States, northern China, and Japan. During the Kasimovian to Gzhelian, the phylloid algal reef dominated the global reef systems. In the late Pennsylvanian, bioconstruction cases and paleoenvironmental proxies in southern Guizhou Province were studied to investigate the composition, recovery, and evolutionary processes of the bioconstructions as well as their response to environmental variations during this period. Several bioconstructions have been reported in the Lumazhai section of Houchang Town, Guizhou Province, southern China, from the Moscovian to the Gzhelian. The upper Carboniferous strata are well-preserved and continuously exposed. The continuous strata, abundant fossils, and diverse bioconstructions provide excellent research materials for exploring the mutual constraints between organisms and their environment. This study identified ten microfacies, whose vertical evolution indicated significant changes in the depositional environment related to relative sea-level fluctuations. Skeletal grains are widely present in these facies. Among them, foraminifera, algae, bryozoans, crinoids, and Tubiphytes are the most common and exhibit distinct distribution characteristics in various environments. Quantitative statistics, CCA and theoretical ecospace have been utilized to examine and interpret environmental impact factors. Quantitative analysis of their relative abundance and distribution patterns provides insights into the complex interactions between organisms and environmental factors. The relative abundances of different organisms and factors controlling their bioconstructions are influenced by relative sea-level changes. CCA analysis reveal that hydrodynamic conditions are the primary influencing factor. Variation trends in average tiering and motility reveal the characteristics of biological communities during environmental changes in phylloid algae and microbial bioconstructions. These bioconstructions are not directly correlated with changes in environmental factors, and the biological communities in phylloid algae mounds and biostromes exhibit similar organism compositions and ecological niches across different environments. Full article
(This article belongs to the Section Paleobiology)
Show Figures

Figure 1

14 pages, 8703 KiB  
Article
Multiple Non-Destructive Approaches to Analysis of the Early Silurian Chain Coral Halysites from South China
by Xinyi Ren, Yazhou Hu, Peiyu Liu, Yue Liang, Feiyang Chen, Hao Qiu, Luke C. Strotz, Kun Liang and Zhifei Zhang
Life 2024, 14(8), 1014; https://doi.org/10.3390/life14081014 - 15 Aug 2024
Viewed by 1230
Abstract
Cnidarians are among the most important diploblastic organisms, elucidating many of the early stages of Metazoan evolution. However, Cnidarian fossils from Cambrian deposits have been rarely documented, mainly due to difficulties in identifying early Cnidarian representatives. Halysites, a tabulate coral from Silurian [...] Read more.
Cnidarians are among the most important diploblastic organisms, elucidating many of the early stages of Metazoan evolution. However, Cnidarian fossils from Cambrian deposits have been rarely documented, mainly due to difficulties in identifying early Cnidarian representatives. Halysites, a tabulate coral from Silurian reef systems, serves as a crucial taxon for interpreting Cambrian cnidarians. Traditionally, the biological characteristics of Halysites have been analyzed using methods limited by pretreatment requirements (destructive testing) and the chamber size capacity of relevant analytical instruments. These constraints often lead to irreversible information loss and inadequate data extraction. This means that, to date, there has been no high-resolution three-dimensional mineralization analysis of Halysites. This study aims to introduce novel, non-destructive techniques to analyze the internal structure and chemical composition of Halysites. Furthermore, it seeks to elucidate the relationship between coral organisms and biomineralization in reef settings and to compare Silurian Tabulata with putative Cambrian cnidarians. Techniques such as micro-X-ray fluorescence spectrometry (micro-XRF), micro-X-ray computed tomography (micro-CT), and scanning electron microscopy (SEM) were employed in this research. With the help of high-resolution micro-CT scanning, we identify the growth pattern of Halysites, showing both lateral and vertical development. The lateral multiple-branching growth pattern of Halysites corals is first established herein. The flaggy corallite at the initial stage of branching is also observed. The micro-XRF mapping results reveal the occurrence of septa spines for Halysites, a trait previously thought rare or absent. Additionally, the ratio of coral volume to the surrounding rock was assessed, revealing that Halysites reefs were relatively sparse (volume ratio = ~30%). The cavities between Halysites likely provided more space for other organisms (e.g., rugose corals and bryozoans) when compared to other coral reef types. Additionally, we provide a comparative analysis of post-Cambrian colonial calcareous skeletons, offering insights into the structural features and growth patterns of early skeletal metazoans across the Ediacaran–Cambrian boundary. Full article
(This article belongs to the Special Issue Back to Basics in Palaeontology)
Show Figures

Figure 1

23 pages, 5442 KiB  
Article
Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation
by Hyung-Gon Lee, Ok-Hwan Yu, Sang-Lyeol Kim, Jung-Hoon Kang and Kyoung-Soon Shin
J. Mar. Sci. Eng. 2024, 12(4), 613; https://doi.org/10.3390/jmse12040613 - 1 Apr 2024
Cited by 2 | Viewed by 2114
Abstract
Global ecological concern regarding the transfer of fouling organisms to ship hulls is increasing. This study investigated the species composition, dominant species, distribution patterns, community structure, and life-cycle differences of hull-fouling macroinvertebrates on five research vessels (R/Vs: Isabu, Onnuri, Eardo, Jangmok 1, and [...] Read more.
Global ecological concern regarding the transfer of fouling organisms to ship hulls is increasing. This study investigated the species composition, dominant species, distribution patterns, community structure, and life-cycle differences of hull-fouling macroinvertebrates on five research vessels (R/Vs: Isabu, Onnuri, Eardo, Jangmok 1, and Jangmok 2) operated by the Korea Institute of Ocean Science and Technology (KIOST). Hull-fouling macroinvertebrates were collected three to five times on quadrats from the upper and middle sectors of the hull sides, bottom, and niche areas (the propellers, shafts, and thrusters). A total of 47 macroinvertebrate species were identified, represented by 8519 individuals (ind.)/m2 and a biomass of 1967 gWWt/m2 on the five vessels. The number of species, density, and biomass were greater on the coastal vessels Eardo, Jangmok 1, and Jangmok 2 than on the ocean-going vessels the Isabu and Onnuri. Among the coastal vessels, barnacles were the most abundant and had the greatest density, while mollusks had the highest biomass. Differences between hull sectors showed that the highest species abundance and density appeared on all hulls in ports and bays where the Jangmok 1 operated, while the highest species abundance, density, and biomass were identified in the niche areas of the Eardo, which operated farther from the coast. The hull-fouling macroinvertebrates that exceeded 1% of all organisms were the barnacles Amphibalanus amphitrite, Balanus trigonus, and Amphibalanus improvisus; the polychaete Hydroides ezoensis; the bivalves Magallana gigas and Mytilus galloprovincialis; and the amphipod Jassa slatteryi. The dominant species were cosmopolitan and globally distributed, and many of them were cryptogenic. Six native species were identified: M. gigas, H. ezoensis, the amphipod Melita koreana, the isopod Cirolana koreana, and the barnacles B. trigonus and F. kondakovi. Eight non-indigenous species (NIS) were detected: the barnacles A. amphitrite and A. improvisus, the bivalve M. galloprovincialis, the polychaete Perinereis nuntia, the amphipods J. slatteryi and Caprella californica, and the bryozoans Bugulina californica and Bugula neritina. Of the fouling macroinvertebrates found on the vessel hulls, 13% were native, and 17% were NIS. More diverse communities developed on the hulls of vessels that operated locally rather than globally or in deep oceans. The species diversity index correlated positively with the total number of anchoring days and coastal operation days and negatively with the total number of operation days and ocean operation days. The macroinvertebrates differed by the area of operation, the port of anchorage, the number of days in operation and at anchor, and the hull sectors. There is no previous research data on hull-fouling macroinvertebrates in the Republic of Korea, and this study provides a basis for future studies to identify introduced species and their differences based on operation area. Full article
Show Figures

Figure 1

27 pages, 39970 KiB  
Article
The Middle Miocene Microfacies, Cyclicity, and Depositional History: Implications on the Marmarica Formation at the Siwa Oasis, Western Desert (Egypt)
by Mohamed A. Khalifa, Amr S. Zaky, Luigi Jovane, Ahmed M. El-Hewy, Esam Zahran and Atef M. Kasem
Minerals 2024, 14(1), 73; https://doi.org/10.3390/min14010073 - 8 Jan 2024
Cited by 5 | Viewed by 2291
Abstract
Microfacies studies were carried out on the Middle Miocene Marmarica Formation exposed at the Gabal Western Bahi El-Din and Gabal El-Najdeen, the Siwa Oasis, northwestern Desert (Egypt). It was distinguished into the lower, middle, and upper members. Eleven microfacies types were recognized, which [...] Read more.
Microfacies studies were carried out on the Middle Miocene Marmarica Formation exposed at the Gabal Western Bahi El-Din and Gabal El-Najdeen, the Siwa Oasis, northwestern Desert (Egypt). It was distinguished into the lower, middle, and upper members. Eleven microfacies types were recognized, which include skeletal lime-mudstone, dolomitic lime-mudstone, intraclastic wackestone, bryozoan wackestone, foraminiferal wackestone, foraminiferal bryozoan packstone, glauconitic molluscan packstone, molluscan intraclastic packstone, pelletal peloidal skeletal packstone, dolostones, and claystone microfacies. This formation includes several types of emergence- meter-scale cycles (shallowing-upward). Field observations and petrographic analyses revealed that these cycles consist of pure carbonates and mixed siliciclastic carbonates. These cycles consist of four types of gradual cycles and six types of non-gradual cycles. The gradual emergence cycles indicate a balance between the rate of subsidence, sea level oscillations, and sedimentation rate. The non-gradual cycles indicate an irregular balance between sedimentation rate and subsidence rate. The non-gradual cycles denote high-frequency sea level variation and/or short-term sea level oscillations, which are associated with high carbonate formation. The depositional environments of the Marmarica Formation are restricted to lagoonal at the base, followed upward to open marine conditions. Both environments most probably characterize the platform setting. Full article
Show Figures

Figure 1

13 pages, 9715 KiB  
Article
Species Diversity and Community Structure of Macrobenthos in the Cosmonaut Sea, East Antarctica
by Jianfeng Mou, Kun Liu, Yaqin Huang, Junhui Lin, Xuebao He, Shuyi Zhang, Dong Li, Yongcan Zu, Zhihua Chen, Sujing Fu, Heshan Lin and Wenhua Liu
Diversity 2023, 15(12), 1197; https://doi.org/10.3390/d15121197 - 6 Dec 2023
Cited by 3 | Viewed by 2354
Abstract
The Cosmonaut Sea is an under-studied area and a “white spot” for macrobenthos research. Here, we report on the species diversity and community structure of macrobenthos collected using tringle trawls on the 38th Chinese National Antarctic Research Expedition (CHINARE) in the Cosmonaut Sea, [...] Read more.
The Cosmonaut Sea is an under-studied area and a “white spot” for macrobenthos research. Here, we report on the species diversity and community structure of macrobenthos collected using tringle trawls on the 38th Chinese National Antarctic Research Expedition (CHINARE) in the Cosmonaut Sea, East Antarctica. A total of 11 tringle trawls were deployed at different depths across the shelf, slope and seamount of the Cosmonaut Sea. A total of 275 macrobenthic species were found from 207 to 1994 m. The species richness per station varied from 23 to 89. Echinoderms (100 species), arthropods (48 species) and mollusks (36 species) were the most dominant groups. Echinoderms and arthropods dominated in abundance at seamount stations, and echinoderms, arthropods and polychaetes dominated in abundance at slope stations, while bryozoans, corals, ascidians and sponges were abundant on the Cosmonaut Sea shelf. Depth was the major driving force influencing the distribution of macrobenthos. The main components were two core communities. One was dominated by sessile suspension feeders and associated fauna. Variants of this community include sponges and bryozoans. The other core community was dominated by mobile deposit feeders, infauna and grazers–epifauna, which included arthropods and echinoderms. The results showed that the slope (40–50° E, 65–67° S) of the Cosmonaut Sea may be an important area with complex ecological processes. The results of this study contribute to the knowledge of species diversity and communities of macrobenthos in the Cosmonaut Sea and provide monitoring data for future ecosystem health assessments and better protection. Full article
Show Figures

Figure 1

25 pages, 4121 KiB  
Review
Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms
by Md Khursheed, Hardik Ghelani, Reem K. Jan and Thomas E. Adrian
Mar. Drugs 2023, 21(10), 524; https://doi.org/10.3390/md21100524 - 30 Sep 2023
Cited by 20 | Viewed by 5911
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available [...] Read more.
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 3.0)
Show Figures

Figure 1

20 pages, 4812 KiB  
Article
Modeling Benthic Community Settlement and Recruitment on Living Dock Restoration Mats
by Sandra Rech, Kelli Z. Hunsucker and Robert J. Weaver
Environments 2023, 10(8), 138; https://doi.org/10.3390/environments10080138 - 3 Aug 2023
Cited by 2 | Viewed by 2094
Abstract
An increase in population along the Indian River Lagoon has led to eutrophication, a decline in water quality, and overall degradation. The Living Docks program is a citizen–science initiative started at the Florida Institute of Technology for lagoon restoration. Public and private docks [...] Read more.
An increase in population along the Indian River Lagoon has led to eutrophication, a decline in water quality, and overall degradation. The Living Docks program is a citizen–science initiative started at the Florida Institute of Technology for lagoon restoration. Public and private docks are volunteered to become Living Docks, where oyster mats are attached to dock pilings to provide a natural substrate for benthic organism growth. The community development on the oyster mats boosts water filtration to improve overall water quality and combat anthropogenic effects on the lagoon. The purpose of this project was to model benthic settlement and recruitment of prominent organisms on the Living Dock oyster mats at four research sites with specific environmental factors (e.g., temperature, salinity, turbidity, and pH). Beta regression models for recruitment and settlement were created for five of the more dominant organisms observed: oyster, barnacle, sponge, tubeworm, and encrusting bryozoan. The results of the modeling indicated that the settlement was influenced by pH, salinity, dock location, and turbidity, while recruitment was influenced by pH, salinity, dock location, and immersion time. This project provides insight into how lagoon conditions surrounding the Living Docks impact benthic growth and can aid in IRL restoration. Full article
Show Figures

Figure 1

14 pages, 2491 KiB  
Review
A Review of Rhodolith/Maerl Beds of the Italian Seas
by Michela Ingrassia, Martina Pierdomenico, Daniele Casalbore, Francesco Giuseppe Falese and Francesco Latino Chiocci
Diversity 2023, 15(7), 859; https://doi.org/10.3390/d15070859 - 15 Jul 2023
Cited by 9 | Viewed by 2299
Abstract
Coralline algal beds are comprised of biogenic calcareous formations considered a habitat of high conservation interest, hosting a high great biodiversity. To assess the status of this habitat in the Italian seas, we report results from a systematic analysis of the available scientific [...] Read more.
Coralline algal beds are comprised of biogenic calcareous formations considered a habitat of high conservation interest, hosting a high great biodiversity. To assess the status of this habitat in the Italian seas, we report results from a systematic analysis of the available scientific literature. Italian rhodolith/maerl beds are reported on 31 Italian sites mostly located around islands, shoals, banks, terraces, and gentley sloping shelves, from 9 m to 130 m water depth (with a mean depth of about 56 m). The dominant species occurring in the Italian submarine sites are Phymatolithon calcareum and Lithothamnion corallioides, with a rich associated fauna including sponges, bryozoans, hydrozoans, polichaetes, molluscs, amphipods, gastropods, echinoderms. Despite the high biodiversity characterizing the Italian rhodolith/maerl beds, only seven submarine sites hosting this sensitive habitat are part of Marine Protected Areas (MPAs). This evidence highlights the need for actions focused on the implementation of effective management and proper conservation measures to preserve such precious habitats. Protection of this habitat cannot be effectively provided without access to multidisciplinary data (e.g., geospatial, biological, geophysical, geomorphological data) capable of assessing its spatial distribution and biological characteristics over wide areas. An increased research effort to improve the production of fine-scale distribution maps and monitoring activities is therefore needed. Full article
(This article belongs to the Special Issue Biodiversity in Italy: Past and Future Perspectives)
Show Figures

Figure 1

Back to TopTop