WRF-LES Simulation of the Boundary Layer Turbulent Processes during the BLLAST Campaign
Abstract
:1. Introduction
2. Site, Data and Methods
2.1. Site and Tower Measurements
2.2. WRF-LES Simulations
2.3. Quantities and Statistics
3. Results and Discussion
3.1. Model Performance: Mean Quantities
3.2. Model Performance: Turbulent Quantities
3.3. Velocity Field Spectrum
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. WRF-LES Simulation Using Enhanced Vertical Resolution
Appendix B. Contingency Tables
Observed | ||||
---|---|---|---|---|
Simulated | Yes | No | ||
Yes | a | b | a+b | |
No | c | d | c + d | |
a + c | b + d | n = a + b + c + d |
References
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Kosović, B.; Munoz, P.J.; Juliano, T.; Martilli, A.; Eghdami, M.; Barros, A.; Haupt, S. Three-Dimensional Planetary Boundary Layer Parameterization for High-Resolution Mesoscale Simulations. J. Phys. Conf. Ser. 2020, 1452, 012080. [Google Scholar] [CrossRef]
- Moeng, C.; Dudhia, J.; Klemp, J.; Sullivan, P. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Weather Rev. 2007, 135, 2295–2311. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Toward numerical modeling in the “Terra Incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Chow, F.K.; Schär, C.; Ban, N.; Lundquist, K.A.; Schlemmer, L.; Shi, X. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 2019, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Doubrawa, P.; Muñoz-Esparza, D. Simulating Real Atmospheric Boundary Layers at Gray-Zone Resolutions: How Do Currently Available Turbulence Parameterizations Perform? Atmosphere 2020, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Haupt, S.E.; Kosovic, B.; Shaw, W.; Berg, L.K.; Churchfield, M.; Cline, J.; Draxl, C.; Ennis, B.; Koo, E.; Kotamarthi, R.; et al. On Bridging A Modeling Scale Gap: Mesoscale to Microscale Coupling for Wind Energy. Bull. Am. Meteorol. Soc. 2020, 100, 2533–2550. [Google Scholar] [CrossRef]
- Letzel, M.O.; Krane, M.; Raasch, S. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Kurppa, M.; Hellsten, A.; Auvinen, M.; Raasch, S.; Vesala, T.; Järvi, L. Ventilation and air Quality in city blocks using large-eddy simulation—urban planning perspective. Atmosphere 2018, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Chatzimichailidis, A.E.; Argyropoulos, C.D.; Assael, M.J.; Kakosimos, K.E. Qualitative and quantitative investigation of multiple large eddy simulation aspects for pollutant dispersion in street canyons using OpenFOAM. Atmosphere 2019, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.T.; Porté-Agel, F. Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations. Bound. Layer Meteorol. 2011, 138, 345–366. [Google Scholar] [CrossRef]
- Doubrawa, P.; Montornès, A.; Barthelmie, R.J.; Pryor, S.C.; Giroux, G.; Casso, P. Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation. J. Phys. Conf. Ser. 2017, 854, 012010. [Google Scholar] [CrossRef] [Green Version]
- Abkar, M. Impact of subgrid-scale modeling in actuator-line based large-eddy simulation of vertical-axis wind turbine wakes. Atmosphere 2018, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- McGrattan, K.B.; Baum, H.R.; Rehm, R.G. Numerical simulation of smoke plumes from large oil fires. Atmos. Environ. 1996, 30, 4125–4136. [Google Scholar] [CrossRef]
- Moisseeva, N.; Stull, R. Capturing Plume Rise and Dispersion with a Coupled Large-Eddy Simulation: Case Study of a Prescribed Burn. Atmosphere 2019, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Khairoutdinov, M.; Kogan, Y. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev. 2000, 128, 229–243. [Google Scholar] [CrossRef]
- Neves, T.; Fisch, G.; Raasch, S. Local convection and turbulence in the Amazonia using large eddy simulation model. Atmosphere 2018, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Brune, S.; Kapp, F.; Friederichs, P. A wavelet-based analysis of convective organization in ICON large-eddy simulations. Q. J. R. Meteorol. Soc. 2018, 144, 2812–2829. [Google Scholar] [CrossRef]
- Flossmann, A.I.; Wobrock, W. Cloud Processing of Aerosol Particles in Marine Stratocumulus Clouds. Atmosphere 2019, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Lenschow, D.H. Observations, experiments, and large eddy simulation. Bull. Am. Meteorol. Soc. 2001, 82, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Cuxart, J. When can a high-resolution simulation over complex terrain be called LES? Front. Earth Sci. 2015, 3, 87. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, Y.; Muñoz-Esparza, D.; Hu, F.; Yan, C.; Miao, S. Simulation of Flow Fields in Complex Terrain with WRF-LES: Sensitivity Assessment of Different PBL Treatments. J. Appl. Meteorol. Climatol. 2020, 59, 1481–1501. [Google Scholar] [CrossRef]
- Lehner, M.; Whiteman, C.D.; Hoch, S.W.; Crosman, E.T.; Jeglum, M.E.; Cherukuru, N.W.; Calhoun, R.; Adler, B.; Kalthoff, N.; Rotunno, R.; et al. The METCRAX II field experiment: A study of downslope windstorm-type flows in Arizona’s Meteor Crater. Bull. Am. Meteorol. Soc. 2016, 97, 217–235. [Google Scholar] [CrossRef]
- Udina, M.; Soler, M.R.; Sol, O. A Modeling Study of a Trapped Lee-Wave Event over the Pyrénées. Mon. Weather Rev. 2017, 145, 75–96. [Google Scholar] [CrossRef]
- Udina, M.; Bech, J.; Gonzalez, S.; Soler, M.R.; Paci, A.; Miró, J.R.; Trapero, L.; Donier, J.M.; Douffet, T.; Codina, B.; et al. Multi-sensor observations of an elevated rotor during a mountain wave event in the Eastern Pyrenees. Atmos. Res. 2020, 234, 104698. [Google Scholar] [CrossRef]
- Caccamo, M.; Castorina, G.; Colombo, F.; Insinga, V.; Maiorana, E.; Magazù, S. Weather forecast performances for complex orographic areas: Impact of different grid resolutions and of geographic data on heavy rainfall event simulations in Sicily. Atmos. Res. 2017, 198, 22–33. [Google Scholar] [CrossRef]
- Yáñez-Morroni, G.; Gironás, J.; Caneo, M.; Delgado, R.; Garreaud, R. Using the weather research and forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere 2018, 9, 304. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, S.; Bech, J.; Udina, M.; Codina, B.; Paci, A.; Trapero, L. Decoupling between Precipitation Processes and Mountain Wave Induced Circulations Observed with a Vertically Pointing K-Band Doppler Radar. Remote Sens. 2019, 11, 1034. [Google Scholar] [CrossRef] [Green Version]
- Castorina, G.; Caccamo, M.T.; Magazù, S. Study of convective motions and analysis of the impact of physical parametrization on the WRF-ARW forecast model. Atti Della Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. E Nat. 2019, 97, 19. [Google Scholar]
- Wagner, J.; Gerz, T.; Wildmann, N.; Gramitzky, K. Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign. Atmos. Chem. Phys. 2019, 19, 1129–1146. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Li, J.; Qian, T.; Gu, H. A 100-m-Scale Modeling Study of a Gale Event on the Lee Side of a Long Narrow Mountain. J. Appl. Meteorol. Climatol. 2020, 59, 23–45. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; García-Sánchez, C.; van Beeck, J. Nesting Turbulence in an Offshore Convective Boundary Layer Using Large-Eddy Simulations. Bound. Layer Meteorol. 2014, 151, 453–478. [Google Scholar] [CrossRef]
- Udina, M.; Sun, J.; Kosović, B.; Soler, M.R. Exploring Vertical Turbulence Structure in Neutrally and Stably Stratified Flows Using the Weather Research and Forecasting–Large-Eddy Simulation (WRF–LES) Model. Bound. Layer Meteorol. 2016, 161, 355–374. [Google Scholar] [CrossRef]
- El Guernaoui, O.; Reuder, J.; Esau, I.; Wolf, T.; Maronga, B. Scaling the decay of turbulence kinetic energy in the free-convective boundary layer. Bound. Layer Meteorol. 2019, 173, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.S.; Zhou, B.; Mirocha, J.D.; Chow, F.K. Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulations using WRF-LES. Mon. Weather Rev. 2019, 147, 1805–1821. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Lundquist, J.K.; Sauer, J.A.; Kosović, B.; Linn, R.R. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst. 2017, 9, 1572–1594. [Google Scholar] [CrossRef]
- Cui, C.; Bao, Y.; Yuan, C.; Li, Z.; Zong, C. Comparison of the performances between the WRF and WRF-LES models in radiation fog–A case study. Atmos. Res. 2019, 226, 76–86. [Google Scholar] [CrossRef]
- Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; et al. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys. Discuss. 2014, 14, 10789–10852. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Lorente, J. Numerical modelling of heavy precipitation events over Eastern Pyrenees: Analysis of orographic effects. Atmos. Res. 2013, 123, 368–383. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Duffourg, F.; Esteban Vea, P.; Lorente, J. Mesoscale numerical analysis of the historical November 1982 heavy precipitation event over Andorra (Eastern Pyrenees). Nat. Hazards Earth Syst. Sci. 2013, 13, 2969–2990. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.O.; Flamant, C.; Ducrocq, V.; Duffourg, F.; Fourrié, N.; Delanoë, J.; Bech, J. Initiation and development of a mesoscale convective system in the Ebro River Valley and related heavy precipitation over northeastern Spain during HyMeX IOP 15a. Q. J. R. Meteorol. Soc. 2017, 143, 942–956. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, S.; Callado, A.; Werner, E.; Escribà, P.; Bech, J. Coastally trapped disturbances caused by the tramontane wind on the northwestern Mediterranean: Numerical study and sensitivity to short-wave radiation. Q. J. R. Meteorol. Soc. 2018, 144, 1321–1336. [Google Scholar] [CrossRef]
- Said, F.; Derrien, S.; Pique, E.; Abadie, M.; Meyerfeld, Y.; Jarnot, C.; Martin, J.; Bezombes, Y.; Lohou, F.; Lothon, M.; et al. POCTEFA/FluxPyr and BLLAST Campistrous Mast June and July 2011. Available online: http://bllast.sedoo.fr/ (accessed on 2 September 2020).
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; NCAR Tech Notes-475+ STR; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2008. [Google Scholar]
- Vortex. Vortex-LES White Paper. Available online: https://vortexfdc.com/knowledge/vortex-les-white-paper/ (accessed on 2 September 2020).
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Lilly, D.K. The representation of small scale turbulence in numerical simulation experiments. Proc. Ibm Sci. Comput. Symp. Environ. Sci. 1967, 320–1951, 195–210. [Google Scholar]
- Muñoz-Esparza, D.; Kosović, B.; Mirocha, J.; van Beeck, J. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound. Layer Meteorol. 2014, 153, 409–440. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Van Beeck, J.; Mirocha, J. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers. Phys. Fluids 2015, 27, 035102. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Off. Note 2002, 437, 61. [Google Scholar]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Zhang, D.; Anthes, R.A. A high-resolution model of the planetary boundary layer- Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 1982, 21, 1594–1609. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009-Products Description and Validation Report. 2011. Available online: https://epic.awi.de/id/eprint/31014/16/GLOBCOVER2009_Validation_Report_2-2.pdf (accessed on 2 September 2020).
- Copernicus Climate Change Service (C3S): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/ (accessed on 30 May 2020).
- Burns, S.; Horst, T.; Jacobsen, L.; Blanken, P.; Monson, R. Using sonic anemometer temperature to measure sensible heat flux in strong winds. Atmos. Meas. Tech. 2012, 5, 2095. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, M.A.; Cuxart, J.; Martínez-Villagrasa, D. Influence of a valley exit jet on the nocturnal atmospheric boundary layer at the foothills of the Pyrenees. Q. J. R. Meteorol. Soc. 2019, 145, 356–375. [Google Scholar] [CrossRef] [Green Version]
- Yus-Díez, J.; Udina, M.; Soler, M.R.; Lothon, M.; Nilsson, E.; Bech, J.; Sun, J. Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign. Atmos. Chem. Phys. 2019, 19, 9495–9514. [Google Scholar] [CrossRef] [Green Version]
- Román-Cascón, C.; Yagüe, C.; Arrillaga, J.; Lothon, M.; Pardyjak, E.; Lohou, F.; Inclán, R.; Sastre, M.; Maqueda, G.; Derrien, S.; et al. Comparing mountain breezes and their impacts on CO2 mixing ratios at three contrasting areas. Atmos. Res. 2019, 221, 111–126. [Google Scholar] [CrossRef]
- Couvreux, F.; Bazile, E.; Canut, G.; Lothon, M.; Lohou, F.; Guichard, F.; Nilsson, E. Boundary-layer turbulent processes and mesoscale variability represented by Numerical Weather Prediction models during the BLLAST campaign. Atmos. Chem. Phys. Discuss. 2016, 16, 8983–9002. [Google Scholar] [CrossRef] [Green Version]
- Bowers, J.; Morton, I.; Mould, G. Directional statistics of the wind and waves. Appl. Ocean Res. 2000, 22, 13–30. [Google Scholar] [CrossRef]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Nurmi, P. Recommendations on the Verification of Local Weather Forecasts; ECMWF Technical Memorandum 430: Reading, UK, 2003; p. 19. [Google Scholar] [CrossRef]
- Ebert, E.E. Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 2008, 15, 51–64. [Google Scholar] [CrossRef]
- Stoll, R.; Gibbs, J.A.; Salesky, S.T.; Anderson, W.; Calaf, M. Large-Eddy Simulation of the Atmospheric Boundary Layer. Bound. Layer Meteorol. 2020. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: San Diego, CA, USA, 2011. [Google Scholar]
- Forecast Verification Methods Across Time and Space Scales. 2015. Available online: https://www.cawcr.gov.au/projects/verification/ (accessed on 2 September 2020).
Level Name | Height (m) | Sensors | Data Period |
---|---|---|---|
29.4 | Campbell Csat3 3D sonic anemometer | 14 June 2011–8 July 2011 | |
45.8 | Gill master pro 3D sonic anemometer, wind vane | ||
61.4 | Campbell Csat3 3D sonic anemometer | 15 June 2011–8 July 2011 |
Domain | nx × ny × nz | Grid | Mode | PBL Scheme |
---|---|---|---|---|
D1 | 99 × 99 × 38 | 9 km | RANS | MYJ |
D2 | 3 km | RANS | MYJ | |
D3 | 1 km | RANS | MYJ | |
D4 | 333 m | LES | - | |
D5 | 111 m | LES | - |
Level | z | z | z | |||
---|---|---|---|---|---|---|
Statistic [units] | MESO | LES | MESO | LES | MESO | LES |
MB [m s] | 0.92 | 0.64 | 0.43 | 0.29 | 0.54 | 0.09 |
RMSE [m s] | 1.35 | 1.25 | 1.10 | 1.27 | 1.45 | 1.52 |
R | 0.52 | 0.45 | 0.61 | 0.46 | 0.66 | 0.58 |
Level | z | z | z | |||
---|---|---|---|---|---|---|
Statistic [units] | MESO | LES | MESO | LES | MESO | LES |
MB [deg] | −11.16 | −16.24 | −5.94 | −9.65 | −13.01 | −16.60 |
RMSE [deg] | 35.37 | 51.37 | 35.30 | 48.24 | 35.08 | 43.62 |
R | 0.86 | 0.63 | 0.88 | 0.67 | 0.96 | 0.76 |
Magnitude [Units] | TKE [m s] | F [K m s] | |||||||
---|---|---|---|---|---|---|---|---|---|
Level | z | z | z | z | z | z | |||
MESO | LES | MESO | LES | MESO | LES | LES | LES | LES | |
MB | −0.11 | −0.16 | −0.09 | −0−17 | −0.10 | −0.15 | 0 | 0 | −0.01 |
RMSE | 0.24 | 0.33 | 0.24 | 0.32 | 0.25 | 0.33 | 0.03 | 0.04 | 0.05 |
R | 0.97 | 0.45 | 0.91 | 0.49 | 0.93 | 0.48 | 0.39 | 0.17 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udina, M.; Montornès, À.; Casso, P.; Kosović, B.; Bech, J. WRF-LES Simulation of the Boundary Layer Turbulent Processes during the BLLAST Campaign. Atmosphere 2020, 11, 1149. https://doi.org/10.3390/atmos11111149
Udina M, Montornès À, Casso P, Kosović B, Bech J. WRF-LES Simulation of the Boundary Layer Turbulent Processes during the BLLAST Campaign. Atmosphere. 2020; 11(11):1149. https://doi.org/10.3390/atmos11111149
Chicago/Turabian StyleUdina, Mireia, Àlex Montornès, Pau Casso, Branko Kosović, and Joan Bech. 2020. "WRF-LES Simulation of the Boundary Layer Turbulent Processes during the BLLAST Campaign" Atmosphere 11, no. 11: 1149. https://doi.org/10.3390/atmos11111149
APA StyleUdina, M., Montornès, À., Casso, P., Kosović, B., & Bech, J. (2020). WRF-LES Simulation of the Boundary Layer Turbulent Processes during the BLLAST Campaign. Atmosphere, 11(11), 1149. https://doi.org/10.3390/atmos11111149