Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia
Abstract
:1. Introduction
2. Present Climate
3. Methodology
4. Results
4.1. Geochemical Elements and Terrigenous Input Proxies
4.2. Palynological Proxies (Pollen and Spores)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohtadi, M.; Oppo, D.W.; Steinke, S.; Stuut, J.B.W.; De Pol-Holz, R.; Hebbeln, D.; Lückge, A. Glacial to Holocene swings of the Australian-Indonesian monsoon. Nat. Geosci. 2011, 4, 540–544. [Google Scholar] [CrossRef]
- Steinke, S.; Mohtadi, M.; Prange, M.; Varma, V.; Pittauerova, D.; Fischer, H.W. Mid-to late-Holocene australian-indonesian summer monsoon variability. Quat. Sci. Rev. 2014, 93, 142–154. [Google Scholar] [CrossRef]
- Wicaksono, S.A.; Russell, J.M.; Holbourn, A.; Kuhnt, W. Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum. Quat. Sci. Rev. 2017, 157, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Mohtadi, M.; Prange, M.; Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 2016, 533, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Steinke, S.; Prange, M.; Feist, C.; Groeneveld, J.; Mohtadi, M. Upwelling variability off southern Indonesia over the past two millennia. Geophys. Res. Lett. 2014, 41, 7684–7693. [Google Scholar] [CrossRef]
- Griffiths, M.L.; Drysdale, R.N.; Gagan, M.K.; Frisia, S.; Zhao, J.X.; Ayliffe, L.K.; Hantoro, W.S.; Hellstrom, J.C.; Fischer, M.J.; Feng, Y.X.; et al. Evidence for Holocene changes in australian-indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios. Earth Planet. Sci. Lett. 2010, 292, 27–38. [Google Scholar] [CrossRef]
- Griffiths, M.L.; Drysdale, R.N.; Gagan, M.K.; Zhao, J.X.; Ayliffe, L.K.; Hellstrom, J.C.; Hantoro, W.S.; Frisia, S.; Feng, Y.X.; Cartwright, I.; et al. Increasing australian-indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat. Geosci. 2009, 2, 636–639. [Google Scholar] [CrossRef]
- Kuhnt, W.; Holbourn, A.; Xu, J.; Opdyke, B.; De Deckker, P.; Mudelsee, M. Southern hemisphere control on australian monsoon variability during the late deglaciation and Holocene. Nat. Commun. 2015. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, H.; Shi, X.; Chen, M.; Cao, P.; Li, Z.; Troa, R.A.; Zuraida, R.; Triarso, E.; Marfasran, H. Reconstruction of monsoon evolution in southernmost Sumatra over the past 35 kyr and its response to northern hemisphere climate changes. Prog. Earth Planet. Sci. 2020, 7, 30. [Google Scholar] [CrossRef]
- Setiawan, R.Y.; Mohtadi, M.; Southon, J.; Groeneveld, J.; Steinke, S.; Hebbeln, D. The consequences of opening the Sunda Strait on the hydrography of the eastern tropical Indian Ocean. Paleoceanography 2015, 30, 1358–1372. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Bassinot, F.; Guichard, F.; Fang, N.Q. Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum. Mar. Micropaleontol. 2013, 101, 115–126. [Google Scholar] [CrossRef]
- Spooner, M.I.; Barrows, T.T.; De Deckker, P.; Paterne, M. Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon. Glob. Planet. Chang. 2005, 49, 28–46. [Google Scholar] [CrossRef]
- Wyrwoll, K.H.; Miller, G.H. Initiation of the Australian summer monsoon 14,000 years ago. Quat. Int. 2001, 82, 119–128. [Google Scholar] [CrossRef]
- Denniston, R.F.; Wyrwoll, K.H.; Asmerom, Y.; Polyak, V.J.; Humphreys, W.F.; Cugley, J.; Woods, D.; LaPointe, Z.; Peota, J.; Greaves, E. North Atlantic forcing of millennial-scale indo-australian monsoon dynamics during the Last Glacial period. Quat. Sci. Rev. 2013, 72, 159–168. [Google Scholar] [CrossRef]
- Wang, P.X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z.; Kiefer, T. The global monsoon across time scales: Mechanisms and outstanding issues. Earth Sci. Rev. 2017, 174, 84–121. [Google Scholar] [CrossRef]
- Ayliffe, L.K.; Gagan, M.K.; Zhao, J.; Drysdale, R.N.; Hellstrom, J.C.; Hantoro, W.S.; Griffiths, M.L.; Scott-gagan, H.; Pierre, E.S.; Cowley, J.A.; et al. Australasian monsoon during the last deglaciation. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, J.W.; Miller, G.H.; Spooner, N.A.; Questiaux, D. Continuous 150 k.y. monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure. Geology 2004, 32, 885–888. [Google Scholar] [CrossRef]
- Nott, J.; Price, D. Plunge pools and paleoprecipitation. Geology 1994, 22, 1047–1050. [Google Scholar] [CrossRef]
- Denniston, R.F.; Wyrwoll, K.; Polyak, V.J.; Brown, J.R.; Asmerom, Y.; Wanamaker, A.D.; Lapointe, Z.; Ellerbroek, R.; Barthelmes, M.; Cleary, D.; et al. A stalagmite record of Holocene indonesian e australian summer monsoon variability from the australian tropics. Quat. Sci. Rev. 2013, 78, 155–168. [Google Scholar] [CrossRef]
- Solanki, S.K.; Usoskin, I.G.; Kromer, B.; Schüssler, M.; Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 2004, 431, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 1978, 35, 2361–2367. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M.; Wigley, T.M.L.; Arblaster, J.M.; Dai, A. Solar and greenhouse gas forcing and climate response in the twentieth century. J. Clim. 2003, 16, 426–444. [Google Scholar] [CrossRef]
- Hanebuth, T.J.J.; Voris, H.K.; Yokoyama, Y.; Saito, Y.; Okuno, J. Formation and fate of sedimentary depocentres on southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth Sci. Rev. 2011, 104, 92–110. [Google Scholar] [CrossRef]
- Broecker, W.S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 1998, 13, 119–121. [Google Scholar] [CrossRef]
- Stocker, T.F.; Johnsen, S.J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 2003, 18, 1–9. [Google Scholar] [CrossRef]
- Aldrian, E.; Susanto, R.D. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Dubois, N.; Oppo, D.W.; Galy, V.V.; Mohtadi, M.; Van Der Kaars, S.; Tierney, J.E.; Rosenthal, Y.; Eglinton, T.I.; Lückge, A.; Linsley, B.K. Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat. Geosci. 2014, 7, 513–517. [Google Scholar] [CrossRef]
- Rixen, T.; Ittekkot, V.; Herunadi, B.; Wetzel, P.; Maier-Reimer, E.; Gaye-Haake, B. ENSO-driven carbon see saw in the Indo-Pacific. Geophys. Res. Lett. 2006, 33, L07606. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Elemental proxies for Palaeoclimatic and Palaeoceanographic variability in marine sediments: Interpretation and application. In Developments in Marine Geology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 567–644. ISBN 9780444527554. [Google Scholar]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Geol. Soc. Spec. Publ. 2006, 267, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Richter, T.O.; Van Der Gaast, S.; Koster, B.; Vaars, A.; Gieles, R.; De Stigter, H.C.; De Haas, H.; Van Weering, T.C.E. The Avaatech XRF Core scanner: Technical description and applications to NE Atlantic sediments. Geol. Soc. Spec. Publ. 2006, 267, 39–50. [Google Scholar] [CrossRef]
- Dypvik, H.; Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr + Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B 1982, 44, 139–160. [Google Scholar] [CrossRef]
- van der Kaars, W.A. Palynology of eastern indonesian marine piston-cores: A late Quaternary vegetational and climatic record for Australasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 85. [Google Scholar] [CrossRef]
- Wang, X.; Van Der Kaars, S.; Kershaw, P.; Bird, M.; Jansen, F. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 147, 241–256. [Google Scholar] [CrossRef]
- Van Der Kaars, S.; Wang, X.; Kershaw, P.; Guichard, F.; Setiabudi, D.A. A late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 155, 135–143. [Google Scholar] [CrossRef]
- Barmawidjaja, B.M.; Rohling, E.J.; van der Kaars, W.A.; Vergnaud Grazzini, C.; Zachariasse, W.J. Glacial conditions in the northern Molucca Sea region (Indonesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 101, 147–167. [Google Scholar] [CrossRef]
- Yulianto, E.; Rahardjo, A.T.; Noeradi, D.; Siregar, D.A.; Hirakawa, K. A Holocene pollen record of vegetation and coastal environmental changes in the coastal swamp forest at Batulicin, South Kalimantan, Indonesia. J. Asian Earth Sci. 2005, 25, 1–8. [Google Scholar] [CrossRef]
- Huang, E.; Tian, J.; Liu, J. Dynamics of the australian-indonesian monsoon across termination II: Implications of molecular-biomarker reconstructions from the Timor Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 423, 32–43. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.-J.; Webster, P.J.; Yim, S.-Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dyn. 2012, 39, 1123–1135. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, J.; Zhang, X.; Chen, F. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the east Asian summer monsoon: Evidence for a mid-Holocene maximum. Quat. Int. 2014, 334–335, 155–164. [Google Scholar] [CrossRef]
- Wheeler, M.C.; McBride, J.L. Australian-indonesian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer: Berlin/Heidelberg, Germany, 2005; pp. 125–173. [Google Scholar]
- Mohtadi, M.; Max, L.; Hebbeln, D.; Baumgart, A.; Krück, N.; Jennerjahn, T. Modern environmental conditions recorded in surface sediment samples off W and SW Indonesia: Planktonic foraminifera and biogenic compounds analyses. Mar. Micropaleontol. 2007, 65, 96–112. [Google Scholar] [CrossRef]
- Suppiah, R.; Wu, X. Surges, cross-equatorial flows and their links with the australian summer monsoon circulation and rainfall. Aust. Meteorol. Mag. 1998, 47, 113–130. [Google Scholar]
- Tomczak, M.; Godfrey, J.S. Adjacent seas of the Indian Ocean and the Australasian Mediterranian Sea (The indonesian throughflow). In Regional Oceanography: An Introduction; Daya Publishing House: New Delhi, India, 2003; pp. 215–228. [Google Scholar]
- Qu, T.; Du, Y.; Strachan, J.; Meyers, G.; Slingo, J. Sea surface temperature and its variability in the indonesian region. Oceanography 2005, 18, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Poliakova, A.; Rixen, T.; Jennerjahn, T.; Behling, H. Eleven month high resolution pollen and spore sedimentation record off SW Java in the Indian Ocean. Mar. Micropaleontol. 2014, 111, 90–99. [Google Scholar] [CrossRef]
- Gordon, A. Oceanography of the indonesian seas and their throughflow. Oceanography 2005, 18, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. Change of indonesian throughflow outflow in response to east asian monsoon and ENSO activities since the Last Glacial. Sci. China Earth Sci. 2014, 57, 791–801. [Google Scholar] [CrossRef]
- Xu, J.; Holbourn, A.; Kuhnt, W.; Jian, Z.; Kawamura, H. Changes in the thermocline structure of the indonesian out flow during terminations I and II. Earth Planet. Sci. Lett. 2008, 273, 152–162. [Google Scholar] [CrossRef]
- Holbourn, A.; Kuhnt, W.; Xu, J. Indonesian throughflow variability during the last 140 ka: The timor sea outflow. Geol. Soc. Spec. Publ. 2011, 355, 283–303. [Google Scholar] [CrossRef]
- Putra, P.S.; Nugroho, S.H. Holocene climate dynamics in Sumba Strait, Indonesia: A preliminary evidence from high resolution geochemical records and planktonic foraminifera. Stud. Quartenaria. (in press).
- Bayhaqi, A.; Lenn, Y.-D.; Surinati, D.; Polton, J.; Nur, M.; Corvianawatie, C.; Purwandana, A. The variability of indonesian throughflow in Sumba Strait and its linkage to the climate events. Am. J. Appl. Sci. 2019, 16, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Ardi, R.D.W. Paleoclimatology and Paleo-Oceanography Reconstruction since Late Pleistocene Based on Foraminifera Assemblages Off the Southwest Coast of Sumba Island, East Nusa Tenggara. Master’s Thesis, Institut Teknologi, Bandung, Indonesia, 2018. [Google Scholar]
- Ardi, R.D.W.; Maryunani, K.A.; Yulianto, E.; Putra, P.S.; Nugroho, S.H. Biostratigraphy and analysis of changes in thermocline depth off the Southwest Coast of Sumba since the Late Pleistocene based on planktonic foraminifera assemblages. Bull. Geol. 2019, 3, 355–362. [Google Scholar] [CrossRef]
- Hemming, S.R. Terrigenous sediments. In Paleoceanography, Physical and Chemical Proxies; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1776–1786. ISBN 9780444536433. [Google Scholar]
- Kissel, C.; Laj, C.; Kienast, M.; Bolliet, T.; Holbourn, A.; Hill, P.; Kuhnt, W.; Braconnot, P. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: Insights from sedimentary magnetic properties and sortable silt. Paleoceanography 2010, 25, 1–12. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Markovics, G.; Price, R.C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Langer, M.R. Assessing the contribution of foraminiferan protists to global ocean carbonate production. J. Eukaryot. Microbiol. 2008, 55, 163–169. [Google Scholar] [CrossRef]
- Fortuin, A.R.; Roep, T.B.; Sumosusastro, P.A. The Neogene sediments of east Sumba, Indonesia-products of a lost arc? J. Southeast Asian Earth Sci. 1994, 9, 67–79. [Google Scholar] [CrossRef]
- Abdullah, C.I.; Rampnoux, J.P.; Bellon, H.; Maury, R.C.; Soeria-Atmadja, R. The evolution of Sumba Island (Indonesia) revisited in the light of new data on the geochronology and geochemistry of the magmatic rocks. J. Asian Earth Sci. 2000, 18, 533–546. [Google Scholar] [CrossRef]
- Hu, D.; Böning, P.; Köhler, C.M.; Hillier, S.; Pressling, N.; Wan, S.; Brumsack, H.J.; Clift, P.D. Deep sea records of the continental weathering and erosion response to east Asian monsoon intensification since 14 ka in the South China Sea. Chem. Geol. 2012, 326–327, 1–18. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Su, X.; Zheng, H. Elemental geochemistry of northern slope sediments from the South China Sea: Implications for provenance and source area weathering since Early Miocene. Chem. Erde Geochem. 2013, 73, 61–74. [Google Scholar] [CrossRef]
- Istiana. Characteristics of palynomorph due to climate change in deep sea sediment since the Late Pleistocene, East Nusa Tenggara. Master’s Thesis, Institut Teknologi Bandung, Indonesia, 2019. [Google Scholar]
- Hesse, M.; Waha, M. A new look at the acetolysis method. Plant Syst. Evol. 1989, 163, 147–152. [Google Scholar] [CrossRef]
- Yulianto, E.; Sukapti, W.S.; Rahardjo, A.T.; Noeradi, D.; Siregar, D.A.; Suparan, P.; Hirakawa, K. Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia. Rev. Palaeobot. Palynol. 2004, 131, 251–268. [Google Scholar] [CrossRef]
- Haberle, S.; Rowe, C.; Hungerford, S.; Preston, T.; Warren, P.; Hope, G.; Hopf, F.; Thornhill, A.; Stevenson, J.; Weng, C.; et al. The Australasian Pollen and Spore Atlas V1.0. Available online: http://apsa.anu.edu.au/ (accessed on 20 September 2001).
- Johns, R.J. Plant zonation. In Biogeography and Ecology of New Guinea. Monographiae Biologicae; Gressit, J.L., Ed.; Springer: Dordrecht, The Netherlands, 1982; pp. 309–330. [Google Scholar]
- Van Der Kaars, S.; Penny, D.; Tibby, J.; Fluin, J.; Dam, R.A.C.; Suparan, P. Late quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 171, 185–212. [Google Scholar] [CrossRef]
- Gibbons, F.T.; Oppo, D.W.; Mohtadi, M.; Rosenthal, Y.; Cheng, J.; Liu, Z.; Linsley, B.K. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans. Earth Planet. Sci. Lett. 2014, 387, 240–251. [Google Scholar] [CrossRef] [Green Version]
- GEBCO Bathymetric Compilation Group 2020. GEBCO_2020 Grid. 2020. [Google Scholar]
- Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Edouard Bard, B.; Alex Bayliss, B.; Warren Beck, B.J.; Paul Blackwell, B.G.; Christopher Bronk Ramsey, B. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal Bp. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Talma, A.S.; Vogel, J.C. A simplified approach to calibrating 14C dates. Radiocarbon 1993, 35, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Blaauw, M.; Christeny, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A.; Aquino, M.A. rbacon: Age-Depth Modelling Using Bayesian Statistics. R. Packag. Version 2.4.2. 2020. Available online: https://cran.r-project.org/web/packages/rbacon/rbacon.pdf (accessed on 26 July 2020).
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Bolli, H.M.; Saunders, J.B. Oligocene to Holocene low latitude planktic foraminifera. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., Eds.; Cambridge University Press: New York, NY, USA, 1985; pp. 155–262. ISBN 978-0-521-36719-6. [Google Scholar]
- Augustin, L.; Barbante, C.; Barnes, P.R.; Barnola, J.M.; Bigler, M.; Castellano, E.; Cattani, O.; Chappellaz, J.; Dahl-Jensen, D.; Delmonte, B.; et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 2006, 444, 195–198. [Google Scholar] [CrossRef]
- Grootes, P.M.; Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3-to 10 5-year time resolution. J. Geophys. Res. Ocean. 1997, 102, 26455–26470. [Google Scholar] [CrossRef]
- Siddall, M.; Rohling, E.J.; Almogi-Labin, A.; Hemleben, C.; Meischner, D.; Schmelzer, I.; Smeed, D.A. Sea-level fluctuations during the last glacial cycle. Nature 2003, 423, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Arz, H.W.; Lamy, F.; Ganopolski, A.; Nowaczyk, N.; Pätzold, J. Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat. Sci. Rev. 2007, 26, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Siddall, M. Red Sea Level Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-063. NOAA/NCDC; Paleoclimatology Program: Boulder, CO, USA, 2006. [Google Scholar]
- Stuitjs, I.; Newsome, J.; Flenley, J.R. Evidence for Late Quaternary vegetational change. Rev. Palaeobot. Palynol. 1988, 55, 207–216. [Google Scholar]
- Hope, G.; Tulip, J. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 109, 385–398. [Google Scholar] [CrossRef]
- Yosephin, Y.; Nugroho, S.H.; Putra, P.S.; Suedy, S.W.A.; Izzati, M. Palinologi Laut di Selat Sumba, Nusa Tenggara Timur. Ris. Geol. Pertamb. 2019, 29, 43. [Google Scholar] [CrossRef] [Green Version]
- Levi, C.; Labeyrie, L.; Bassinot, F.; Guichard, F.; Cortijo, E.; Waelbroeck, C.; Caillon, N.; Duprat, J.; de Garidel-Thoron, T.; Elderfield, H. Low-latitude hydrological cycle and rapid climate changes during the last deglaciation. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J.; Schmidt, M.W.; Gene Henry, L.; Curry, W.B.; Skinner, L.C.; Mulitza, S.; Zhang, R.; Chang, P. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 2014, 7, 144–150. [Google Scholar] [CrossRef]
- Deplazes, G.; Lückge, A.; Peterson, L.C.; Timmermann, A.; Hamann, Y.; Hughen, K.A.; Röhl, U.; Laj, C.; Cane, M.A.; Sigman, D.M.; et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 2013, 6, 213–217. [Google Scholar] [CrossRef]
- Xu, J.; Kuhnt, W.; Holbourn, A.; Andersen, N.; Bartoli, G. Changes in the vertical profile of Indonesian Throughflow during Termination II: Evidence from the Timor Sea. Paleoceanography 2006, 21, 1–14. [Google Scholar] [CrossRef]
- Kuhnt, W.; Holbourn, A.; Hall, R.; Zuvela, M.; Käse, R. Neogene history of the indonesian throughflow. In Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2004; Volume 149, pp. 299–320. ISBN 9781118666067. [Google Scholar]
- Morley, R.J. Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. Biogeogr. Geol. Evol. SE Asia 1998, 34, 211–234. [Google Scholar]
- Van Der Kaars, S.; Deckker, P. De A Late Quaternary pollen record from deep-sea core Fr10/95, GC17 offshore Cape Range Peninsula, northwestern western Australia. Rev. Palaeobot. Palynol. 2002, 120, 17–39. [Google Scholar] [CrossRef]
- Wagstaff, S.J. Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae). J. Biogeogr. 2004, 31, 1569–1577. [Google Scholar] [CrossRef]
- Lu, H.; Yi, S.; Liu, Z.; Mason, J.A.; Jiang, D.; Cheng, J.; Xu, Z.; Zhang, E.; Jin, L.; Zhang, Z.; et al. Variation of east asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology 2013. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.N.; Ma, Y.Z.; Feng, Z.; Sun, A.Z.; Zhang, C.J.; Li, F.; Kuang, J. A high resolution record of vegetation and environmental variation through the last∼ 25,000 years in the western part of the Chinese Loess Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 273, 191–199. [Google Scholar] [CrossRef]
- Morgan, V.I. Antarctic cold reversal. In Encyclopedia of Paleoclimatology and Ancient Environments; Springer: Dordrecht, The Netherlands, 2009; pp. 22–24. [Google Scholar]
- Tierney, J.E.; Oppo, D.W.; Rosenthal, Y.; Russell, J.M.; Linsley, B.K. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography 2010, 25, 1–7. [Google Scholar] [CrossRef]
- Ishiwa, T.; Yokoyama, Y.; Reuning, L.; McHugh, C.M.; De Vleeschouwer, D.; Gallagher, S.J. Australian summer monsoon variability in the past 14,000 years revealed by IODP expedition 356 sediments. Prog. Earth Planet. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
Lab Code | Depth Intervals | Materials | 14C Age (BP) | Calibrated 14C Age BP |
---|---|---|---|---|
Beta-492272 | 24–25 cm | Foraminifera: Neogloboquadrina spp. | 3330 ± 30 | 3236−2938 |
Beta-492271 | 74–75 cm | Foraminifera: Neogloboquadrina spp. | 4880 ± 30 | 5272−4948 |
Beta-492270 | 104–105 cm | Foraminifera: Neogloboquadrina spp. | 6390 ± 30 | 6920−6660 |
Beta-449813 | 166–167 cm | Bulk sediment | 11,930 ± 30 | 13,430–13,330 (13,375) |
Beta-449814 | 235–236 cm | Bulk sediment | 15,510 ± 50 | 18,480–18,255 (18,360) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardi, R.D.W.; Aswan; Maryunani, K.A.; Yulianto, E.; Putra, P.S.; Nugroho, S.H.; Istiana. Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia. Atmosphere 2020, 11, 932. https://doi.org/10.3390/atmos11090932
Ardi RDW, Aswan, Maryunani KA, Yulianto E, Putra PS, Nugroho SH, Istiana. Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia. Atmosphere. 2020; 11(9):932. https://doi.org/10.3390/atmos11090932
Chicago/Turabian StyleArdi, Ryan Dwi Wahyu, Aswan, Khoiril Anwar Maryunani, Eko Yulianto, Purna Sulastya Putra, Septriono Hari Nugroho, and Istiana. 2020. "Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia" Atmosphere 11, no. 9: 932. https://doi.org/10.3390/atmos11090932
APA StyleArdi, R. D. W., Aswan, Maryunani, K. A., Yulianto, E., Putra, P. S., Nugroho, S. H., & Istiana. (2020). Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia. Atmosphere, 11(9), 932. https://doi.org/10.3390/atmos11090932