Connected Variations of Meteorological and Electrical Quantities of Surface Atmosphere under the Influence of Heavy Rain
Abstract
:1. Introduction
2. Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
No. | Date | Start Time, LT (HH: MM) | The λ− Significant Increase Effect (% of Previous Undisturbed λ− Values) | ∇φ, ×103 V/m | I, mm/h | Synoptic Condition | Cloudiness and Weather Phenomena |
---|---|---|---|---|---|---|---|
1 | 20 June 2018 | 22:50 | +(666%) | −12.1–+11.0 | 5–48 | Cold front (AF) | Cb, Ac, Ci; thunderstorm |
2 | 20 July 2018 | 07:30 | +(3900%) | −8.2–0.0 | 10–90 | Cold front (AF) | Sc, Ac |
3 | 28 July 2018 | 13:40 | +(2500%) | −1.4–2.7 | 5–20 | Occluded front (AF) | Cb, Sc, As |
4 | 29 July 2018 | 16:50 | +(300%) | −12.6–+9.9 | 3–12 | Cold front (AF) | Sc, Ac, Ci |
5 | 11 August 2018 | 14:40 | +(900%) | −6.0–+2.7 | 5–38 | Cold front (AF) | Cb, Ac |
6 | 22 August 2018 | 17:50 | +(500%) | −2.2–+2.7 | 3–17 | Cold front (PF) | Cb, Sc |
7 | 23 August 2018 | 20:00 | +(4600%) | −3.3–+3.3 | 10–100 | Occluded front (PF) | Cb, Sc, Ac |
8 | 26 August 2018 | 13:30 | +(250%) | −12.6–+9.3 | 3–23 | Occluded front (PF) | Cb; thunderstorm |
9 | 22 September 2018 | 16:00 | +(766%) | −7.7–+13.2 | 5–50 | Occluded front (PF) | Cb, Sc, Ac; thunderstorm |
10 | 15 May 2019 | 16:30 | −(90%) | −13.7–+24.7 | 3–24 | Intra−mass (AM) | Cb, Ci |
11 | 19 May 2019 | 14:15 | −(100%) | −17.6–+22.0 | 0.5–5 | Intra-mass (PM) | Sc, Ac, Cb |
12 | 21 May 2019 | 18:45 | −(71%) | −20.3–+11.0 | 2.5–17 | Intra-mass (PM) | Cb, Sc, Ac |
13 | 30 May 2019 | 17:00 | +(675%) | −11.0–+6.6 | 5–75 | Cold front (AF) | Cb, Sc, Ac; thunderstorm |
14 | 31 May 2019 | 15:00 | +(533%) | −19.2–+19.2 | 2.5–40 | Cold front (AF) | Cb; thunderstorm |
15 | 31 May 2019 | 18:30 | +(833%) | −5.5–+3.3 | 3–22 | Secondary (surface) cold front(s) at the rear of the cyclone (AF) | Cb; thunderstorm |
16 | 4 June 2019 | 01:20 | +(314%) | −8.2–+9.3 | 6–50 | The low center (AF), point of occlusion (the warm and cold air merger resulting in an occluded front) | Cb, Ac |
17 | 4 June 2019 | 02:50 | +(300%) | −7.7–+10.4 | 5–35 | The low center (AF), point of occlusion (the warm and cold air merger resulting in an occluded front) | Cb, Sc |
18 | 4 June 2019 | 11:15 | +(1000%) | −1.9–+1.6 | 5–60 | Occluded front (AF) | Cb |
19 | 8 June 2019 | 15:15 | +(300%) | −5.5–+5.5 | 4–32 | Secondary (surface) cold front(s) at the rear of the cyclone (AF), where a squall line forming along | Cb thunderstorm |
20 | 8 June 2019 | 17:00 | +(625%) | −8.2–+9.9 | 5–45 | Secondary (surface) cold front(s) at the rear of the cyclone (AF), where a squall line forming along | Cb |
21 | 13 June 2019 | 16:45 | −(80%) | −13.7–+11.0 | 1–7 | Intra-mass (PF) | Cb, Cs thunderstorm |
22 | 13 June 2019 | 18:50 | −(100%) | −7.7–+6.6 | 2–17 | Occluded front (PF) | Cb; thunderstorm |
23 | 17 June 2019 | 14:15 | +(550%) | −5.5–+0.55 | 3–25 | Intra-mass (AM) | Cu med, Cu cong |
24 | 17 June 2019 | 18:00 | +(450%) | −10.4–+9.9 | 5–45 | Cold front (AF) | Cb, Ac, Ci |
25 | 23 June 2019 | 01:55 | −(125%) | −10.4–+6.6 | 4–25 | Intra-mass (PM) | Cb, Sc, Ac |
26 | 10 July 2019 | 00:00 | +(633%) | −13.7–+9.9 | 2–14 | Intra-mass (PM) | Cb, Sc; thunderstorm |
27 | 17 July 2019 | 11:20 | −(100%) | −10.4–+10.4 | 3–11 | Intra-mass (PM) | Cb, Ac |
28 | 3 August 2019 | 07:40 | +(580%) | −15.4–+8.2 | 10–80 | Cold front (PF) | Cb, Ci; thunderstorm |
29 | 10 August 2019 | 19:00 | −(115%) | −0.55–+1.6 | 3–13 | Intra-mass (AM) | Sc, Cb |
30 | 18 August 2019 | 20:05 | −(100%) | −8.8–0.0 | 3–9 | Intra-mass (PM) | Cb, Ac, Ci |
31 | 20 August 2019 | 17:45 | −(105%) | −8.2–+7.1 | 1–7 | Intra-mass (AM) | Cb, Sc, Ac |
32 | 27 August 2019 | 19:40 | −(160%) | −6.6–+11.0 | 3–18 | Intra-mass (PM) | Cb, Ac |
33 | 30 August 2019 | 21:00 | −(100%) | −6.6–+2.7 | 2–15 | Intra-mass (PM) | Ci, Cb; thunderstorm |
34 | 3 September 2019 | 15:40 | +(1100%) | −13.7–+13.7 | 10–100 | Occluded front (AF) | Cb, Ac; thunderstorm |
35 | 4 September 2019 | 15:15 | −(110%) | −8.2–+27.5 | 1–8 | Intra-mass (AM) | Ci, Sc, Cb; thunderstorm |
36 | 17 September 2019 | 21:00 | −(97%) | −12.1–10.4 | 2–14 | Intra-mass (PM) | Ci, Ac, Cb; thunderstorm |
37 | 23 September 2019 | 13:40 | +(200%) | −2.7–+1.1 | 5–18 | Cold front (AF) | Cb, As |
References
- Tverskoy, P.N. Atmospheric Electricity; Gidrometeoizdat: Leningrad, Russia, 1949; 700p. (In Russian) [Google Scholar]
- Chalmers, J.A. Atmospheric Electricity, 2nd ed.; Pergamon Press: Oxford, UK, 1967; 526p. [Google Scholar]
- Krasnogorskaia, N.V. Electricity of the Lower Layers of the Atmosphere and Methods of Its Measurement; Gidrometeoizdat: Leningrad, Russia, 1972; 323p. (In Russian) [Google Scholar]
- Filippov, A.K. Thunderstorms in Eastern Siberia; Gidrometeoizdat: Leningrad, Russia, 1974; 75p. (In Russian) [Google Scholar]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: New York, NY, USA, 2003; 687p. [Google Scholar]
- Bennett, A.J.; Harrison, R.G. Atmospheric electricity in different weather conditions. Weather 2007, 62, 277–283. [Google Scholar] [CrossRef]
- Popov, I.B. Statistical estimations of various of different meteorological phenomena influence on atmospheric electrical potential gradient. Proc. Voeikov Main Geophys. Obs. 2008, 558, 152–161. (In Russian) [Google Scholar]
- Hoppel, W.A. Theory of the electrode effect. J. Atmos. Terr. Phys. 1967, 29, 708–721. [Google Scholar]
- Latham, D.G.; Poor, H.W. A timedependent model of the electrode effect. J. Geophys. Res. 1972, 77, 2669–2676. [Google Scholar] [CrossRef]
- Hoppel, W.A.; Frick, G.M. Ion-aerosol attachment coefficients and the steady state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci. Technol. 1986, 5, 1–21. [Google Scholar] [CrossRef]
- Kupovykh, G.V.; Morozov, V.N.; Shvarts, Y.M. Theory of the Electrode Effect in the Atmosphere; TSURE Publishing: Taganrog, Russia, 1998; 124p. (In Russian) [Google Scholar]
- Petrov, A.I.; Petrova, G.G.; Panchishkina, I.N. Profiles of polar conductivities and radon-222 concentration in the atmosphere by stable and labile stratification of surface layer. Atmos. Res. 2009, 91, 206–214. [Google Scholar] [CrossRef]
- Morozov, V.N.; Kupovich, G.V. Theory of Electrical Phenomena in Atmosphere; LAP LAMBERT Academic Publishing: Saarbruken, Germany, 2012; 330p. [Google Scholar]
- Anisimov, S.V.; Afinogenov, K.V.; Shikhova, N.M. Dynamics of undisturbed midlatitude atmospheric electricity: From observations to scaling. Radiophys. Quantum Electron. 2014, 56, 709–722. [Google Scholar] [CrossRef]
- Anisimov, S.V.; Galichenko, S.V.; Shikhova, N.M.; Afinogenov, K.V. Electricity of the Convective Atmospheric Boundary Layer: Field Observations and Numerical Simulation. Izv. Atmos. Ocean. Phys. 2014, 50, 390–398. [Google Scholar] [CrossRef]
- Adzhiev, A.K.; Kupovykh, G.V. Measurements of the Atmospheric Electric Field under High-Mountain Conditions in the Vicinity of Mt. Elbrus. Izv. Atmos. Ocean. Phys. 2015, 51, 633–638. [Google Scholar] [CrossRef]
- Yaniv, R.; Yair, Y.; Price, C.; Katz, S. Local and global impacts on the fair-weather electric field in Israel. Atmos. Res. 2016, 172, 119–125. [Google Scholar] [CrossRef]
- Anisimov, S.V.; Galichenko, S.V.; Mareev, E.A. Electrodynamic properties and height of atmospheric convective boundary layer. Atmos. Res. 2017, 194, 119–129. [Google Scholar] [CrossRef]
- Kamra, A.K. Effect of electric field on charge separation by the falling precipitation mechanism in thunderclouds. J. Atmos. Sci. 1970, 27, 1182–1185. [Google Scholar] [CrossRef] [Green Version]
- Illingworth, A.J.; Latham, J. Calculations of electric field growth, field structure and charge distributions in thunderstorms. Q. J. R. Meteorol. Soc. 1977, 103, 281–295. [Google Scholar] [CrossRef]
- Chauzy, S.; Raizonville, P. Space charge layers created by coronae at ground level below thunderclouds: Measurements and modeling. J. Geophys. Res. 1982, 87, 3143–3148. [Google Scholar] [CrossRef]
- Chauzy, S.; Médale, J.; Prieur, S.; Soula, S. Multilevel measurement of the electric field underneath a thundercloud: 1. A new system and the associated data processing. J. Geophys. Res. 1991, 96, 22319–22326. [Google Scholar] [CrossRef]
- Petersen, W.A.; Rutledge, S.A. On the relationship between cloudto-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 1998, 103, 14025–14040. [Google Scholar] [CrossRef]
- Stolzenburg, M.; Marshall, T.C. Charged precipitation and electric field in two thunderstorms. J. Geophys. Res. Atmos. 1998, 103, 19777–19790. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A. Relationships between convective storm kinematics, precipitation, and lightning. Mon. Weather Rev. 2002, 130, 2492–2506. [Google Scholar] [CrossRef]
- Soula, S.; Chauzy, S.; Chong, M.; Coquillat, S.; Georgis, J.-F.; Seity, Y.; Tabary, P. Surface precipitation electric current produced by convective rains during the Mesoscale Alpine Program. J. Geophys. Res. 2003, 108, 4395. [Google Scholar] [CrossRef]
- Bennett, A.J.; Harrison, R.G. Variability in surface atmospheric electric field measurements. J. Phys. Conf. Ser. 2008, 142, 012046. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K. Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan. Atmos. Res. 2010, 95, 115–122. [Google Scholar] [CrossRef]
- Klimenko, V.V.; Mareev, E.A.; Shatalina, M.V.; Shlyugaev, Y.V.; Sokolov, V.V.; Bulatov, A.A.; Denisov, V.P. On statistical characteristics of electric fields of the thunderstorm clouds in the atmosphere. Radiophys. Quantum Electron. 2014, 56, 778–787. [Google Scholar] [CrossRef]
- Nagorsky, P.M.; Smirnov, S.V.; Pustovalov, K.N.; Morozov, V.N. Electrode layer in the electric field of deep convective cloudiness. Radiophys. Quantum Electron. 2014, 56, 769–777. [Google Scholar] [CrossRef]
- Pustovalov, K.N.; Nagorskiy, P.M. Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds. J. Atmos. Solar Terr. Phys. 2018, 172, 33–39. [Google Scholar] [CrossRef]
- Pustovalov, K.N.; Nagorskiy, P.M. Comparative Analysis of Electric State of Surface Air Layer during Passage of Cumulonimbus Clouds in Warm and Cold Seasons. Atmos. Ocean. Opt. 2018, 31, 685–689. [Google Scholar] [CrossRef]
- Bernard, M.; Underwood, S.J.; Berti, M.; Simoni, A.; Gregoretti, C. Observations of the atmospheric electric field preceding intense rainfall events in the Dolomite Alps near Cortina d’Ampezzo, Italy. Meteorol. Atmos. Phys. 2019, 132, 99–111. [Google Scholar] [CrossRef]
- Hirsikko, T.; Laakso, L.; Nieminen, S.; Gagné, S.; Lehtipalo, K. Atmospheric Ions and Nucleation: A Review of Observations. Atmos. Chem. Phys. 2011, 11, 767–798. [Google Scholar] [CrossRef] [Green Version]
- Dhanorkar, S.; Kamra, A.K. Diurnal and seasonal variations of the small-, intermediate-, and large-ion concentrations and their contributions to polar conductivity. J. Geophys. Res. 1993, 98, 14895–14908. [Google Scholar] [CrossRef]
- Horrak, U.; Salm, J.; Tammet, H. Diurnal variation in the concentration of air ions of different mobility classes in a rural area. J. Geophys. Res. 2003, 108, 4653. [Google Scholar] [CrossRef]
- Kamra, A.K.; Gautam, A.S.; Siingh, D. Charged Nanoparticles Produced by Splashing of Raindrops. J. Geophys. Res. Atmos. 2015, 120, 6669–6681. [Google Scholar] [CrossRef]
- Tammet, H.; Hõrrak, U.; Kulmala, M. Negatively Charged Nanoparticles Produced by Splashing of Water. Atmos. Chem. Phys. 2009, 9, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Laakso, L.; Hirsikko, A.; Grönholm, T.; Kulmala, M.; Luts, A.; Parts, T.-E. Waterfalls as sources of small charged aerosol particles. Atmos. Chem. Phys. 2007, 7, 2271–2275. [Google Scholar] [CrossRef] [Green Version]
- Levin, Z. Charge Separation by Splashing of Naturally Falling Raindrops. J. Atmos. Sci. 1971, 28, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Geophysical Observatory, IMCES SB RAS (GO IMCES). Available online: http://www.imces.ru/index.php?rm=news&action=view&id=899 (accessed on 1 September 2020).
- Azbukin, A.A.; Bogushevich, A.Y.; Korolkov, V.A.; Tikhomirov, A.A.; Shelevoi, V.D. A field version of the AMK-03 automated ultrasonic meteorological complex. Russ. Meteorol. Hydrol. 2009, 34, 133–136. [Google Scholar] [CrossRef]
- Kalchikhin, V.V.; Kobzev, A.A.; Korolkov, V.A.; Tikhomirov, A.A. Detection of microstructure characteristics of liquid atmospheric precipitation with the optical rain gage. Atmos. Ocean. Opt. 2016, 29, 304–307. [Google Scholar] [CrossRef]
- Kalchikhin, V.V.; Kobzev, A.A.; Korolkov, V.A.; Tikhomirov, A.A. Results of optical precipitation gage field tests. Atmos. Ocean. Opt. 2018, 31, 545–547. [Google Scholar] [CrossRef]
- Hydrometeorological Center of Russia. Available online: https://meteoinfo.ru/mapsynop (accessed on 1 September 2020).
- EOSDIS Worldview. Available online: https://worldview.earthdata.nasa.gov (accessed on 1 September 2020).
- Marshall, T.C.; Stolzenburg, M.; Krehbiel, P.R.; Lund, N.R.; Maggio, C.R. Electrical evolution during the decay stage of New Mexico thunderstorms. J. Geophys. Res. 2009, 114, D02209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalchikhin, V.; Kobzev, A.; Nagorskiy, P.; Oglezneva, M.; Pustovalov, K.; Smirnov, S.; Filatov, D. Connected Variations of Meteorological and Electrical Quantities of Surface Atmosphere under the Influence of Heavy Rain. Atmosphere 2020, 11, 1195. https://doi.org/10.3390/atmos11111195
Kalchikhin V, Kobzev A, Nagorskiy P, Oglezneva M, Pustovalov K, Smirnov S, Filatov D. Connected Variations of Meteorological and Electrical Quantities of Surface Atmosphere under the Influence of Heavy Rain. Atmosphere. 2020; 11(11):1195. https://doi.org/10.3390/atmos11111195
Chicago/Turabian StyleKalchikhin, Vladimir, Alexey Kobzev, Petr Nagorskiy, Mariya Oglezneva, Konstantin Pustovalov, Sergei Smirnov, and Dmitriy Filatov. 2020. "Connected Variations of Meteorological and Electrical Quantities of Surface Atmosphere under the Influence of Heavy Rain" Atmosphere 11, no. 11: 1195. https://doi.org/10.3390/atmos11111195