Appraisal of Climate Change and Its Impact on Water Resources of Pakistan: A Case Study of Mangla Watershed
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Climate Data
2.2.2. Global Climatic Models (GCMs) Data
2.2.3. Landuse and Soil Data
2.3. Statistical Downscaling
- Change factor (additive for temperature and multiplicative for precipitation)
- Linear scaling (additive for temperature and multiplicative for precipitation)
- Distribution mapping (additive for temperature and multiplicative for precipitation)
2.4. SWAT Model Description and Setup
2.4.1. Slope Classification
2.4.2. Elevation Bands
2.4.3. Model Accuracy Criteria
- (a)
- The efficiency of Nash–Sutcliffe (NSE)
- (b)
- Bias percentage (Pbias)
- (c)
- Pearson’s coefficient for correlation (r)
- (d)
- Coefficient of determination R2
2.4.4. Model Calibration and Validation
3. Results
3.1. Model Calibration and Validation
3.1.1. Model Calibration without Considering Elevation Bands
3.1.2. Calibration and Validation Considering Elevation Bands
3.2. Performance Evaluation of The SWAT Model in Terms of Low and High Flows
3.3. Seasonal Change in Temperature and Precipitation
3.4. Future Flow Projection
4. Discussion
5. Conclusions
- The results regarding calibration and validation criteria, i.e., NSE, PBIAS, and R2, are satisfactory within the monthly period by incorporating elevation bands. The calibrated hydrological model SWAT precisely re-generates streamflow within the Mangla Watershed.
- Maximum temperature and minimum temperature are projected to increase in the future from 2021 to 2099 for all five GCMs, under both RCP (4.5) and RCP (8.5) emission scenarios.
- The projected precipitation is more uncertain and obscure. All five GCMs and their ensemble are predicting an increase in precipitation frequencies from June to September within the Mangla Watershed with a significant increase of (219%) in June.
- The projected average annual flow will increase constantly for all five GCMs and their ensemble, especially in the Spring season with a 193% increase, but there will be a decrease in the streamflow during the autumn season. Moreover, there will be an excess of high flows and low flow events for the projected flows.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
GCMs | ACCESS | CCSM4 | HadGEM2 | ESMLR | MirocESM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) |
2021–2030 | 3603 | 763 | 73 | 3961 | 748 | 160 | 6730 | 812 | 51 | 4316 | 1119 | 100 | 5390 | 1182 | 141 |
2031–2040 | 3798 | 956 | 119 | 4657 | 878 | 81 | 5795 | 761 | 21 | 4228 | 938 | 110 | 5544 | 1120 | 302 |
2041–2050 | 5560 | 875 | 135 | 5040 | 814 | 135 | 5885 | 886 | 26 | 5683 | 1134 | 173 | 5263 | 897 | 95 |
2051–2060 | 4163 | 738 | 107 | 7230 | 788 | 135 | 8520 | 977 | 56 | 4898 | 910 | 96 | 5577 | 976 | 156 |
2061–2070 | 4947 | 991 | 95 | 6060 | 731 | 148 | 5995 | 1122 | 372 | 5648 | 995 | 157 | 5258 | 1057 | 160 |
2071–2080 | 5962 | 920 | 126 | 4873 | 844 | 57 | 3390 | 876 | 67 | 4082 | 1034 | 171 | 4105 | 895 | 96 |
2081–2090 | 7581 | 895 | 143 | 5126 | 920 | 106 | 5813 | 1018 | 193 | 3688 | 876 | 71 | 5523 | 1101 | 315 |
2091–2100 | 8342 | 714 | 98 | 5675 | 766 | 142 | 4357 | 1023 | 65 | 7388 | 1097 | 217 | 5231 | 928 | 94 |
GCMs | ACCESS | CCSM4 | HadGEM2 | ESMLR | MirocESM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) | Peak Flow (m3/s) | Median Flow (m3/s) | Low Flow (m3/s) |
2021–2030 | 4004 | 837 | 113 | 4870 | 845 | 40 | 6930 | 1108 | 193 | 4439 | 895 | 86 | 4893 | 1046 | 101 |
2031–2040 | 4487 | 862 | 152 | 5681 | 886 | 140 | 4732 | 1053 | 52 | 8473 | 714 | 15 | 3613 | 883 | 97 |
2041–2050 | 4987 | 920 | 223 | 3775 | 789 | 138 | 6441 | 1202 | 66 | 8220 | 577 | 18 | 5668 | 1123 | 173 |
2051–2060 | 7335 | 884 | 116 | 6981 | 798 | 174 | 4811 | 963 | 105 | 8510 | 712 | 152 | 4891 | 906 | 97 |
2061–2070 | 5505 | 911 | 143 | 3472 | 909 | 226 | 4648 | 778 | 68 | 8890 | 767 | 19 | 5639 | 993 | 161 |
2071–2080 | 4630 | 815 | 170 | 5367 | 629 | 111 | 2406 | 1011 | 333 | 6969 | 647 | 18 | 4994 | 895 | 120 |
2081–2090 | 5068 | 917 | 82 | 4476 | 679 | 176 | 4216 | 895 | 66 | 4003 | 526 | 34 | 4258 | 818 | 91 |
2091–2100 | 6211 | 741 | 124 | 4185 | 642 | 93 | 3300 | 1050 | 70 | 6651 | 961 | 94 | 7395 | 943 | 242 |
References
- Scott, D.; Hall, C.M.; Gössling, S. A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonization. J. Sustain. Tour. 2016, 24, 8–30. [Google Scholar] [CrossRef]
- Hussain Sargana, M.; Saud, M. Pakistan’s Internal Security Dynamics: Way Forward. J. Peace Dev. Commun. 2019, 3, 1–26. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bolch, T. Hydrology: Asian glaciers are a reliable water source. Nature 2017, 545, 161–162. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Chen, Y.; Wang, H.; Zhang, S. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2015, 135, 28–37. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Muerth, M.J.; Gauvin St-Denis, B.; Ricard, S.; Velázquez, J.A.; Schmid, J.; Minville, M.; Caya, D.; Chaumont, D.; Ludwig, R.; Turcotte, R. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 2013, 17, 1189–1204. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Potter, N.J.; Chiew, F.H.S.; Zhang, L.; Wang, B.; Vaze, J.; Evans, J.P. How does bias correction of regional climate model precipitation affect modelled runoff? Hydrol. Earth Syst. Sci. 2015, 19, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Mbaye, M.L.; Haensler, A.; Hagemann, S.; Gaye, A.T.; Moseley, C.; Afouda, A. Impact of statistical bias correction on the projected climate change signals of the regional climate model REMO over the Senegal River Basin. Int. J. Climatol. 2016, 36, 2035–2049. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Di Luca, A.; de Elía, R.; Laprise, R. Potential for small scale added value of RCM’s downscaled climate change signal. Clim. Dyn. 2013, 40, 601–618. [Google Scholar] [CrossRef] [Green Version]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; Van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Gellens, D.; Roulin, E. Streamflow response of Belgian catchments to IPCC climate change scenarios. J. Hydrol. 1998, 210, 242–258. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol. 2013, 479, 200–214. [Google Scholar] [CrossRef]
- Pervez, M.S.; Henebry, G.M. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J. Hydrol. Reg. Stud. 2015, 3, 285–311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178–179, 521–534. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM - A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor. Appl. Climatol. 2013, 113, 27–44. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 32–41. [Google Scholar] [CrossRef]
- Sachindra, D.A.; Perera, B.J.C. Statistical downscaling of general circulation model outputs to precipitation accounting for non-stationarities in predictor-predictand relationships. PLoS ONE 2016, 11, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Garee, K.; Chen, X.; Bao, A.; Wang, Y.; Meng, F. Hydrological modeling of the upper indus basin: A case study from a high-altitude glacierized catchment Hunza. Water 2017, 9, 17. [Google Scholar] [CrossRef]
- Tahir, A.A.; Adamowski, J.F.; Chevallier, P.; Haq, A.U.; Terzago, S. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan). Meteorol. Atmos. Phys. 2016, 128, 793–811. [Google Scholar] [CrossRef]
- Ul Hasson, S.; Böhner, J.; Lucarini, V. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin. Earth Syst. Dyn. 2017, 8, 337–355. [Google Scholar] [CrossRef] [Green Version]
- DR, A.; HJ, F. Erratum to: Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J. Hydrol. 2009, 364, 200–229. [Google Scholar] [CrossRef]
- Amin, A.; Nasim, W.; Mubeen, M.; Sarwar, S.; Urich, P.; Ahmad, A.; Wajid, A.; Khaliq, T.; Rasul, F.; Hammad, H.M.; et al. Regional climate assessment of precipitation and temperature in Southern Punjab (Pakistan) using SimCLIM climate model for different temporal scales. Theor. Appl. Climatol. 2018, 131, 121–131. [Google Scholar] [CrossRef]
- Zaman, M.; Fang, G.; Mehmood, K.; Saifullah, M. Trend change study of climate variables in Xin’anjiang-Fuchunjiang watershed, China. Adv. Meteorol. 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Kang, S.C.; Zhang, G.S.; Anjum, M.N.; Zaman, M.; Zhang, Y.Q. Evaluation of SWAT Model performance on glaciated and non-glaciated subbasins of Nam Co Lake, Southern Tibetan Plateau, China. J. Mt. Sci. 2019, 16, 1075–1097. [Google Scholar] [CrossRef]
- Zaman, M.; Naveed Anjum, M.; Usman, M.; Ahmad, I.; Saifullah, M.; Yuan, S.; Liu, S. Enumerating the Effects of Climate Change on Water Resources Using GCM Scenarios at the Xin’anjiang Watershed, China. Water 2018, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Babur, M.; Babel, M.S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Assessment of climate change impact on reservoir inflows using multi climate-models under RCPs-the case of Mangla Dam in Pakistan. Water 2016, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Olsson, T.; Jakkila, J.; Veijalainen, N.; Backman, L.; Kaurola, J.; Vehviläinen, B. Impacts of climate change on temperature, precipitation and hydrology in Finland-studies using bias corrected Regional Climate Model data. Hydrol. Earth Syst. Sci. 2015, 19, 3217–3238. [Google Scholar] [CrossRef] [Green Version]
- Tschöke, G.V.; Kruk, N.S.; de Queiroz, P.I.B.; Chou, S.C.; de Sousa, W.C., Jr. Comparison of two bias correction methods for precipitation simulated with a regional climate model. Theor. Appl. Climatol. 2017, 127, 841–852. [Google Scholar] [CrossRef]
- Arnell, N. Effects of IPCC SRES* emissions scenarios on river runoff: A global perspective. Hydrol. Earth Syst. Sci. 2003, 7, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2005; Blackland Research Center: Temple, TX, USA, 2005. [Google Scholar]
- Mehdi, B.; Ludwig, R.; Lehner, B. Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: A modeling study in Bavaria. J. Hydrol. Reg. Stud. 2015, 4, 60–90. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henríquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain). Hydrol. Earth Syst. Sci. 2015, 19, 1677–1693. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Shrestha, M.; Babel, M.S. Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Mall, R.K.; Gupta, A.; Singh, R.; Singh, R.S.; Rathore, L.S. Water resources and climate change: An Indian perspective. Curr. Sci. 2006, 90, 1610–1626. [Google Scholar]
- Mahmood, R.; Jia, S. Assessment of Impacts of Climate Change on the Water Resources of the Transboundary Jhelum River Basin of Pakistan and India. Water 2016, 246. [Google Scholar] [CrossRef] [Green Version]
- Harmonized world soil database v1.2 | FAO SOILS PORTAL | Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 8 October 2020).
- EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 8 October 2020).
- USGS EROS Archive—Land Cover Products—Global Land Cover Characterization (GLCC). Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects (accessed on 8 October 2020).
- Anjum, M.N.; Ding, Y.; Shangguan, D. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan. Atmos. Res. 2019, 227, 233–248. [Google Scholar] [CrossRef]
- CMIP5 Data Search|CMIP5|ESGF-CoG. Available online: https://esgf-node.llnl.gov/search/cmip5/ (accessed on 8 October 2020).
- Moriasi, D.N.; Pai, N.; Steiner, J.L.; Gowda, P.H.; Winchell, M.; Rathjens, H.; Starks, P.J.; Verser, J.A. SWAT-LUT: A Desktop Graphical User Interface for Updating Land Use in SWAT. J. Am. Water Resour. Assoc. 2019, 55, 1102–1115. [Google Scholar] [CrossRef] [Green Version]
- Kum, D.; Lim, K.J.; Jang, C.H.; Ryu, J.; Yang, J.E.; Kim, S.J.; Kong, D.S.; Jung, Y. Projecting Future Climate Change Scenarios Using Three Bias-Correction Methods. Adv. Meteorol. 2014. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Berg, P.; Feldmann, H.; Panitz, H.J. Bias correction of high resolution regional climate model data. J. Hydrol. 2012, 448–449, 80–92. [Google Scholar] [CrossRef]
- Mendez, M.; Maathuis, B.; Hein-Griggs, D.; Alvarado-Gamboa, L.F. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 2020, 12, 482. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, S.; Nychka, D.; Mearns, L.O. A New distribution mapping technique for climate model bias correction. In Machine Learning and Data Mining Approaches to Climate Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 91–99. [Google Scholar]
- Rathjens, H.; Bieger, K.; Srinivasan, R.; Chaubey, I.; Arnold, J.G. CMhyd User Manual: Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies. Available online: https://swat.tamu.edu/media/115265/bias_cor_man.pdf (accessed on 18 September 2020).
- CMhyd|SWAT|Soil & Water Assessment Tool. Available online: https://swat.tamu.edu/software/cmhyd/ (accessed on 8 October 2020).
- SWAT Executables|SWAT|Soil & Water Assessment Tool. Available online: https://swat.tamu.edu/software/swat-executables/ (accessed on 8 October 2020).
- Arnold, J.G.; Allen, P.M.; Volk, M.; Williams, J.R.; Bosch, D.D.; Allen, P.M.; Member, A.; Volk, M.; Bosch, D.D.; Arnold, J.G. Assessment of different representations of spatial variability on swat model performance. Trans. ASABE 2010, 53, 1433–1443. [Google Scholar] [CrossRef]
- Khayyun, T.S.; Alwan, I.A.; Hayder, A.M. Hydrological model for Hemren dam reservoir catchment area at the middle River Diyala reach in Iraq using ArcSWAT model. Appl. Water Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Santra, P.; Das, B.S. Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT. J. Hydro-Environ. Res. 2013, 7, 261–269. [Google Scholar] [CrossRef]
- Ridwansyah, I.; Pawitan, H.; Sinukaban, N.; Hidayat, Y. Watershed Modeling with ArcSWAT and SUFI2 In Cisadane Catchment Area: Calibration and Validation to Prediction of River Flow. Int. J. Sci. Eng. 2014, 6, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ARCSWAT Interface for SWAT2009 User’s Guide; Blackhand Researh Center: Temple, TX, USA, 2010. [Google Scholar]
- Stefanidis, K.; Panagopoulos, Y.; Mimikou, M. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Sci. Total Environ. 2018, 627, 756–769. [Google Scholar] [CrossRef]
- Gosain, A.K.; Debele, B.; Srinivasan, R. Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT Hydrological modeling View project Drainage Master Plan of NCT of Delhi, India View project Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT. Water Resour. Manag. 2010, 24, 1065–1088. [Google Scholar] [CrossRef]
- Pradhanang, S.M.; Anandhi, A.; Mukundan, R.; Zion, M.S.; Pierson, D.C.; Schneiderman, E.M.; Matonse, A.; Frei, A. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed, New York, USA. Hydrol. Process. 2011, 25, 3268–3277. [Google Scholar] [CrossRef]
- Saleh, A.; Arnold, J.G.; Gassman, P.W.; Hauck, L.M.; Rosenthal, W.D.; Williams, J.R.; McFarland, A.M.S. Application of SWAT for the Upper North Bosque River Watershed. Trans. Am. Soc. Agric. Eng. 2000, 43, 1077–1087. [Google Scholar] [CrossRef]
- Bracmort, K.S.; Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Modeling long-term water quality impact of structural BMPs. Trans. ASABE 2006, 49, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Veith, T.L.; Bosch, D.D.; Arnold, J.G. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds. J. Hydrol. Eng. 2007, 12, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP 2012 SWAT Calibration and Uncertainty Programs; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2013. [Google Scholar]
- Wang, B.; Liu, D.L.; Macadam, I.; Alexander, L.V.; Abramowitz, G.; Yu, Q. Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method in south eastern Australia. Clim. Chang. 2016, 138, 85–98. [Google Scholar] [CrossRef]
- Ouyang, F.; Zhu, Y.; Fu, G.; Lü, H.; Zhang, A.; Yu, Z.; Chen, X. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stoch. Environ. Res. Risk Assess. 2015, 29, 1781–1795. [Google Scholar] [CrossRef]
- Saddique, N.; Mahmood, T.; Bernhofer, C. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environ. Earth Sci. 2020, 79, 448. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Nawaz, N.; Khan, N. Modeling climate change impacts on precipitation in arid regions of Pakistan: A non-local model output statistics downscaling approach. Theor. Appl. Climatol. 2019, 137, 1347–1364. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, B.; Khan, A.; Kabat, P. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ. 2016, 548–549, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Shahid, S.; Ahmed, K.; Wang, X.; Ali, R.; Ismail, T.; Nawaz, N. Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan. Atmos. Res. 2020, 233. [Google Scholar] [CrossRef]
Land Use (Figure 1) | Land Use Codes for SWAT | Description | Covered Area (Km2) | Covered Area (%) |
---|---|---|---|---|
Croplands | AGL | Artificially irrigated crop-lands | 15198 | 45.38 |
AGRC | Mosaic vegetation crop-lands | 3218 | 9.61 | |
Forests | FRSD | Broad-leaved, semi-deciduous forest | 2914 | 8.70 |
FRST | Broad-leaved & needle-leaved forest (>5 m) | 1296 | 3.87 | |
WETF | Wet-land forests | 0.33 | 0.001 | |
Grasslands | SHRB | Shrubland more than 50% | 1084 | 3.236 |
SAVD | Herbaceous vegetation (grassland, savannas) | 6313 | 18.85 | |
Urban areas | URBN | Artificial or urban areas | 17 | 0.05 |
Bare lands | BARE | Barren lands with less than one-third of the area covered by vegetation | 1989 | 5.94 |
Freshwater reserves | WATR | Water bodies | 194 | 0.58 |
Permanent snow and ice | 1309 | 3.91 |
Soil Group | Area | Covered Area | Bulk Density | Available Water Contents | Water Conductivity | Composition | Electric Conductivity | ||
---|---|---|---|---|---|---|---|---|---|
(Km2) | (%) | (g/cm3) | (mm/mm) | (mm/day) | Clay | Silt | Sand | (μs/m) | |
GelicRegosols | 389.5 | 1.16 | 1.47 | 0.064 | 0.48 | 11 | 63 | 26 | 100 |
GleyicSolonetz | 499.3 | 1.49 | 1.36 | 0.071 | 0.48 | 25 | 43 | 32 | 1600 |
CalcaricPhaeozems | 7846.4 | 23.43 | 1.38 | 0.170 | 0.48 | 22 | 43 | 35 | 200 |
Calcic Chernozems | 389.2 | 1.16 | 1.24 | 0.081 | 0.24 | 45 | 42 | 13 | 200 |
LuvicChernozems | 237.4 | 0.71 | 1.25 | 0.048 | 1.2 | 44 | 37 | 19 | 500 |
MollicPlanosols | 6930.4 | 20.69 | 1.35 | 0.090 | 0.48 | 24 | 52 | 24 | 100 |
GleyicSolonchaks | 15769.4 | 47.09 | 1.39 | 0.175 | 1.68 | 21 | 42 | 37 | 8700 |
HaplicSolonetz | 632.6 | 1.89 | 1.39 | 0.078 | 0.48 | 24 | 29 | 47 | 100 |
HaplicChernozems | 541.2 | 1.62 | 1.35 | 0.175 | 0.48 | 23 | 54 | 23 | 100 |
DystricCambisols | 114.5 | 0.34 | 1.41 | 0.175 | 0.48 | 20 | 38 | 42 | 100 |
Lithic Leptosols | 140.0 | 0.42 | 1.38 | 0.175 | 0.48 | 24 | 34 | 42 | 100 |
GCM | Institution | Spatial Resolution |
---|---|---|
CCSM4 | National Center for Atmospheric Research (USA) | 1.2° × 0.9° |
ACCESS-1.0 | Commonwealth Scientific & Industrial Research Organization, The Bureau of Meteorology (BOM) (Australia) | 1.9° × 1.2° |
HadGEM2-ES | Met Office Hadley Centre (UK) | 1.9° × 1.2° |
MIROC-ESM | Japan Agency for Marine-Earth Science and Technology (Japan) | 2.8° × 2.8° |
MPI-ESM-LR | Max Planck Institute of Neurobiology (MPIN), Germany | 1.9° × 1.9° |
Sr No. | Slope Classes (%) | Area covered (%) | Area Covered (Km2) |
---|---|---|---|
1 | 0–20 | 27.79 | 9306.9 |
2 | 21–40 | 20.96 | 7019.5 |
3 | 41–60 | 21.24 | 7113.3 |
4 | 61–80 | 16.07 | 5381.8 |
5 | >80 | 13.93 | 4665.2 |
Statistical Parameters | Base Run (Calibration) | Final Run (Calibration) | Validation |
---|---|---|---|
Coefficient of Determination (R2) | 0.28 | 0.80 | 0.77 |
Bias percentage (Pbias) | 28.46 | 1.1 | −8.2 |
The efficiency of Nash–Sutcliffe (NSE) | 0.59 | 0.78 | 0.66 |
Percentage of gauged data wrapped by the simulated 95% uncertainty band (p-factor) | 0.28 | 0.77 | 0.73 |
Thickness of 95% uncertainty band (r-factor) | 0.47 | 0.95 | 0.96 |
Rank | Parameter | Description | Initial Range | Calibrated Value | Sensitivity Analysis | ||
---|---|---|---|---|---|---|---|
Min | Max | p-Values | T-Stat | ||||
1 | CN2 | Curve number 2 for soil conservation services | −0.4 | 0.2 | 0.09 | 1.75 × 10−7 | −5.69 |
2 | ALPHA_BF | The alpha factor for base flow in bank storage (days) | 0 | 0.6 | 0.5 | 0.659 | −0.44 |
3 | GW_DELAY | Delay in groundwater in days | 90 | 200 | 118.05 | 0.124 | −1.54 |
4 | GWQMN | Minimum depth of water in the shallow aquifer essential for backflow (mm) | 0 | 500 | 1.56 | 0.805 | −0.25 |
5 | GW_REVAP | Groundwater revap coefficient | 0 | 0.2 | 0.16 | 0.939 | 0.08 |
6 | RCHRG_DP | Deep percolation into the aquifer | 0 | 1 | 0.37 | 0.243 | −1.17 |
7 | CH_N2 | Main channel’s manning (n) value | 0 | 0.3 | 0.11 | 0.086 | 1.72 |
8 | CH_K2 | Main channel’s effective hydraulic conductivity | 5 | 100 | 77.53 | 0.954 | −0.06 |
9 | ALPHA_BNK | Bank storage base flow’s alpha factor (day) | 0 | 1 | 0.98 | 0.283 | 1.08 |
10 | SOL_AWC | Soil available water capacity | −0.2 | 0.4 | 0.14 | 0.482 | −0.7 |
11 | SOL_K | Hydraulic conductivity of saturated soil | −0.8 | 0.8 | 0.48 | 0.111 | −1.6 |
12 | SOL_BD | Bulk density of moist soil | 0 | 1 | 0.87 | 0.419 | −0.81 |
13 | SMFMX | The maximum rate of snowmelt over a year | 0 | 20 | 5.61 | 1.83 × 10−8 | 8.87 |
14 | SMFMN | The minimum rate of snowmelt over a year | 0 | 20 | 3.19 | 0.06 | −1.88 |
15 | SMTMP | Base temperature of snowmelt (°C) | −5 | 5 | 3.49 | 0.489 | 0.69 |
16 | SFTMP | The temperature of snowfall (°C) | −5 | 5 | −2.15 | 2.48 × 10−8 | 8.53 |
17 | TIMP | Temperature lag factor for snowpack | 0 | 1 | 0.32 | 0.845 | −0.2 |
18 | TLAPS | Lapse rate of temperature | −20 | 20 | −5.05 | 2.51 × 10−6 | −5.19 |
19 | PLAPS | Lapse rate of precipitation | −300 | 300 | 117.86 | 0.015 | −2.43 |
20 | ESCO | Soil evaporation compensation factor | 0 | 1 | 0.68 | 0.436 | −0.78 |
21 | SNOCOVMX | The minimum amount of snow water resembles 100% of snow cover (mm) | 0 | 400 | 302.76 | 0.38 | −0.88 |
22 | SNO50COV | The volume of snow that corresponds to 50% of snow cover | 0.1 | 0.6 | 0.49 | 0.939 | −0.08 |
GCM | Period | RCP-4.5 | RCP-8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Annual (J-D) | Winter (DJF) | Spring (MAM) | Summer (JJA) | Autumn (SON) | Annual (J-D) | Winter (DJF) | Spring (MAM) | Summer (JJA) | Autumn (SON) | ||
Access | 2021–2039 | 60.19 | 79.21 | 22.97 | 121.74 | 73.52 | 86.36 | 108.98 | 82.69 | 73.46 | 89.99 |
Access | 2040–2069 | 87.62 | 110.49 | 48.99 | 62.35 | 101.72 | 88.52 | 111.60 | 64.40 | 56.31 | 93.25 |
Access | 2070–2099 | 97.17 | 121.39 | 60.47 | 52.02 | 103.59 | 110.55 | 116.05 | 66.80 | 54.44 | 101.72 |
ESMLR | 2021–2039 | 92.50 | 115.71 | 72.85 | 60.07 | 99.00 | 106.14 | 131.07 | 83.01 | 74.75 | 110.28 |
ESMLR | 2040–2069 | 97.85 | 128.17 | 82.32 | 71.33 | 101.26 | 107.70 | 132.50 | 85.20 | 73.98 | 114.09 |
ESMLR | 2070–2099 | 103.31 | 130.84 | 86.50 | 66.60 | 109.97 | 113.97 | 134.34 | 82.07 | 71.01 | 119.47 |
CCSM4 | 2021–2039 | 128.51 | 157.48 | 102.49 | 96.11 | 141.66 | 107.31 | 132.11 | 85.01 | 75.09 | 106.24 |
CCSM4 | 2040–2069 | 130.27 | 167.86 | 107.38 | 90.34 | 142.91 | 109.26 | 134.24 | 86.56 | 74.28 | 113.22 |
CCSM4 | 2070–2099 | 138.13 | 175.48 | 110.32 | 89.01 | 154.43 | 110.63 | 136.59 | 79.60 | 68.63 | 116.29 |
HADGEM2 | 2021–2039 | 89.96 | 112.66 | 71.05 | 61.61 | 88.56 | 85.81 | 107.94 | 68.14 | 79.91 | 87.17 |
HADGEM2 | 2040–2069 | 98.54 | 115.03 | 74.03 | 60.42 | 90.74 | 106.94 | 112.64 | 84.56 | 73.28 | 89.03 |
HADGEM2 | 2070–2099 | 107.11 | 119.39 | 79.01 | 59.24 | 92.91 | 117.81 | 115.20 | 69.77 | 59.23 | 113.79 |
MIROCESM | 2021–2039 | 137.50 | 166.04 | 106.72 | 96.71 | 152.91 | 121.56 | 165.64 | 119.60 | 107.33 | 118.90 |
MIROCESM | 2040–2069 | 142.42 | 168.80 | 108.35 | 99.80 | 155.33 | 137.31 | 176.96 | 122.46 | 99.13 | 148.58 |
MIROCESM | 2070–2099 | 155.52 | 186.29 | 120.45 | 110.01 | 175.97 | 142.87 | 215.05 | 139.60 | 97.95 | 208.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, H.; Zaman, M.; Liu, S.; Saifullah, M.; Usman, M.; Chauhdary, J.N.; Anjum, M.N.; Waseem, M. Appraisal of Climate Change and Its Impact on Water Resources of Pakistan: A Case Study of Mangla Watershed. Atmosphere 2020, 11, 1071. https://doi.org/10.3390/atmos11101071
Haider H, Zaman M, Liu S, Saifullah M, Usman M, Chauhdary JN, Anjum MN, Waseem M. Appraisal of Climate Change and Its Impact on Water Resources of Pakistan: A Case Study of Mangla Watershed. Atmosphere. 2020; 11(10):1071. https://doi.org/10.3390/atmos11101071
Chicago/Turabian StyleHaider, Haroon, Muhammad Zaman, Shiyin Liu, Muhammad Saifullah, Muhammad Usman, Junaid Nawaz Chauhdary, Muhammad Naveed Anjum, and Muhammad Waseem. 2020. "Appraisal of Climate Change and Its Impact on Water Resources of Pakistan: A Case Study of Mangla Watershed" Atmosphere 11, no. 10: 1071. https://doi.org/10.3390/atmos11101071
APA StyleHaider, H., Zaman, M., Liu, S., Saifullah, M., Usman, M., Chauhdary, J. N., Anjum, M. N., & Waseem, M. (2020). Appraisal of Climate Change and Its Impact on Water Resources of Pakistan: A Case Study of Mangla Watershed. Atmosphere, 11(10), 1071. https://doi.org/10.3390/atmos11101071