Effect of Natural Forest Fires on Regional Weather Conditions in Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Weather Conditions during the Study Period
2.2. Meso-Meteorological Non-Hydrostatic Model System COSMO-RuART
2.3. Modeling Experiments
2.4. Convective Instability Indexes
3. Results
3.1. Effect of Forest Fires on Time Averaged Meteorological Characteristics
3.2. Temporal Variability of Meteorological Parameters
3.3. Spatial Distribution of Meteorological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flannigan, M.; Stocks, B.; Wotton, B. Climate change and forest fires. Sci. Total. Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The Impact of Boreal Forest Fire on Climate Warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mclauchlan, K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T.; Bond-Lamberty, B. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob. Chang. Biol. 2004, 10, 473–487. [Google Scholar] [CrossRef]
- McRae, D.J.; Conard, S.G.; Ivanova, G.A.; Sukhinin, A.I.; Hao, W.M.; Koutzenogij, K.P.; Baker, S.P.; Ivanov, V.A.; Samsonov, Y.N.; Churkina, T.V.; et al. Fire regimes, variability in fire behavior, and fire effects on combustion and chemical and carbon emissions in Scotch Pine forests of central Siberia. Mitig. Adapt. Strat. Gl. 2006, 11, 45–74. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S.; Hollingsworth, T.N.; Mack, M.C.; Romanovsky, V.; Turetsky, M. Fire, climate change, and forest resilience in interior Alaska. Can. J. For. Res. 2010, 40, 1302–1312. [Google Scholar] [CrossRef]
- Holden, Z.A.; Swanson, A.; Luce, C.H.; Jolly, W.M.; Maneta, M.; Oyler, J.W.; Warren, D.A.; Parsons, R.; Affleck, D. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA 2018, 115, E8349–E8357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Turco, M.; Von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition over Europe. Environ. Manag. 2012, 51, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, W.R.; Stocks, B.J.; Martell, D.L.; Bonsal, B.; Shabbar, A. The association between circulation anomalies in the mid-troposphere and area burned by wildfire in Canada. Theor. Appl. Climatol. 1999, 63, 89–105. [Google Scholar] [CrossRef]
- Koutsias, N.; Xanthopoulos, G.; Founda, D.; Xystrakis, F.; Nioti, F.; Pleniou, M.; Mallinis, G.; Arianoutsou, M. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int. J. Wildland Fire 2013, 22, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Lagerquist, R.; Flannigan, M.; Wang, X.; Marshall, G.A. Automated prediction of extreme fire weather from synoptic patterns in northern Alberta, Canada. Can. J. For. Res. 2017, 47, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Randerson, J.T.; Goulden, M.L.; Goetz, S.J. Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophys. Res. Lett. 2012, 39, 13403. [Google Scholar] [CrossRef] [Green Version]
- French, N.H.F.; Whitley, M.A.; Jenkins, L.K. Fire disturbance effects on land surface albedo in Alaskan tundra. JGR Biogeosci. 2016, 121, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Todd, J.B.; Wotton, B.M.; Logan, K.A.; Flannigan, M.D.; Stocks, B.J.; Mason, J.A.; Martell, D.L.; Hirsch, K.G. Direct carbon emissions from Canadian forest fires, 1959–1999. Can. J. For. Res. 2001, 31, 512–525. [Google Scholar] [CrossRef]
- Vilén, T.; Fernandes, P.M. Forest Fires in Mediterranean Countries: CO2 Emissions and Mitigation Possibilities through Prescribed Burning. Environ. Manag. 2011, 48, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Goodrick, S.; Heilman, W.E. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. For. Ecol. Manag. 2014, 317, 80–96. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Tummon, F.; Solmon, F.; Liousse, C.; Tadross, M. Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season. J. Geophys. Res. Space Phys. 2010, 115, 19206. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Stavroulas, I.; Kostenidou, E.; Zarmpas, P.; Theodosi, C.; Kouvarakis, G.; Canonaco, F.; Prévôt, A.S.H.; Nenes, A.; Pandis, S.N.; et al. Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmos. Chem. Phys. Discuss. 2014, 14, 4793–4807. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, G.R.; Aklilu, Y.-A.; Landis, M.S.; Hsu, Y.-M. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone. Atmos. Environ. 2018, 178, 19–30. [Google Scholar] [CrossRef]
- Kalita, G.; Kunchala, R.K.; Fadnavis, S.; Kaskaoutis, D.G. Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmos. Res. 2020, 245, 105064. [Google Scholar] [CrossRef]
- Li, F.; Lawrence, D.M.; Bond-Lamberty, B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ. Res. Lett. 2017, 12, 044014. [Google Scholar] [CrossRef]
- Li, F.; Lawrence, D.M. Role of Fire in the Global Land Water Budget during the Twentieth Century due to Changing Ecosystems. J. Clim. 2017, 30, 1893–1908. [Google Scholar] [CrossRef]
- Robock, A. Surface cooling due to forest fire smoke. J. Geophys. Res. Space Phys. 1991, 96, 20869–20878. [Google Scholar] [CrossRef]
- Kitzberger, T.; Falk, D.A.; Westerling, A.L.; Swetnam, T.W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 2017, 12, e0188486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, A.H.; Beringer, J.; Kershaw, A.P.; Marshall, A.; Mooney, S.; Tapper, N.; Turney, C.S.; Van Der Kaars, S. Using the Paleorecord to Evaluate Climate and Fire Interactions in Australia. Annu. Rev. Earth Planet. Sci. 2007, 35, 215–239. [Google Scholar] [CrossRef]
- De Sales, F.; Okin, G.S.; Xue, Y.; Dintwe, K. On the effects of wildfires on precipitation in Southern Africa. Clim. Dyn. 2018, 52, 951–967. [Google Scholar] [CrossRef] [Green Version]
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Apps, M.J.; Price, D.T.; Wisniewski, J. (Eds.) Boreal Forests and Global Change; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; p. 564. [Google Scholar]
- Vaganov, E.A.; Efremov, S.P.; Onuchin, A.A. Carbon balance and the emission of greenhouse gases in boreal forests and bogs of Siberia. In Advances in the Geological Storage of Carbon Dioxide; NATO Science Series IV; Lombardi, S., Altunina, L.K., Beaubien, S.E., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 65, pp. 17–34. [Google Scholar]
- Novenko, E.Y.; Tsyganov, A.N.; Pisarchuk, N.M.; Volkova, E.M.; Babeshko, K.V.; Kozlov, D.N.; Shilov, P.M.; Payne, R.J.; Mazei, Y.A.; Olchev, A.V. Forest history, peatland development and mid- to late Holocene environmental change in the southern taiga forest of central European Russia. Quat. Res. 2018, 89, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Hugelius, G.; Loisel, J.; Chadburn, S.; Jackson, R.B.; Jones, M.; Macdonald, G.; Marushchak, M.; Olefeldt, D.; Packalen, M.; Siewert, M.B.; et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef]
- Duncan, B.N.; Martin, R.V.; Staudt, A.C.; Yevich, R.; Logan, J.A. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. Space Phys. 2003, 108, 4100. [Google Scholar] [CrossRef] [Green Version]
- Wallenius, T. Major decline in fires in coniferous forests—Reconstructing the phenomenon and seeking for the cause. Silva Fenn. 2011, 45, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B 2016, 371, 20150171. [Google Scholar] [CrossRef] [Green Version]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J.M.; Flannigan, M.D. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Soja, A.J.; Shugart, H.H.; Sukhinin, A.I.; Conard, S.G.; Stackhouse, P.W., Jr. Satellite-Derived Mean Fire Return Intervals as Indicators of Change in Siberia (1995–2002). Mitig. Adapt. Strat. Gl. 2006, 11, 75–96. [Google Scholar] [CrossRef]
- Vivchar, A. Wildfires in Russia in 2000–2008: Estimates of burnt areas using the satellite MODIS MCD45 data. Remote. Sens. Lett. 2011, 2, 81–90. [Google Scholar] [CrossRef]
- Fiedler, C.E.; Friederici, P.; Petruncio, M. Monitoring Old Growth in Frequent-fire Landscapes. Ecol. Soc. 2007, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W. Das geographische System der Klimate. In Handbuch Klimatologie; In fünf Bänden (herausgegeben von W. Köppen und R. Geiger); Band, I., Teil, C., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; p. 44. (In German). [Google Scholar]
- Köppen, W. The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorol. Z. 2011, 20, 351–360. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Vogel, B.; Vogel, H.; Bäumer, D.; Bangert, M.; Lundgren, K.; Rinke, R.; Stanelle, T. The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys. Discuss. 2009, 9, 8661–8680. [Google Scholar] [CrossRef] [Green Version]
- COSMO (Consortium for Small-Scale Modelling). Available online: http://cosmo-model.org/ (accessed on 28 July 2020).
- Rivin, G.S.; Rozinkina, I.A.; Vil’Fand, R.M.; Alferov, D.Y.; Astakhova, E.D.; Blinov, D.V.; Bundel’, A.Y.; Kazakova, E.V.; Kirsanov, A.A.; Nikitin, M.A.; et al. The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development. Russ. Meteorol. Hydrol. 2015, 40, 400–410. [Google Scholar] [CrossRef]
- Vil’Fand, R.M.; Kirsanov, A.A.; Revokatova, A.P.; Rivin, G.S.; Surkova, G.V. Forecasting the transport and transformation of atmospheric pollutants with the COSMO-ART model. Russ. Meteorol. Hydrol. 2017, 42, 292–298. [Google Scholar] [CrossRef]
- Gorchakova, I.A.; Mokhov, I.I. The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010. Izv. Atmos. Ocean. Phys. 2012, 48, 496–503. [Google Scholar] [CrossRef]
- Konovalov, I.B.; Beekmann, M.; Kuznetsova, I.N.; Yurova, A.Y.; Zvyagintsev, A.M. Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos. Chem. Phys. Discuss. 2011, 11, 10031–10056. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Shukurova, L.M. Estimate for radiative forcing of smoke aerosol from 2010 summer fires based on measurements in the Moscow region. Izv. Atmos. Ocean. Phys. 2014, 50, 256–265. [Google Scholar]
- LAADS. The Level-1 and Atmosphere Archive & Distribution System. Available online: https://ladsweb.modaps.eosdis.nasa.gov (accessed on 28 July 2020).
- Bondur, V.G. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia. Izv. Atmos. Ocean. Phys. 2016, 52, 1078–1091. [Google Scholar] [CrossRef]
- Bondur, V.G.; Ginzburg, A.S. Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring. Dokl. Earth Sci. 2016, 466, 148–152. [Google Scholar] [CrossRef]
- Bondur, V.G.; Gordo, K.A. Satellite Monitoring of Burnt-out Areas and Emissions of Harmful Contaminants Due to Forest and Other Wildfires in Russia. Izv. Atmos. Ocean. Phys. 2018, 54, 955–965. [Google Scholar] [CrossRef]
- Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 2014, 141, 563–579. [Google Scholar] [CrossRef]
- Lyons, E.A.; Jin, Y.; Randerson, J.T. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J. Geophys. Res. Space Phys. 2008, 113, 02012. [Google Scholar] [CrossRef] [Green Version]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Space Phys. 2005, 110, 24. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; AlSaadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; De Benedetti, A.; Chubarova, N.Y.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Doswell, C.; Schultz, D. On the use of indices and parameters in forecasting severe storms. Electron. J. Sev. Storms Meteorol. 2006, 1, 1–22. [Google Scholar]
- Leuenberger, D.; Stoll, M.; Roches, A. Description of Some Convective Indices Implemented in the COSMO Model; Technical Report No. 17; Deutscher Wetterdienst: Offenbach am Main, Germany, 2010; pp. 1–18.
- Amiro, B.; Orchansky, A.; Barr, A.; Black, T.; Chambers, S.; Iii, F.C.; Goulden, M.; Litvak, M.; Liu, H.; McCaughey, J.; et al. The effect of post-fire stand age on the boreal forest energy balance. Agric. For. Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Mölders, N.; Kramm, G. Influence of wildfire induced land-cover changes on clouds and precipitation in Interior Alaska—A case study. Atmos. Res. 2007, 84, 142–168. [Google Scholar] [CrossRef]
- Casady, G.M.; Van Leeuwen, W.J.D.; Marsh, S.E. Evaluating Post-wildfire Vegetation Regeneration as a Response to Multiple Environmental Determinants. Environ. Model. Assess. 2009, 15, 295–307. [Google Scholar] [CrossRef]
- Berner, L.T.; Beck, P.S.A.; Loranty, M.M.; Alexander, H.D.; Mack, M.C.; Goetz, S.J. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 2012, 9, 3943–3959. [Google Scholar] [CrossRef] [Green Version]
- Mamkin, V.; Kurbatova, J.A.; Avilov, V.; Mukhartova, Y.; Krupenko, A.; Ivanov, D.; Levashova, N.; Olchev, A.V. Changes in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in western Russia: Results from an experimental and modeling analysis. Environ. Res. Lett. 2016, 11, 125012. [Google Scholar] [CrossRef]
- Mamkin, V.; Kurbatova, J.; Avilov, V.; Ivanov, D.; Kuricheva, O.; Varlagin, A.; Yaseneva, I.; Olchev, A. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agric. For. Meteorol. 2019, 265, 252–268. [Google Scholar] [CrossRef]
- Kuz’mina, E.V.; Ol’chev, A.V.; Rozinkina, I.A.; Rivin, G.S.; Nikitin, M. Application of the COSMO-CLM mesoscale model to assess the effects of forest cover changes on regional weather conditions in the European part of Russia. Russ. Meteorol. Hydrol. 2017, 42, 574–581. [Google Scholar] [CrossRef]
- Olchev, A.V.; Rozinkina, I.A.; Kuzmina, E.V.; Nikitin, M.A.; Rivin, G.S. Influence of forest cover changes on regional weather conditions: Estimations using the mesoscale model COSMO. IOP Conf. Series: Earth Environ. Sci. 2018, 107, 12105. [Google Scholar] [CrossRef]
- Kislov, A.V.; Toropov, P.A.; Platonov, V.S.; Oltchev, A.V.; Varentsov, M.I. Regional climate modeling for geographical analysis. Vestn. Mosk. Univ., Ser. 5, Geogr. 2019, 5, 3–12. (In Russian). [Google Scholar]
- Kaskaoutis, D.; Kharol, S.K.; Sifakis, N.; Nastos, P.; Sharma, A.R.; Badarinath, K.; Kambezidis, H. Satellite monitoring of the biomass-burning aerosols during the wildfires of August 2007 in Greece: Climate implications. Atmos. Environ. 2011, 45, 716–726. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Justice, C. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ. Res. Lett. 2015, 10, 105003. [Google Scholar] [CrossRef] [Green Version]
- Gorbarenko, E.V.; Zhdanova, E.Y.; Chubarova, N.E.; Shilovtseva, O.A.; Nezval, E.I.; Soshinskaya, I.V. Radiation and light regime. In Climate of Moscow in Global Warning; MSU: Moscow, Russia, 2017; pp. 109–145. (In Russian). [Google Scholar]
- Grell, G.A.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. Discuss. 2011, 11, 5289–5303. [Google Scholar] [CrossRef] [Green Version]
- Frankman, D.; Webb, B.W.; Butler, B.W.; Jimenez, D.; Forthofer, J.; Sopko, P.; Shannon, K.S.; Hiers, J.K.; Ottmar, R. Measurements of convective and radiative heating in wildland fires. Int. J. Wildland Fire 2013, 22, 157–167. [Google Scholar] [CrossRef]
- Potter, B.E.; Anaya, M.A. A Wildfire-relevant climatology of the convective environment of the United States. Int. J. Wildland Fire 2015, 24, 267–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Logan, T.; Li, Z.; Homeyer, C.R. Wildfire Impact on Environmental Thermodynamics and Severe Convective Storms. Geophys. Res. Lett. 2019, 46, 10082–10093. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.M.; Chasmer, L.E.; Thompson, D.K.; Quinton, W.L.; Flannigan, M.D.; Olefeldt, D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kirdyanov, A.V.; Saurer, M.; Siegwolf, R.; Knorre, A.A.; Prokushkin, A.S.; Sidorova, O.V.C.; Fonti, M.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 034061. [Google Scholar] [CrossRef]
- Riley, K.L.; Loehman, R.A. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere 2016, 7, 01543. [Google Scholar] [CrossRef]
Meteorological Parameters | Control Experiment | Forest Fire Experiment 1 (without ART) | Forest Fire Experiment 2 (without ART) | Forest Fire Experiment 3 (with ART) | ||||
---|---|---|---|---|---|---|---|---|
A1 | Sites Damaged by Fires in Experiments 1–3 | A1 | Burned Sites | A1 | Burned Sites | A1 | Burned Sites | |
Surface albedo, % | 12.8 | 13.1 | 12.6 | 10.0 | 11.7 | 0.02 | 12.6 | 10.0 |
Air temperature at 2 m height, °C | 17.1 | 17.6 | 17.3 | 18.7 | 17.4 | 18.9 | 15.1 | 15.7 |
Dew point at 2 m height, °C | 11.6 | 11.5 | 11.3 | 10.5 | 11.3 | 10.4 | 10.8 | 10.2 |
Dew point deficit at 2 m height, °C | 5.5 | 6.1 | 6 | 8.2 | 6.1 | 8.5 | 4.3 | 5.5 |
Partial pressure of water vapor, hPa | 13.7 | 13.6 | 13.4 | 12.7 | 13.4 | 12.6 | 12.9 | 12.4 |
Specific humidity at 2 m height, g/kg | 9.0 | 8.9 | 8.8 | 8.3 | 8.8 | 8.3 | 8.5 | 8.2 |
Wind speed at 10 m height, m/s | 2.3 | 2.3 | 2.3 | 2.5 | 2.3 | 2.6 | 2.2 | 2.3 |
Surface sensible heat flux, W/m2 | 26.6 | 31.0 | 29.3 | 77.8 | 30.0 | 91.8 | 14.1 | 39.1 |
Surface latent heat flux, W/m2 | 74.0 | 67.9 | 70.4 | 14.5 | 71.1 | 15.3 | 49.0 | 11.2 |
Bowen ratio | 0.4 | 0.5 | 0.4 | 5.4 | 0.4 | 6.0 | 0.3 | 3.5 |
Direct shortwave radiation at ground surface, W/m2 | 135 | 136 | 136 | 136 | 137 | 137 | 45 | 36 |
Diffuse shortwave radiation at ground surface, W/m2 | 73 | 73 | 73 | 72 | 73 | 68 | 105 | 99 |
Shortwave net radiation, W/m2 | 181 | 181 | 183 | 187 | 185 | 205 | 132 | 122 |
Net radiation, W/m2 | 110 | 109 | 110 | 105 | 111 | 120 | 70 | 59 |
Low-level cloud cover, % | 24 | 22 | 22 | 21 | 22 | 20 | 28 | 27 |
Mid-level cloud cover, % | 28 | 27 | 28 | 27 | 28 | 27 | 26 | 25 |
High-level cloud cover, % | 46 | 45 | 45 | 45 | 45 | 45 | 35 | 35 |
Total cloud cover, % | 57 | 56 | 56 | 56 | 56 | 56 | 53 | 52 |
Total precipitation for the entire period, mm | 30.5 | 30.8 | 30.0 | 31.6 | 30.2 | 32.0 | 23.0 | 22.3 |
Meteorological Parameters | Control Experiment | Forest Fire Experiment 1 (without ART) | Forest Fire Experiment 2 (without ART) | Forest Fire Experiment 3 (with ART) | ||||
---|---|---|---|---|---|---|---|---|
A2 | Sites Damaged by Fires in Experiments 1–3 | A2 | Burned Sites | A2 | Burned Sites | A2 | Burned Sites | |
Surface albedo, % | 11.4 | 12.3 | 11.2 | 10.0 | 9.8 | 0.02 | 11.2 | 10.0 |
Air temperature at 2 m height, °C | 13.4 | 13.9 | 13.6 | 14.7 | 13.7 | 15.1 | 12.3 | 13.2 |
Dew point at 2 m height, °C | 7.4 | 7.3 | 7.1 | 6.3 | 7.1 | 6.2 | 6.8 | 6.0 |
Dew point deficit at 2 m height, °C | 6 | 6.6 | 6.5 | 8.4 | 6.6 | 8.9 | 5.5 | 7.2 |
Partial pressure of water vapor, hPa | 10.3 | 10.2 | 10.1 | 9.5 | 10.1 | 9.5 | 9.9 | 9.3 |
Specific humidity at 2 m height, g/kg | 6.8 | 6.7 | 6.6 | 6.3 | 6.6 | 6.2 | 6.5 | 6.1 |
Wind speed at 10 m height, m/s | 2.3 | 2.2 | 2.4 | 2.3 | 2.4 | 2.4 | 2.1 | 2.1 |
Surface sensible heat flux, W/m2 | 34.9 | 39.3 | 37.4 | 71.2 | 40.3 | 88.3 | 24.8 | 48.7 |
Surface latent heat flux, W/m2 | 50.0 | 46.6 | 45.4 | 5.7 | 45.9 | 5.6 | 34.2 | 3.5 |
Bowen ratio | 0.7 | 0.8 | 0.8 | 12.5 | 0.9 | 15.8 | 0.7 | 13.9 |
Direct shortwave radiation at ground surface, W/m2 | 138 | 148 | 138 | 146 | 141 | 146 | 63 | 65 |
Diffuse shortwave radiation at ground surface, W/m2 | 70 | 67 | 69 | 66 | 68 | 62 | 109 | 109 |
Short-wave net radiation, W/m2 | 182 | 185 | 181 | 189 | 186 | 208 | 152 | 156 |
Net radiation, W/m2 | 100 | 101 | 99 | 96 | 103 | 114 | 72 | 68 |
Low-level cloud cover, % | 20 | 17 | 19 | 17 | 18 | 17 | 17 | 14 |
Mid-level cloud cover, % | 28 | 25 | 28 | 26 | 27 | 26 | 22 | 19 |
High-level cloud cover, % | 27 | 26 | 27 | 27 | 28 | 27 | 17 | 16 |
Total cloud cover, % | 48 | 44 | 47 | 44 | 46 | 45 | 39 | 34 |
Total precipitation for the entire period, mm | 7.6 | 5.2 | 7.4 | 6.3 | 7.2 | 5.5 | 2.5 | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirsanov, A.; Rozinkina, I.; Rivin, G.; Zakharchenko, D.; Olchev, A. Effect of Natural Forest Fires on Regional Weather Conditions in Siberia. Atmosphere 2020, 11, 1133. https://doi.org/10.3390/atmos11101133
Kirsanov A, Rozinkina I, Rivin G, Zakharchenko D, Olchev A. Effect of Natural Forest Fires on Regional Weather Conditions in Siberia. Atmosphere. 2020; 11(10):1133. https://doi.org/10.3390/atmos11101133
Chicago/Turabian StyleKirsanov, Alexander, Inna Rozinkina, Gdaliy Rivin, Denis Zakharchenko, and Alexander Olchev. 2020. "Effect of Natural Forest Fires on Regional Weather Conditions in Siberia" Atmosphere 11, no. 10: 1133. https://doi.org/10.3390/atmos11101133
APA StyleKirsanov, A., Rozinkina, I., Rivin, G., Zakharchenko, D., & Olchev, A. (2020). Effect of Natural Forest Fires on Regional Weather Conditions in Siberia. Atmosphere, 11(10), 1133. https://doi.org/10.3390/atmos11101133