Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Ozone and Weather Data
2.3. HMS Data
2.4. Wildland Fire
2.5. Statistical Models
r = 0 otherwise
- (1)
- None—no HMS smoke above site at hour i, day j, year k
- (2)
- Low—Low level of HMS smoke at the hour i, day j, year k
- (3)
- Mid—Medium level of HMS smoke at the hour i, day j, year k
- (4)
- (U Hi, R Hi, B Hi)—High level of HMS smoke at hour i, day j, year k at urban, rural or base sites, respectively
- (5)
- NSFN—Fire within 10 km of the site but no HMS smoke above the site at hour i, day j, year k
3. Results
Identifying Exceptional Events
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cisneros, R.; Schweizer, D.; Tarnay, L.; Navarro, K.; Veloz, D.; Procter, C.T. Climate Change, Forest Fires, and Health in California. In Springer Climate; Springer International Publishing: Manhattan, NY, USA, 2018; pp. 99–130. [Google Scholar]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The Fire Frequency-Severity Relationship and the Legacy of Fire Suppression in California Forests. Ecosphere 2015, 6, 8. [Google Scholar] [CrossRef]
- Boisramé, G.F.S.; Thompson, S.; Collins, B.; Stephens, S. Managed Wildfire Effects on Forest Resilience and Water in the Sierra Nevada. Ecosystems 2016, 20, 717–732. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Caprio, A.C.; Stephenson, N.L.; Das, A.J. Does Prescribed Fire Promote Resistance to Drought in Low Elevation Forests of the Sierra Nevada, California, USA? Fire Ecol. 2016, 12, 13–25. [Google Scholar] [CrossRef]
- Adams, M.A. Mega-Fires, Tipping Points and Ecosystem Services: Managing Forests and Woodlands in an Uncertain Future. For. Ecol. Manag. 2013, 294, 250–261. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Kreidenweis, S.M.; Lunden, M.; Carrillo, J.; Carrico, C.M.; Lee, T.; Herckes, P.; Engling, G.; Day, D.E.; Hand, J.; et al. Smoke-Impacted Regional Haze in California During the Summer of 2002. Agric. For. Meteorol. 2006, 137, 25–42. [Google Scholar] [CrossRef]
- Kochi, I.; Donovan, G.H.; Champ, P.A.; Loomis, J.B. The Economic Cost of Adverse Health Effects from Wildfire-Smoke Exposure: A Review. Int. J. Wildland Fire 2010, 19, 803–817. [Google Scholar] [CrossRef]
- Kollanus, V.; Prank, M.; Gens, A.; Soares, J.; Vira, J.; Kukkonen, J.; Sofiev, M.; Salonen, R.O.; Lanki, T. Mortality due to Vegetation Fire–Originated PM 2.5 Exposure in Europe—Assessment for the Years 2005 and 2008. Environ. Health Perspect. 2017, 125, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappold, A.G.; Reyes, J.; Pouliot, G.; Cascio, W.E.; Diaz-Sanchez, D. Community Vulnerability to Health Impacts of Wildland Fire Smoke Exposure. Environ. Sci. Technol. 2017, 51, 6674–6682. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, D.; Cisneros, R.; Traina, S.; Ghezzehei, T.A.; Shaw, G.D. Using National Ambient Air Quality Standards for Fine Particulate Matter to Assess Regional Wildland Fire Smoke and Air Quality Management. J. Environ. Manag. 2017, 201, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, D.; Cisneros, R. Wildland Fire Management and Air Quality in the Southern Sierra Nevada: Using the Lion Fire as a Case Study with a Multi-Year Perspective on PM2.5 Impacts and Fire Policy. J. Environ. Manag. 2014, 144, 265–278. [Google Scholar] [CrossRef]
- CAA. Clean Air Act-As Amended Through P.L. 108-201. 42 U.S.C. §7401; US Government Printing Office: Washington, DC, USA, 2004; pp. 16–17. [Google Scholar]
- California Air Resources. California Code of Regulations, Title 17, 17 CCR § 80100; California Air Resources: Sacramento, CA, USA, 2003. [Google Scholar]
- EER. Part II Environmental Protection Agency 40 CFR Parts 50 and 51 Treatment of Data Influenced by Exceptional Events, Final Rule. Fed. Regist. 2016, 81, 68216–68282. [Google Scholar]
- Gong, X.; Kaulfus, A.; Nair, U.; Jaffe, D.A. Quantifying O3Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model. Environ. Sci. Technol. 2017, 51, 13216–13223. [Google Scholar] [CrossRef] [PubMed]
- Brey, S.J.; Fischer, E.V. Smoke in the City: How Often and Where Does Smoke Impact Summertime Ozone in the United States? Environ. Sci. Technol. 2016, 50, 1288–1294. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.; Downey, N.; Pfister, G.; Boynard, A.; Reid, S.B. Impact of Wildfires on Ozone Exceptional Events in the Western U.S. Environ. Sci. Technol. 2013, 47, 11065–11072. [Google Scholar] [CrossRef] [PubMed]
- Hoff, R.M.; Christopher, S.A. Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Toth, T.D.; Zhang, J.; Campbell, J.R.; Hyer, E.J.; Reid, J.S.; Shi, Y.; Westphal, D.L. Impact of Data Quality and Surface-to-Column Representativeness on the PM2.5/Satellite AOD Relationship for the Contiguous United States. Atmos. Chem. Phys. 2014, 14, 6049–6062. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Intercomparison Between Satellite-Derived Aerosol Optical Thickness and PM 2.5 mass: Implications for Air Quality Studies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhang, H.; Hoff, R.M.; Engel-Cox, J.A. The Relation between Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth and PM2.5 over the United States: A Geographical Comparison by U.S. Environmental Protection Agency Regions. J. Air Waste Manag. Assoc. 2009, 59, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
- Rolph, G.D.; Draxler, R.R.; Stein, A.F.; Taylor, A.; Ruminski, M.G.; Kondragunta, S.; Zeng, J.; Huang, H.-C.; Manikin, G.; McQueen, J.T.; et al. Description and Verification of the NOAA Smoke Forecasting System: The 2007 Fire Season. Weather Forecast. 2009, 24, 361–378. [Google Scholar] [CrossRef]
- Yao, J.; Henderson, S.B. An Empirical Model to Estimate Daily Forest Fire Smoke Exposure over a Large Geographic Area Using Air Quality, Meteorological, and Remote Sensing Data. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Rolph, G.D.; Draxler, R.R.; Stunder, B.; Ruminski, M. Verification of the NOAA Smoke Forecasting System: Model Sensitivity to the Injection Height. Weather Forecast. 2009, 24, 379–394. [Google Scholar] [CrossRef]
- AQMIS. Air Quality and Meteorologic Information System. Available online: http://www.arb.ca.gov/aqmis2/aqmis2.php (accessed on 2 August 2017).
- TREX. Tribal Environmental Exchange Network. 2017. Available online: http://trexwww.ucc.nau.edu/ (accessed on 3 September 2017).
- NDEP. State of Nevada Division of Environmental Protection Bureau of Air Quality Planning. 2017. Available online: http://nvair.ndep.nv.gov/ (accessed on 21 November 2017).
- NPS. U.S. Department of the Interior National Park Service. 2017. Available online: http://ard-request.air-resource.com/data.aspx (accessed on 15 February 2017).
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; Lamb, B.K.; Allwine, E.J.; Grütter, M.; Villegas, C.R.R.; Marquez, C.; Blanco, S.; et al. Technical Note: Evaluation of Standard Ultraviolet Absorption Ozone Monitors in a Polluted Urban Environment. Atmos. Chem. Phys. 2006, 6, 3163–3180. [Google Scholar] [CrossRef] [Green Version]
- Ollison, W.M.; Crow, W.; Spicer, C.W. Field Testing of New-Technology Ambient Air Ozone Monitors. J. Air Waste Manag. Assoc. 2013, 63, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.J.; Ehsenfeld, F.C.; Jobson, B.T.; Kuster, W.C.; Goldan, P.D.; Stutz, J.; McClenny, W.A. Comparison of Ultraviolet Absorbance, Chemiluminescence, and DOAS Instruments for Ambient Ozone Monitoring. Environ. Sci. Technol. 2006, 40, 5755–5762. [Google Scholar] [CrossRef]
- Gao, H.; Jaffe, D.A. Comparison of Ultraviolet Absorbance and No-Chemiluminescence for Ozone Measurement in Wildfire Plumes at the Mount Bachelor Observatory. Atmos. Environ. 2017, 166, 224–233. [Google Scholar] [CrossRef]
- Brey, S.J.; Ruminski, M.; Atwood, S.A.; Fischer, E.V. Connecting Smoke Plumes to Sources Using Hazard Mapping System (HMS) Smoke and Fire Location Data Over North America. Atmos. Chem. Phys. 2018, 18, 1745–1761. [Google Scholar] [CrossRef] [Green Version]
- Preisler, H.K.; Schweizer, D.; Cisneros, R.; Procter, T.; Ruminski, M.; Tarnay, L. A Statistical Model for Determining Impact of Wildland Fires on Particulate Matter (PM2.5) in Central California Aided by Satellite Imagery of Smoke. Environ. Pollut. 2015, 205, 340–349. [Google Scholar] [CrossRef]
- NWCG. National Wildfire Coordinating Group. 2017. Available online: http://fam.nwcg.gov/fam-web/weatherfirecd/state_data.htm (accessed on 17 November 2017).
- Bytnerowicz, A.; Burley, J.D.; Cisneros, R.; Preisler, H.K.; Schilling, S.; Schweizer, D.; Ray, J.; Dulen, D.; Beck, C.; Auble, B. Surface Ozone at the Devils Postpile National Monument Receptor Site During Low and High Wildland Fire Years. Atmos. Environ. 2013, 65, 129–141. [Google Scholar] [CrossRef]
- Cisneros, R.; Schweizer, D.; Preisler, H.; Bennett, D.H.; Shaw, G.; Bytnerowicz, A. Spatial and Seasonal Patterns of Particulate Matter Less Than 2.5 Microns in the Sierra Nevada Mountains, California. Atmos. Pollut. Res. 2014, 5, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Preisler, H.K.; Zhong, S.; Esperanza, A.; Brown, T.; Bytnerowicz, A.; Tarnay, L. Estimating Contribution of Wildland Fires to Ambient Ozone Levels in National Parks in the Sierra Nevada, California. Environ. Pollut. 2010, 158, 778–787. [Google Scholar] [CrossRef]
- Preisler, H.K.; Grulke, N.E.; Bytnerowicz, A.; Esperanza, A. Analyzing Effects of Forest Fires on Diurnal Patterns of Ozone Concentrations. Phyton 2005, 45, 33–39. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Jaffe, D.A.; Wigder, N.L. Ozone Production from Wildfires: A Critical Review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Cisneros, R.; Schweizer, D.; Zhong, S.; Hammond, S.K.; Perez, M.A.; Guo, Q.; Traina, S.; Bytnerowicz, A.; Bennett, D.H. Analysing the Effects of the 2002 McNally Fire on Air Quality in the San Joaquin Valley and Southern Sierra Nevada, California. Int. J. Wildland Fire 2012, 21, 1065. [Google Scholar] [CrossRef]
- Cisneros, R.; Schweizer, D. The Efficacy of News Releases, News Reports, and Public Nuisance Complaints for Determining Smoke Impacts to Air Quality from Wildland Fire. Air Qual. Atmos. Health 2018, 11, 423–429. [Google Scholar] [CrossRef]
- Parish, T.R. Barrier Winds Along the Sierra Nevada Mountains. J. Appl. Meteorol. 1982, 21, 925–930. [Google Scholar] [CrossRef] [Green Version]
- Marwitz, J.D. The Kinematics of Orographic Airflow During Sierra Storms. J. Atmos. Sci. 1983, 40, 1218–1227. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.; Neiman, P.J.; Sukovich, E.; Ralph, M. Representation of the Sierra Barrier Jet in 11 Years of a High-Resolution Dynamical Reanalysis Downscaling Compared with Long-Term Wind Profiler Observations. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Neiman, P.J.; Hughes, M.; Moore, B.J.; Ralph, F.M.; Sukovich, E.M. Sierra Barrier Jets, Atmospheric Rivers, and Precipitation Characteristics in Northern California: A Composite Perspective Based on a Network of Wind Profilers. Mon. Weather Rev. 2013, 141, 4211–4233. [Google Scholar] [CrossRef] [Green Version]
- Navarro, K.M.; Cisneros, R.; O’Neill, S.M.; Schweizer, D.; Larkin, N.K.; Balmes, J.R. Air-Quality Impacts and Intake Fraction of PM2.5during the 2013 Rim Megafire. Environ. Sci. Technol. 2016, 50, 11965–11973. [Google Scholar] [CrossRef]
- Gyawali, M.; Arnott, W.P.; Lewis, K.; Moosmüller, H. In Situ Aerosol Optics in Reno, NV, USA During and After the Summer 2008 California Wildfires and the Influence of Absorbing and Non-Absorbing Organic Coatings on Spectral Light Absorption. Atmos. Chem. Phys. 2009, 9, 8007–8015. [Google Scholar] [CrossRef] [Green Version]
- Wegesser, T.C.; Pinkerton, K.E.; Last, J.A. California Wildfires of 2008: Coarse and Fine Particulate Matter Toxicity. Environ. Health Perspect. 2009, 117, 893–897. [Google Scholar] [CrossRef] [PubMed]
- EPA. Environmental Protection Agency. 2018. Available online: https://www.epa.gov/air-quality-analysis/treatment-air-quality-data-influenced-exceptional-events-homepage-exceptional (accessed on 29 June 2018).
- Schweizer, D.W.; Cisneros, R. Forest Fire Policy: Change Conventional Thinking of Smoke Management to Prioritize Long-Term Air Quality and Public Health. Air Qual. Atmos. Health 2017, 10, 33–36. [Google Scholar] [CrossRef]
- Cisneros, R.; Brown, P.; Cameron, L.; Gaab, E.; Gonzalez, M.; Ramondt, S.; Veloz, D.; Song, A.; Schweizer, D. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California. J. Environ. Public Health 2017, 2017, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fire Impact | Departure from the Norm (ppb) | Departure above the Norm (ppb) | Departure below the Norm (ppb) | Positive Departure above 70 ppb (%) |
---|---|---|---|---|
None | 0.34 | 6.2 | −5.7 | 11 |
Imp 2008 | 7.8 | 14 | −6.8 | 43 |
Imp (other) | 1.5 | 7.4 | −6.1 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisneros, R.; K. Preisler, H.; Schweizer, D.; Gharibi, H. Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California. Atmosphere 2020, 11, 1131. https://doi.org/10.3390/atmos11101131
Cisneros R, K. Preisler H, Schweizer D, Gharibi H. Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California. Atmosphere. 2020; 11(10):1131. https://doi.org/10.3390/atmos11101131
Chicago/Turabian StyleCisneros, Ricardo, Haiganoush K. Preisler, Donald Schweizer, and Hamed Gharibi. 2020. "Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California" Atmosphere 11, no. 10: 1131. https://doi.org/10.3390/atmos11101131
APA StyleCisneros, R., K. Preisler, H., Schweizer, D., & Gharibi, H. (2020). Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California. Atmosphere, 11(10), 1131. https://doi.org/10.3390/atmos11101131