Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5
Abstract
:1. Introduction
2. Experiments
2.1. Reagents
2.2. PM2.5 Samples
2.3. Extraction
2.4. Analysis of Oxidative Potential
2.5. Chemical Analysis by ICP-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Constituents of PM2.5
3.2. Oxidative Potential of PM2.5
3.3. Connections between Chemical Components and Oxidative Potential of PM2.5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Steenhof, M.; Gosens, I.; Strak, M.; Godri, K.J.; Hoek, G.; Cassee, F.R.; Mudway, I.S.; Kelly, F.J.; Harrison, R.M.; Lebret, E.; et al. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential—The RAPTES project. Part Fibre Toxicol. 2011, 8, 26. [Google Scholar] [PubMed] [Green Version]
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 30 June 2020).
- European Commission. Standards—Air Quality—Environment—European Commission. Available online: https://ec.europa.eu/environment/air/quality/standards.htm (accessed on 9 July 2020).
- US EPA O. National Ambient Air Quality Standards (NAAQS) for PM. US EPA, 2020. Available online: https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm (accessed on 9 July 2020).
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [PubMed]
- Lu, F.; Xu, D.; Cheng, Y.; Dong, S.; Guo, C.; Jiang, X.; Zhen, X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef]
- Peixoto, M.S.; de Oliveira Galvão, M.F.; de Medeiros, S.R.B. Cell death pathways of particulate matter toxicity. Chemosphere 2017, 188, 32–48. [Google Scholar] [CrossRef]
- Cheung, K.; Daher, N.; Kam, W.; Shafer, M.M.; Ning, Z.; Schauer, J.J.; Sioutas, C. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos. Environ. 2011, 45, 2651–2662. [Google Scholar] [CrossRef]
- Demerjian, K.L.; Mohnen, V.A. Synopsis of the Temporal Variation of Particulate Matter Composition and Size. J. Air Waste Manag. Assoc. 2008, 58, 216–233. [Google Scholar]
- Röösli, M.; Theis, G.; Künzli, N.; Staehelin, J.; Mathys, P.; Oglesby, L.; Camenzind, M.; Braun-Fahrländer, C. Temporal and spatial variation of the chemical composition of PM10 at urban and rural sites in the Basel area, Switzerland. Atmos. Environ. 2001, 35, 3701–3713. [Google Scholar]
- Bell, M.L.; Ebisu, K.; Peng, R.D.; Samet, J.M.; Dominici, F. Hospital Admissions and Chemical Composition of Fine Particle Air Pollution. Am. J. Respir. Crit. Care Med. 2009, 179, 1115–1120. [Google Scholar] [CrossRef]
- Bell, M.L. HEI Health Review Committee. Assessment of the health impacts of particulate matter characteristics. Res. Rep. Health Eff. Inst. 2012, 161, 5–38. [Google Scholar]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Boogaard, H.; Janssen, N.A.H.; Fischer, P.H.; Kos, G.P.A.; Weijers, E.P.; Cassee, F.R.; van der Zee, S.C.; de Hartog, J.J.; Brunekreef, B.; Hoek, G. Contrasts in Oxidative Potential and Other Particulate Matter Characteristics Collected Near Major Streets and Background Locations. Environ. Health Perspect. 2012, 120, 185–191. [Google Scholar] [PubMed]
- Dagher, Z.; Garçon, G.; Billet, S.; Gosset, P.; Ledoux, F.; Courcot, D.; Aboukais, A.; Shirali, P. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology 2006, 225, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 1–13. [Google Scholar]
- Shi, T.; Schins, R.P.F.; Knaapen, A.M.; Kuhlbusch, T.; Pitz, M.; Heinrich, J.; Borm, P.J.A. Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. J. Environ. Monit. 2003, 5, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Borm, P.J.A.; Kelly, F.; Künzli, N.; Schins, R.P.F.; Donaldson, K. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup. Environ. Med. 2007, 64, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Hedayat, F.; Stevanovic, S.; Miljevic, B.; Bottle, S.; Ristovski, Z.D. Review-evaluating the molecular assays for measuring the oxidative potential of particulate matter. Chem. Ind. Chem. Eng. Q. 2015, 21, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Roper, C.; Perez, A.; Barrett, D.; Hystad, P.; Massey Simonich, S.L.; Tanguay, R.L. Workflow for comparison of chemical and biological metrics of filter collected PM2.5. Atmos. Environ. 2020, 226, 117379. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Yang, A.; Strak, M.; Steenhof, M.; Hellack, B.; Gerlofs-Nijland, M.E.; Kuhlbusch, T.; Kelly, F.; Harrison, R.; Brunekreef, B.; et al. Oxidative potential of particulate matter collected at sites with different source characteristics. Sci. Total Environ. 2014, 472, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, X.; Lu, L.; Wu, Y.; Zhang, H.; Lv, Q.; Liu, W.; Zhang, Y.; Zhuang, S. Temporal variation of oxidative potential of water soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay. Sci. Total Environ. 2019, 649, 969–978. [Google Scholar] [CrossRef]
- Shao, L.; Hu, Y.; Shen, R.; Schäfer, K.; Wang, J.; Wang, J.; Schnelle-Kreis, J.; Zimmermann, R.; BéruBé, K.; Suppan, P. Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing. Sci. Total Environ. 2017, 579, 1152–1160. [Google Scholar] [PubMed] [Green Version]
- Cheung, K.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Diurnal Trends in Oxidative Potential of Coarse Particulate Matter in the Los Angeles Basin and Their Relation to Sources and Chemical Composition. Environ. Sci. Technol. 2012, 46, 3779–3787. [Google Scholar] [PubMed]
- Szigeti, T.; Óvári, M.; Dunster, C.; Kelly, F.J.; Lucarelli, F.; Záray, G. Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total Environ. 2015, 518–519, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Visentin, M.; Pagnoni, A.; Sarti, E.; Pietrogrande, M.C. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. Environ. Pollut. 2016, 219, 72–79. [Google Scholar] [CrossRef]
- LRAPA. Air Quality Sensors | Lane Regional Air Protection Agency, OR. Available online: http://www.lrapa.org/307/Air-Quality-Sensors (accessed on 7 September 2020).
- US EPA. List of Designated Reference and Equivalent Methods. 2020. Available online: www.epa.gov/ttn/amtic/criteria.html (accessed on 12 October 2020).
- Gorai, A.K.; Tchounwou, P.B.; Biswal, S.; Tuluri, F. Spatio-Temporal Variation of Particulate Matter (PM2.5) Concentrations and Its Health Impacts in a Mega City, Delhi in India. Environ. Health Insights 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Lee, S.; Cao, J.; Chow, J.; Watson, J.; Chan, C. Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Sci. Total Environ. 2006, 355, 276–287. [Google Scholar] [CrossRef]
- Ledoux, F.; Courcot, L.; Courcot, D.; Aboukaïs, A.; Puskaric, E. A summer and winter apportionment of particulate matter at urban and rural areas in northern France. Atmos. Res. 2006, 82, 633–642. [Google Scholar] [CrossRef]
- Lyman, S.; Tran, T. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, USA. Atmos. Environ. 2015, 123, 156–165. [Google Scholar] [CrossRef]
- Vitasse, Y.; Klein, G.; Kirchner, J.W.; Rebetez, M. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theor. Appl. Climatol. 2017, 130, 1073–1083. [Google Scholar] [CrossRef]
- USDA. USDA—National Agricultural Statistics Service—Mississippi—2017–2020 County Estimates. Available online: https://www.nass.usda.gov/Statistics_by_State/Mississippi/Publications/County_Estimates/index.php (accessed on 30 June 2020).
- Dall’Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site. Atmos. Chem. Phys. Discuss 2012, 12, 20135–20180. [Google Scholar] [CrossRef] [Green Version]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M. Iron metabolism of grasses: I. Effect of iron supply on some inorganic and organic constituents. Plant Soil. 1969, 31, 451–462. [Google Scholar] [CrossRef]
- Bozlaker, A.; Peccia, J.; Chellam, S. Indoor/Outdoor Relationships and Anthropogenic Elemental Signatures in Airborne PM2.5 at a High School: Impacts of Petroleum Refining Emissions on Lanthanoid Enrichment. Environ. Sci. Technol. 2017, 51, 4851–4859. [Google Scholar] [CrossRef] [PubMed]
- Titler, R.V. Chemical Analysis of Major Constituents and Trace Contaminants of Rock Salt. 2011. Available online: http://files.dep.state.pa.us/Water/Wastewater%20Management/WastewaterPortalFiles/Rock%20Salt%20Paper%20final%20052711.pdf (accessed on 10 July 2020).
- Chung, M.Y.; Lazaro, R.A.; Lim, D.; Jackson, J.; Lyon, J.; Rendulic, D.; Hasson, A.S. Aerosol-Borne Quinones and Reactive Oxygen Species Generation by Particulate Matter Extracts. Environ. Sci. Technol. 2006, 40, 4880–4886. [Google Scholar] [CrossRef]
- Charrier, J.G.; Anastasio, C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals. Atmos. Chem. Phys. 2012, 12, 9321–9333. [Google Scholar] [CrossRef] [Green Version]
- Charrier, J.G.; Richards-Henderson, N.K.; Bein, K.J.; McFall, A.S.; Wexler, A.S.; Anastasio, C. Oxidant production from source-oriented particulate matter—Part 1: Oxidative potential using the dithiothreitol (DTT) assay. Atmos. Chem. Phys. 2015, 15, 2327–2340. [Google Scholar]
- Yatkin, S.; Bayram, A. Elemental composition and sources of particulate matter in the ambient air of a Metropolitan City. Atmos. Res. 2007, 85, 126–139. [Google Scholar] [CrossRef]
- Asano, H.; Aoyama, T.; Mizuno, Y.; Shiraishi, Y. Highly Time-Resolved Atmospheric Observations Using a Continuous Fine Particulate Matter and Element Monitor. ACS Earth Space Chem. 2017, 1, 580–590. [Google Scholar] [CrossRef]
- Fang, T.; Verma, V.; Bates, J.T.; Abrams, J.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; Tolbert, P.E.; et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 2016, 16, 3865–3879. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Mulholland, J.A.; Russell, A.G.; Weber, R.J. Characterization of water-insoluble oxidative potential of PM2.5 using the dithiothreitol assay. Atmos. Environ. 2020, 224, 117327. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, M.; Wang, Y.; Zhang, L.; Li, Y.; Han, Y. Oxidative Potential of Water-Soluble Matter Associated with Chromophoric Substances in PM2.5 over Xi’an, China. Environ. Sci. Technol. 2019, 53, 8574–8584. [Google Scholar] [CrossRef]
- Wei, J.; Yu, H.; Wang, Y.; Verma, V. Complexation of Iron and Copper in Ambient Particulate Matter and Its Effect on the Oxidative Potential Measured in a Surrogate Lung Fluid. Environ. Sci. Technol. 2019, 53, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, L.; Froines, J.R.; Cho, A.K.; Sioutas, C. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part. Fibre Toxicol. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, K.; Olson, M.R.; Shelton, B.; Schauer, J.J.; Sioutas, C. Seasonal and spatial variations of individual organic compounds of coarse particulate matter in the Los Angeles Basin. Atmos. Environ. 2012, 59, 1–10. [Google Scholar] [CrossRef]
Sr | Ag | Cd | Cs | Tl | Pb | U | Ca | Fe | Total | PM2.5 Mass | |
---|---|---|---|---|---|---|---|---|---|---|---|
DTT/min | 0.251 | 0.0557 | 0.126 | 0.569 | 0.525 | 0.223 | 0.188 | −0.073 | 0.246 | 0.0263 | 0.556 |
DTT/µg/min | −0.416 | −0.218 | −0.452 | −0.779 | −0.761 | −0.517 | −0.432 | −0.155 | −0.197 | −0.253 | −0.793 |
Sr | 0.0714 | 0.0845 | 0.562 | 0.51 | 0.326 | 0.225 | 0.318 | 0.394 | 0.490 | 0.474 | |
Ag | −0.0512 | 0.354 | 0.0522 | 0.505 | 0.721 | −0.042 | 0.441 | 0.0641 | 0.139 | ||
Cd | 0.299 | 0.548 | 0.270 | 0.132 | 0.219 | −0.065 | 0.220 | 0.547 | |||
Cs | 0.895 | 0.642 | 0.595 | 0.284 | 0.417 | 0.420 | 0.904 | ||||
Tl | 0.513 | 0.445 | 0.388 | 0.235 | 0.472 | 0.981 | |||||
Pb | 0.845 | 0.364 | 0.675 | 0.506 | 0.589 | ||||||
U | 0.248 | 0.573 | 0.369 | 0.495 | |||||||
Ca | 0.375 | 0.968 | 0.356 | ||||||||
Fe | 0.557 | 0.293 | |||||||||
Total | 0.452 |
Sr/µg | Ag/µg | Cd/µg | Cs/µg | Tl/µg | Pb/µg | U/µg | Ca/µg | Fe/µg | Total/µg | PM2.5 Mass | |
---|---|---|---|---|---|---|---|---|---|---|---|
DTT/min | 0.228 | 0.056 | 0.104 | −0.007 | 0.611 | 0.027 | −0.102 | −0.512 | −0.351 | −0.508 | 0.556 |
DTT/µg/min | −0.354 | −0.218 | −0.415 | 0.005 | −0.804 | −0.210 | 0.008 | 0.603 | 0.699 | 0.633 | −0.793 |
Sr/µg | 0.090 | 0.023 | 0.136 | 0.482 | 0.012 | −0.083 | −0.261 | −0.260 | −0.245 | 0.346 | |
Ag/µg | −0.029 | 0.227 | 0.128 | 0.395 | 0.493 | −0.174 | −0.087 | −0.165 | 0.139 | ||
Cd/µg | −0.261 | 0.466 | 0.006 | −0.097 | −0.293 | −0.379 | −0.315 | 0.464 | |||
Cs/µg | −0.042 | 0.708 | −0.212 | 0.043 | 0.129 | 0.067 | −0.115 | ||||
Tl/µg | 0.079 | 0.007 | −0.636 | −0.710 | −0.662 | 0.910 | |||||
Pb/µg | 0.130 | −0.011 | 0.038 | 0.006 | 0.129 | ||||||
U/µg | 0.242 | −0.007 | 0.219 | −0.018 | |||||||
Ca/µg | 0.658 | 0.995 | −0.617 | ||||||||
Fe/µg | 0.730 | −0.674 | |||||||||
Total/µg | −0.643 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinson, A.; Sidwell, A.; Black, O.; Roper, C. Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5. Atmosphere 2020, 11, 1086. https://doi.org/10.3390/atmos11101086
Vinson A, Sidwell A, Black O, Roper C. Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5. Atmosphere. 2020; 11(10):1086. https://doi.org/10.3390/atmos11101086
Chicago/Turabian StyleVinson, Alex, Allie Sidwell, Oscar Black, and Courtney Roper. 2020. "Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5" Atmosphere 11, no. 10: 1086. https://doi.org/10.3390/atmos11101086
APA StyleVinson, A., Sidwell, A., Black, O., & Roper, C. (2020). Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5. Atmosphere, 11(10), 1086. https://doi.org/10.3390/atmos11101086