PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy
Abstract
:1. Introduction
2. Experiments
Characterizazion of the Sampling Site
3. Results and Discussion
3.1. Meteorological Conditions
3.2. Coal-Fired Power Plant Information
3.3. Chemical Analysis and Relative Source Apportionment
3.3.1. Inorganic Fraction
- ✓
- For the U site, sector #1, Cd 18.6 ng m−3 in autumn, As 6.67 ng m−3 and Ni 62.3 ng m−3 in spring period and 58.7 ng m−3 in summertime;
- ✓
- For the UB site, sector #2, As 9.86 ng m−3 in autumn and Ni 35.0 ng m−3 in summertime.
- ▪
- For U station the highest metal concentration values are recorded in sector #1, downwind the coal-fired power plant, both in the PM10 and in the PM2.5 fraction;
- ▪
- For the UB station the highest levels are, on average, recorded at sector #2, downwind the port area, both in the PM10 fraction and in the PM2.5 fraction.
3.3.2. Organic Fraction
3.4. Chemometric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Maritime Organization. Third IMO GHG Study 2014. Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf (accessed on 16 September 2019).
- Legislative Decree 155/10. Attuazione della direttiva 2008/50/CE relativa alla qualità dell’aria ambiente e per un’aria più pulita in Europa. Gazz. Uff. 2010, 216, 1–111.
- Eyring, V.; Köhler, H.W.; van Ardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. 2005, 110, D17305. [Google Scholar] [CrossRef]
- Song, S. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos. Environ. 2014, 82, 288–297. [Google Scholar] [CrossRef]
- Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Dinoi, A.; Giovanelli, G.; Masieri, S.; Contini, D. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmos. Environ. 2016, 139, 1–10. [Google Scholar] [CrossRef]
- Murena, F.; Mocerino, L.; Quaranta, F.; Toscano, D. Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 2018, 187, 70–83. [Google Scholar] [CrossRef]
- Tzannatos, E. Ship emissions and their externalities for the port of Piraeus-Greece. Atmos. Environ. 2010, 44, 400–407. [Google Scholar] [CrossRef]
- Pérez, N.; Pey, J.; Reche, C.; Joaquim Cortés, J.; Alastuey, A.; Querol, X. Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. Sci. Total Environ. 2016, 571, 237–250. [Google Scholar] [CrossRef]
- Gariazzo, C.; Papaleo, V.; Pelliccioni, A.; Calori, G.; Radice, P.; Tinarelli, G. Application of a Lagrangian particle model to assess the impact of harbour, industrial and urban activities on air quality in the Taranto area, Italy. Atmos. Environ. 2007, 41, 6432–6444. [Google Scholar] [CrossRef]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Adamo, F.; Andria, G.; Cavone, G.; De Capua, C.; Lanzolla, A.; Morello, R.; Spadavecchia, M. Estimation of ship emissions in the port of Taranto. Measurement 2014, 14, 982–988. [Google Scholar] [CrossRef]
- Prati, M.V.; Costagliola, M.A.; Quaranta, F.; Murena, F. Assessment of ambient air quality in the port of Naples. J. Air Waste Manag. 2015, 65, 970–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamoudou, I.; Zhang, F.; Chen, Q.; Wang, P.; Chen, Y. Characteristics of PM2.5 from ship emissions and their impacts on the ambient air: A case study in Yangshan Harbor, Shanghai. Sci. Total Environ. 2018, 640–641, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Ault, A.P.; Moore, M.J.; Furutani, H.; Prather, K.A. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events. Environ. Sci. Technol. 2009, 43, 3500–3506. [Google Scholar] [CrossRef] [PubMed]
- Avino, P.; De Lisio, V.; Grassi, M.; Lucchetta, M.C.; Messina, B.; Monaco, G.; Petraccia, L.; Quartieri, G.; Rosentzwig, R.; Russo, M.V.; et al. Influence of air pollution on chronic obstructive respiratory diseases: Comparison between city (Rome) and hillcountry environments and climates. Ann. Chim. 2004, 94, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Fano, V.; Michelozzi, P.; Ancona, C.; Capon, A.; Forastiere, F.; Perucci, C.A. Occupational and environmental exposures and lung cancer in an industrialised area in Italy. Occup. Environ. Med. 2004, 61, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Iavarone, I.; Comba, P. Cancer risk associated with residential proximity to industrial sites: A review. Arch. Environ. Health 2001, 56, 342–349. [Google Scholar] [CrossRef]
- Fano, V.; Forastiere, F.; Papini, P.; Tancioni, V.; Di Napoli, A.; Perucci, C.A. Mortality and hospital admissions in the industrial area of Civitavecchia, 1997–2004. Epidemiol. Prev. 2006, 30, 221–226. [Google Scholar]
- Ciccone, G.; Forastiere, F.; Agabiti, N.; Biggeri, A.; Bisanti, L.; Chellini, E.; Corbo, G.; Dell’Orco, V.; Dalmasso, P.; Volante, T.F.; et al. Road traffic and adverse respiratory effects in children. SIDRIA Collaborative Group. Occup. Environ. Med. 1998, 55, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, J.; Wichmann, H.E. Traffic related pollutants in Europe and their effect on allergic disease. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 341–348. [Google Scholar] [CrossRef]
- Schwartz, J. Air pollution and children’s health. Pediatrics 2004, 113, 1037–1043. [Google Scholar]
- Febo, A.; Guglielmi, F.; Manigrasso, M.; Ciambottini, V.; Avino, P. Local air pollution and long–range mass transport of atmospheric particulate matter: A comparative study of the temporal evolution of the aerosol size fractions. Atmos. Pollut. Res. 2010, 1, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Febo, A.; Guglielmi, F.; Ciambottini, V.; Avino, P. Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies. Environ. Pollut. 2012, 170, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Merico, E.; Dinoi, A.; Contini, D. Development of an integrated modelling-measurement system for T near-real-time estimates of harbour activity impact to atmospheric pollution in coastal cities. Transp. Res. D-Transp. Environ. 2019, 73, 108–119. [Google Scholar] [CrossRef]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 2019, 650, 2337–2354. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, E. Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmos. Environ. 2008, 42, 8139–8149. [Google Scholar] [CrossRef]
- Cecinato, A.; Guerriero, E.; Balducci, C.; Muto, V. Use of the PAH fingerprints for identifying pollution sources. Urban Clim. 2014, 10, 630–643. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Sicard, P.; Taiwo, A.M.; De Marco, A.; Esmaeili, S.; Rashidi, R. Modeling of particulate matter dispersion from a cement plant: Upwind-downwind case study. J. Environ. Chem. Eng. 2018, 6, 3104–3110. [Google Scholar] [CrossRef]
- Avino, P.; Capannesi, G.; Rosada, A. Heavy metal determination in atmospheric particulate matter by Instrumental Neutron Activation Analysis. Microchem. J. 2008, 88, 97–106. [Google Scholar] [CrossRef]
- Manigrasso, M.; Abballe, F.; Jack, R.F.; Avino, P. Time-resolved measurement of the ionic fraction of atmospheric fine particulate matter. J. Chromatogr. Sci. 2010, 48, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Stabile, L.; Buonanno, G.; Avino, P.; Fuoco, F.C. Dimensional and chemical characterization of airborne particles in schools: Respiratory effects in children. Aerosol Air Qual. Res. 2013, 13, 887–900. [Google Scholar] [CrossRef]
- Alleman, L.Y.; Lamaison, L.; Perdrix, E.; Robache, A.; Galloo, J.C. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 2010, 96, 612–625. [Google Scholar] [CrossRef]
- Martínez, K.; Austrui, J.R.; Jover, E.; Abalos, M.; Rivera, J.; Abad, E. Assessment of the emission of PCDD/Fs and dioxin-like PCBs from an industrial area over a nearby town using a selective wind direction sampling device. Environ. Pollut. 2010, 158, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Venturini, E.; Vassura, I.; Raffo, S.; Ferroni, L.; Bernardi, E.; Passarini, F. Source apportionment and location by selective wind sampling and Positive Matrix Factorization. Environ. Sci. Pollut. Res. 2014, 21, 11634–11648. [Google Scholar] [CrossRef] [PubMed]
- Venturini, E.; Vassura, I.; Passarini, F.; Morselli, L. Source apportionment study based on selective wind direction sampling. Environ. Eng. Manag. J. 2013, 12, 233–236. [Google Scholar]
- Avino, P.; Carconi, P.L.; Lepore, L.; Moauro, A. Nutritional and environmental properties of algal products used in healthy diet by INAA and ICP-AES. J. Radioanal. Nucl. Chem. 2000, 244, 247–252. [Google Scholar] [CrossRef]
- Settimo, G.; Viviano, G. Atmospheric depositions of persistent pollutants: Methodological aspects and values from case studies. Ann. Ist. Super. Sanita 2015, 51, 298–304. [Google Scholar]
- Avino, P.; Manigrasso, M. Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos. Environ. 2008, 42, 4138–4148. [Google Scholar] [CrossRef]
- Avino, P.; Capannesi, G.; Rosada, A. Ultra-trace nutritional and toxicological elements in Rome and Florence drinking waters determined by Instrumental Neutron Activation Analysis. Microchem. J. 2011, 97, 144–153. [Google Scholar] [CrossRef]
- Di Vaio, P.; Magli, E.; Barbato, F.; Caliendo, G.; Cocozziello, B.; Corvino, A.; De Marco, A.; Fiorino, F.; Frecentese, F.; Onorati, G.; et al. Chemical composition of PM10 at urban sites in Naples (Italy). Atmosphere 2016, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, P.; Cocozziello, B.; Corvino, A.; Fiorino, F.; Frecentese, F.; Magli, E.; Onorati, G.; Saccone, I.; Santagada, V.; Settimo, G.; et al. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples. Atmos. Environ. 2016, 129, 186–196. [Google Scholar] [CrossRef]
- Avino, P.; Brocco, D.; Lepore, L.; Pareti, S. Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter. Ann. Chim.-Rome 2003, 93, 589–594. [Google Scholar]
- Manigrasso, M.; Avino, P. Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system. Atmos. Environ. 2002, 51, 116–123. [Google Scholar] [CrossRef]
- Avino, P.; Capannesi, G.; Rosada, A. Characterization and distribution of mineral content in fine and coarse airborne particle fractions by neutron activation analysis. Toxicol. Environ. Chem. 2006, 88, 633–647. [Google Scholar] [CrossRef]
- Avino, P.; Manigrasso, M.; Rosada, A.; Dodaro, A. Measurement of organic and elemental carbon in downtown Rome and background area: Physical behavior and chemical speciation. Environ. Sci. Process. Impacts 2015, 17, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Rojas, N.Y.; Milquez, H.A.; Sarmiento, H. Characterizing priority polycyclic aromatic hydrocarbons (PAH) in particulate matter from diesel and palm oil-based biodiesel B15 combustion. Atmos. Environ. 2011, 45, 6158–6162. [Google Scholar] [CrossRef]
- Yang, X.; Ren, D.; Sun, W.; Li, X.; Huang, B.; Chen, R.; Lin, C.; Pan, X. Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: Distribution, possible sources, and cancer risks. Environ. Sci. Pollut. Res. 2015, 22, 6696–6712. [Google Scholar] [CrossRef]
- Villanueva, F.; Tapia, A.; Cabañas, B.; Martínez, E.; Albaladejo, J. Characterization of particulate polycyclic aromatic hydrocarbons in an urban atmosphere of central-southern Spain. Environ. Sci. Pollut. Res. 2015, 22, 18814–18823. [Google Scholar] [CrossRef]
- Lynam, M.M.; Timothy Dvonch, J.; Turlington, J.M.; Olson, D.; Landis, M.S. Combustion-related organic species in temporally resolved urban airborne particulate matter. Air Qual. Atmos. Hlth. 2017, 10, 917–927. [Google Scholar] [CrossRef]
- Sun, R.-X.; Yang, X.; Li, Q.X.; Wu, Y.-T.; Shao, H.-Y.; Wu, M.-H.; Mai, B.-X. Polycyclic aromatic hydrocarbons in marine organisms from Mischief Reef in the South China sea: Implications for sources and human exposure. Mar. Pollut. Bull. 2019, 149, 110623. [Google Scholar] [CrossRef]
- Wang, C.; Meng, Z.; Yao, P.; Zhang, L.; Wang, Z.; Lv, Y.; Tian, Y.; Feng, Y. Sources-specific carcinogenicity and mutagenicity of PM2.5-bound PAHs in Beijing, China: Variations of contributions under diverse anthropogenic activities. Ecotoxicol. Environ. Saf. 2019, 183, 109552. [Google Scholar] [CrossRef] [PubMed]
- Llamas, A.; Al-Lal, A.-M.; García-Martínez, M.-J.; Ortega, M.F.; Llamas, J.F.; Lapuerta, M.; Canoira, L. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation. Sci. Total Environ. 2017, 586, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Dat, N.-D.; Chang, M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Park, M.-K.; Lee, S.-E.; Go, H.-J.; Cho, B.-C.; Lee, Y.-S.; Choi, S.-D. Impact of traffic volumes on levels, patterns, and toxicity of polycyclic aromatic hydrocarbons in roadside soils. Environ. Sci.-Proc. Imp. 2019, 21, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Gune, M.M.; Ma, W.-L.; Sampath, S.; Li, W.; Li, Y.-F.; Udayashankar, H.N.; Balakrishna, K.; Zhang, Z. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in air and soil surrounding a coal-fired thermal power plant in the south-west coast of India. Environ. Sci. Pollut. Res. 2019, 26, 22772–22782. [Google Scholar] [CrossRef] [PubMed]
- Iakovides, M.; Stephanou, E.G.; Apostolaki, M.; Hadjicharalambous, M.; Evans, J.S.; Koutrakis, P.; Achilleos, S. Study of the occurrence of airborne Polycyclic Aromatic Hydrocarbons associated with respirable particles in two coastal cities at Eastern Mediterranean: Levels, source apportionment, and potential risk for human health. Atmos. Environ. 2019, 213, 170–184. [Google Scholar] [CrossRef]
- Costabile, F.; Alas, H.; Aufderheide, M.; Avino, P.; Amato, F.; Argentini, S.; Barnaba, F.; Berico, M.; Bernardoni, V.; Biondi, R.; et al. First Results of the “Carbonaceous Aerosol in Rome and Environs (CARE)” Experiment: Beyond Current Standards for PM10. Atmosphere 2017, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Shimada, K.; Sugiyama, T.; Sato, K.; Takami, A.; Chan, C.K.; Kim, I.S.; Kim, Y.P.; Lin, N.-H.; Hatakeyama, S. Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Sci. Rep.-UK 2019, 9, 12591. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.M.; Dat, N.D.; Lien, C.K.; Chi, K.H.; Chang, M.B. Characteristics of fine particulate matter and Polycyclic Aromatic Hydrocarbons emitted from coal combustion processes. Energ. Fuels 2019, 33, 10247–10254. [Google Scholar] [CrossRef]
- Sazykin, I.S.; Minkina, T.M.; Grigoryeva, T.V.; Khmelevtsova, L.E.; Sushkova, S.N.; Laikov, A.V.; Antonenko, E.M.; Ismagilova, R.K.; Seliverstova, E.Y.; Mandzhieva, S.S.; et al. PAHs distribution and cultivable PAHs degraders’ biodiversity in soils and surface sediments of the impact zone of the Novocherkassk thermal electric power plant (Russia). Environ. Earth Sci. 2019, 78, 581. [Google Scholar] [CrossRef]
- Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany. Atmos. Chem. Phys. 2013, 13, 3603–3618. [Google Scholar] [CrossRef] [Green Version]
- Czech, H.; Stengel, B.; Adam, T.; Sklorz, M.; Streibel, T.; Zimmermann, R. A chemometric investigation of aromatic emission profiles from a marine engine in comparison with residential wood combustion and road traffic: Implications for source apportionment inside and outside sulphur emission control areas. Atmos. Environ. 2017, 167, 212–222. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wang, T.; Sun, L.; Yang, Z.; Lin, Y.; Chen, Y.; Mao, H. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines under different operating conditions. Chemosphere 2019, 225, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.M.; Oraggio, B.; Teinilä, K.; Custódio, D.; Huang, X.; Hillamo, R.; Alves, C.A.; Balasubramanian, R.; Rojas, N.Y.; Sanchez-Ccoyllo, O.R.; et al. A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo. Air Qual. Atmos. Health 2019, 12, 1141–1152. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S. A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. Int. J. Environ. Res. Public Health 2010, 7, 2903–2939. [Google Scholar] [CrossRef]
- Batterman, S.; Chin, J.-Y.; Jia, C.; Godwin, C.; Parker, E.; Robins, T.; Max, P.; Lewis, T. Sources, concentrations and risks of naphthalene in indoor and outdoor air. Indoor Air 2012, 22, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Zhang, Q.; Wang, P.; Yang, H.; Jiang, G.; Wei, F. Evaluation of atmospheric sources of PCDD/Fs, PCBs and PBDEs around a steel industrial complex in northeast China using passive air samplers. Chemosphere 2011, 84, 957–963. [Google Scholar] [CrossRef]
- Chen, T.; Zhan, M.-X.; Lin, X.-Q.; Fu, J.-Y.; Lu, S.-Y.; Li, X.-D. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China. Environ. Sci. Pollut. Res. 2014, 22, 1207–1214. [Google Scholar] [CrossRef]
- Paradiz, B.; Dilara, P.; Umlauf, G.; Bajsic, I.; Butala, V. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence. Therm. Sci. 2015, 19, 295–304. [Google Scholar] [CrossRef]
- Huber, F.; Herzel, H.; Adam, C.; Mallow, O.; Blasenbauer, D.; Fellner, J. Combined disc pelletisation and thermal treatment of MSWI fly ash. Waste Manag. 2018, 73, 381–391. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, X.; Liao, W.; Kang, S.; Ren, M.; Hai, J. Measurement of dioxin emissions from a small-scale waste incinerator in the absence of air pollution controls. Int. J. Env. Res. Pub. Health 2019, 16, 1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanagra. Available online: https://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html (accessed on 10 October 2019).
- Avino, P.; Capannesi, G.; Manigrasso, M.; Sabbioni, E.; Rosada, A. Element assessment in whole blood, serum and urine of three Italian healthy sub-populations by INAA. Microchem. J. 2011, 99, 548–555. [Google Scholar] [CrossRef]
- Avino, P.; Capannesi, G.; Renzi, L.; Rosada, A. Instrumental neutron activation analysis and statistical approach for determining baseline values of essential and toxic elements in hairs of high school students. Ecotoxicol. Environ. Saf. 2013, 92, 206–214. [Google Scholar] [CrossRef] [PubMed]
Time | Group 2 | Group 3 | Group 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Capacity a | Flow Rate b | TSM c | Capacity a | Flow Rate b | TSM c | Capacity a | Flow Rate b | TSM c | |
June | 550(43) | 1,572,272 | 2.2 | 596(79) | 2,075,928 | 1.8 | 601(99) | 1,909,308 | 1.5 |
July | 591(100) | 1,664,146 | 1.9 | 575(95) | 2,019,210 | 1.8 | 528(100) | 1,745,957 | 1.7 |
August | 576(99) | 1,615,357 | 2.6 | 527(100) | 1,905,924 | 2.1 | 438(100) | 1,527,666 | 1.9 |
September | 594(90) | 1,757,349 | 2.3 | 577(99) | 2,066,819 | 1.4 | 521(87) | 1,768,322 | 1.8 |
October | 551(51) | 1,665,602 | 2.2 | 573(61) | 2,048,259 | 1.2 | 547(100) | 1,891,623 | 1.5 |
November | 605(98) | 1,839,608 | 2.2 | 582(80) | 2,047,368 | 1.2 | 562(99) | 1,929,248 | 1.8 |
December | 616(95) | 1,958,688 | 2.1 | 582(65) | 1,487,230 | 1.3 | 595(100) | 2,023,051 | 1.8 |
January | 590(100) | 1,981,041 | 2.2 | 504(93) | 2,049,992 | 1.6 | 581(90) | 1,969,306 | 1.7 |
February | 500(97) | 1,645,718 | 2.8 | 547(100) | 1,859,879 | 1.6 | 533(64) | 1,812,716 | 2.5 |
Mar | 535(88) | 1,772,537 | 2.7 | 543(99) | 1,825,371 | 1.7 | 445(29) | 1,478,600 | 4.4 |
Compound | PM10 | PM2.5 | ||||
---|---|---|---|---|---|---|
Sector #1 | Sector #2 | Sector #3 | Sector #1 | Sector #2 | Sector #3 | |
Metals (ng m−3) | ||||||
As | 1.73 | 0.310 | 0.076 | 1.27 | 0.210 | 0.114 |
Ba | 6735 | 1852 | 293 | 38.7 | 3.13 | 0.628 |
Be | 0.144 | 0.035 | 0.006 | 0.040 | 0.006 | 0.001 |
Cd | 3.12 | 0.763 | 0.076 | 0.615 | 0.051 | 0.034 |
Co | 0.549 | 0.066 | 0.022 | 0.666 | 0.172 | 0.030 |
Cr | 79.3 | 10.2 | 1.64 | 218 | 31.9 | 3.46 |
Cu | 22.1 | 3.11 | 1.70 | 21.8 | 3.36 | 1.39 |
Mn | 20.2 | 1.65 | 0.725 | 27.7 | 1.53 | 0.445 |
Ni | 22.0 | 2.40 | 0.764 | 32.7 | 6.36 | 1.94 |
Pb | 35.3 | 5.77 | 0.724 | 8.19 | 2.31 | 1.34 |
Sb | 5.75 | 0.311 | 0.091 | 2.95 | 2.94 | 0.437 |
Se | 2.42 | 0.311 | 0.055 | 0.588 | 0.206 | 0.155 |
Sn | 8.81 | 0.856 | 0.438 | 8.90 | 1.58 | 0.594 |
Sr | 17.3 | 5.54 | 1.46 | 18.1 | 0.83 | 0.302 |
Te | 0.031 | 0.001 | 0.001 | 0.017 | 0.013 | 0.000 |
Ti | 16.9 | 2.18 | 0.6223 | 26.06 | 1.455 | 0.360 |
Tl | 0.299 | 0.006 | 0.003 | 0.030 | 0.115 | 0.004 |
V | 15.1 | 0.918 | 0.154 | 6.76 | 5.46 | 1.56 |
Zn | 8138 | 2770 | 387 | 70.9 | 15.6 | 6.64 |
Total Metals (ng m−3) | 15,124 | 4656 | 688 | 484 | 77.2 | 19.4 |
PAHs (ng m−3) | ||||||
Acenaphthene | 4.97 | 0.631 | 0.043 | 26.5 | 3.42 | 2.14 |
Acenaphthylene | 2.24 | 0.563 | 0.024 | 8.78 | 1.74 | 0.115 |
Anthracene | 9.01 | 9.94 | 0.309 | 6.86 | 8.65 | 8.97 |
Benz[a]Anthracene | 1.37 | 0.571 | 0.070 | 0.988 | 2.18 | 0.255 |
Benzo(a)pyrene | 1.13 | 0.031 | 0.006 | 0.153 | 0.108 | 0.078 |
Benzo[b]Fluoranthene | 1.22 | 0.031 | 0.049 | 0.153 | 0.031 | 0.151 |
Benzo[g,h,i]Perylene | 1.50 | 0.031 | 0.066 | 0.274 | 1.08 | 0.127 |
Benzo[j]Fluoranthene | 0.329 | 0.031 | 0.006 | 0.153 | 0.031 | 0.166 |
Benzo[k]Fluoranthene | 0.424 | 0.031 | 0.004 | 0.153 | 0.031 | 0.311 |
Chrysene | 1.62 | 0.464 | 0.077 | 0.863 | 1.31 | 0.253 |
Dibenzo[a,e]Pyrene | 0.153 | 0.031 | 0.004 | 0.249 | 0.031 | 0.004 |
Dibenzo[a,h]Anthracene | 5.11 | 0.031 | 0.004 | 0.280 | 0.031 | 0.065 |
Dibenzo[a,h]Pyrene | 0.153 | 0.031 | 0.004 | 0.153 | 0.031 | 0.004 |
Dibenzo[a,i]Pyrene | 0.153 | 0.031 | 0.004 | 0.153 | 0.031 | 0.004 |
Dibenzo[a,l]Pyrene | 0.153 | 0.041 | 0.004 | 0.153 | 0.031 | 0.004 |
Phenanthrene | 22.0 | 22.3 | 0.165 | 91.2 | 3.85 | 4.76 |
Fluoranthene | 1.48 | 0.040 | 0.325 | 29.7 | 5.48 | 1.1198 |
Fluorene | 11.7 | 1.95 | 0.245 | 54.0 | 9.95 | 1.40 |
Indeno [1,2,3-cd]Pyrene | 1.50 | 0.031 | 0.051 | 0.291 | 0.964 | 0.123 |
Naphthalene | 374 | 44.4 | 0.723 | 2189 | 373 | 45.6 |
Pyrene | 3.43 | 1.07 | 0.087 | 19.0 | 9.22 | 2.30 |
Total PAHs | 64.7 | 36.8 | 1.41 | 221 | 38.0 | 19.9 |
PCCD/Fs (fg m−3) | ||||||
2,3,7,8-TCDD | 1.53 | 0.314 | 0.038 | 1.53 | 0.314 | 0.233 |
1,2,3,7,8-PCDD | 3.99 | 1.51 | 0.038 | 1.53 | 0.604 | 1.25 |
1,2,3,4,7,8-HxCDD | 1.53 | 0.314 | 0.100 | 1.53 | 0.314 | 0.336 |
1,2,3,6,7,8-HxCDD | 13.6 | 0.314 | 0.250 | 1.53 | 0.611 | 0.729 |
1,2,3,7,8,9-HxCDD | 12.6 | 0.314 | 0.143 | 1.53 | 0.544 | 0.793 |
1,2,3,4,6,7,8-HpCDD | 92.7 | 0.886 | 1.14 | 38.1 | 9.47 | 11.4 |
OCDD | 601 | 29.0 | 3.64 | 878 | 694 | 53.7 |
2,3,7,8-TCDF | 27.4 | 1.93 | 0.149 | 24.15 | 5.84 | 8.90 |
1,2,3,7,8-PCDF | 1.53 | 0.314 | 0.344 | 3.11 | 1.86 | 1.39 |
2,3,4,7,8-PCDF | 32.4 | 0.558 | 0.345 | 1.53 | 6.14 | 4.58 |
1,2,3,4,7,8-HxCDF | 27.0 | 0.487 | 0.633 | 3.59 | 2.94 | 4.42 |
1,2,3,6,7,8-HxCDF | 30.7 | 0.314 | 0.636 | 5.30 | 1.16 | 2.76 |
2,3,4,6,7,8-HxCDF | 16.9 | 1.534 | 0.852 | 4.47 | 1.84 | 6.58 |
1,2,3,7,8,9-HxCDF | 4.63 | 0.314 | 0.221 | 1.53 | 0.397 | 0.244 |
1,2,3,4,6,7,8-HpCDF | 79.2 | 4.08 | 2.39 | 26.3 | 6.66 | 15.1 |
1,2,3,4,7,8,9-HpCDF | 10.7 | 0.919 | 0.229 | 1.53 | 1.03 | 1.35 |
OCDF | 264 | 5.13 | 3.32 | 107 | 18.7 | 12.5 |
Total PCCD/Fs | 1221 | 48.2 | 14.5 | 1102 | 752 | 126 |
PCBs (fg m−3) | ||||||
77-CB | 84.5 | 11.2 | 1.09 | 3945 | 439 | 179 |
81-CB | 15.3 | 3.94 | 0.920 | 148 | 49.2 | 20.3 |
105-CB | 804 | 58.7 | 27.3 | 4580 | 2099 | 873 |
114-CB | 28.6 | 7.44 | 0.700 | 323 | 202 | 112 |
118-CB | 10,402 | 1175 | 303 | 40,712 | 7404 | 2843 |
123-CB | 128 | 33.2 | 10.8 | 4041 | 208 | 201 |
126-CB | 15.3 | 9.36 | 0.807 | 29.5 | 12.4 | 4.31 |
156-CB | 2694 | 382 | 68.5 | 10174 | 886 | 153 |
157-CB | 76.4 | 20.6 | 1.88 | 122 | 25.7 | 5.07 |
167-CB | 1043 | 93.5 | 33.9 | 896 | 532 | 44.7 |
169-CB | 15.3 | 9.09 | 0.377 | 15.3 | 3.14 | 4.67 |
189-CB | 535 | 25.1 | 6.26 | 277 | 79.8 | 23.6 |
Total PCBs | 15,841 | 1829 | 456 | 65,263 | 11,940 | 4464 |
Compound | PM10 | PM2.5 | ||||
---|---|---|---|---|---|---|
Sector #1 | Sector #2 | Sector #3 | Sector #1 | Sector #2 | Sector #3 | |
Metals (ng m−3) | ||||||
As | 0.614 | 2.35 | 0.074 | 0.190 | 0.218 | 0.070 |
Ba | 2379 | 6425 | 132 | 2.61 | 7.04 | 0.713 |
Be | 0.046 | 0.137 | 0.004 | 0.003 | 0.012 | 0.001 |
Cd | 0.146 | 0.317 | 0.013 | 0.035 | 0.057 | 0.034 |
Co | 0.067 | 0.216 | 0.017 | 0.092 | 0.172 | 0.022 |
Cr | 3.18 | 12.4 | 0.351 | 26.0 | 98.7 | 2.25 |
Cu | 1.92 | 8.24 | 0.594 | 2.90 | 3.37 | 1.16 |
Mn | 0.797 | 2.38 | 0.493 | 1.91 | 5.40 | 0.175 |
Ni | 3.22 | 4.97 | 0.294 | 3.33 | 6.75 | 0.734 |
Pb | 1.56 | 4.68 | 0.243 | 1.31 | 1.93 | 1.22 |
Sb | 0.122 | 2.95 | 0.047 | 0.270 | 0.667 | 0.96 |
Se | 0.253 | 1.02 | 0.047 | 0.145 | 0.143 | 0.086 |
Sn | 1.80 | 16.1 | 0.409 | 3.04 | 4.73 | 1.27 |
Sr | 2.88 | 24.8 | 1.19 | 1.47 | 3.09 | 0.100 |
Te | 0.010 | 0.007 | 0.001 | 0.003 | 0.007 | 0.000 |
Ti | 0.763 | 3.40 | 0.340 | 1.01 | 3.09 | 0.215 |
Tl | 0.020 | 0.017 | 0.000 | 0.010 | 0.010 | 0.013 |
V | 0.327 | 0.843 | 0.096 | 1.95 | 1.34 | 0.792 |
Zn | 2873 | 9581 | 283 | 8.96 | 19.3 | 2.90 |
Total Metals | 5270 | 16,091 | 420 | 55.2 | 156 | 12.7 |
PAHs (ng m−3) | ||||||
Acenaphthene | 0.598 | 2.04 | 0.017 | 1.23 | 7.27 | 1.23 |
Acenaphthylene | 0.063 | 0.918 | 0.006 | 0.333 | 5.34 | 0.056 |
Anthracene | 1.23 | 2.46 | 0.061 | 1.15 | 6.82 | 0.301 |
Benz[a]Anthracene | 0.242 | 720 | 0.004 | 1.76 | 0.958 | 0.115 |
Benzo(a)pyrene | 0.017 | 0.142 | 0.003 | 0.132 | 1.51 | 0.031 |
Benzo[b]Fluoranthene | 0.017 | 16.1 | 0.005 | 0.412 | 0.728 | 0.152 |
Benzo[g,h,i]Perylene | 0.017 | 0.107 | 0.003 | 0.512 | 1.08 | 0.104 |
Benzo[j]Fluoranthene | 0.017 | 0.124 | 0.002 | 0.038 | 0.182 | 0.089 |
Benzo[k]Fluoranthene | 0.017 | 0.068 | 0.004 | 0.025 | 0.189 | 0.065 |
Chrysene | 0.188 | 0.124 | 0.005 | 1.19 | 3.38 | 0.327 |
Dibenzo[a,e]Pyrene | 0.017 | 0.068 | 0.002 | 0.017 | 0.094 | 0.044 |
Dibenzo[a,h]Anthracene | 0.017 | 0.068 | 0.002 | 0.017 | 0.068 | 0.029 |
Dibenzo[a,h]Pyrene | 0.017 | 0.068 | 0.002 | 0.017 | 0.068 | 0.002 |
Dibenzo[a,i]Pyrene | 0.017 | 0.068 | 0.002 | 0.017 | 0.068 | 0.002 |
Dibenzo[a,l]Pyrene | 0.017 | 0.068 | 0.002 | 0.017 | 0.068 | 0.047 |
Phenanthrene | 0.727 | 0.958 | 0.038 | 12.3 | 22.6 | 10.4 |
Fluoranthene | 1.02 | 2.22 | 0.057 | 5.83 | 13.9 | 5.05 |
Fluorene | 1.15 | 8.70 | 0.073 | 1.94 | 9.35 | 2.86 |
Indeno[1,2,3-cd]Pyrene | 0.017 | 0.104 | 0.004 | 0.340 | 0.739 | 0.066 |
Naphthalene | 1.43 | 4.81 | 0.119 | 188 | 910 | 23.4 |
Pyrene | 0.783 | 1.78 | 0.043 | 3.15 | 7.24 | 3.54 |
Total PAHs | 5.39 | 754 | 0.288 | 27.0 | 73.7 | 20.9 |
PCCD/Fs (fg m−3) | ||||||
2,3,7,8-TCDD | 0.167 | 2.56 | 0.022 | 0.304 | 0.925 | 0.114 |
1,2,3,7,8-PCDD | 1.07 | 5.34 | 0.067 | 0.167 | 80.7 | 1.38 |
1,2,3,4,7,8-HxCDD | 0.381 | 6.07 | 0.037 | 0.656 | 0.685 | 1.23 |
1,2,3,6,7,8-HxCDD | 0.435 | 12.2 | 0.081 | 0.975 | 1.47 | 4.65 |
1,2,3,7,8,9-HxCDD | 0.395 | 11.1 | 0.095 | 0.353 | 0.685 | 4.56 |
1,2,3,4,6,7,8-HpCDD | 2.45 | 94.7 | 1.70 | 6.85 | 15.2 | 38.8 |
OCDD | 14.3 | 261 | 4.16 | 19.8 | 106 | 79.4 |
2,3,7,8-TCDF | 2.01 | 18.3 | 1.23 | 5.95 | 7.29 | 8.85 |
1,2,3,7,8-PCDF | 0.851 | 8.74 | 0.071 | 0.937 | 2.45 | 4.94 |
2,3,4,7,8-PCDF | 1.34 | 26.4 | 0.479 | 2.43 | 10.1 | 10.6 |
1,2,3,4,7,8-HxCDF | 1.07 | 37.6 | 0.330 | 2.40 | 5.69 | 14.6 |
1,2,3,6,7,8-HxCDF | 0.696 | 30.3 | 0.321 | 1.51 | 4.66 | 10.9 |
2,3,4,6,7,8-HxCDF | 0.943 | 54.8 | 0.783 | 1.84 | 3.50 | 17.9 |
1,2,3,7,8,9-HxCDF | 0.505 | 7.30 | 0.056 | 0.296 | 1.18 | 4.38 |
1,2,3,4,6,7,8-HpCDF | 4.32 | 237 | 2.22 | 11.6 | 14.8 | 79.0 |
1,2,3,4,7,8,9-HpCDF | 1.19 | 9.13 | 0.103 | 0.610 | 2.11 | 9.51 |
OCDF | 8.12 | 175 | 3.13 | 9.91 | 17.2 | 101 |
Total PCCD/Fs | 40.3 | 997 | 14.9 | 66.6 | 275 | 392 |
PCBs (fg m−3) | ||||||
77-CB | 19.2 | 28.8 | 0.580 | 1033 | 3752 | 166 |
81-CB | 3.92 | 6.85 | 0.217 | 92.9 | 85.3 | 7.29 |
105-CB | 101 | 555 | 26.0 | 1729 | 6340 | 249 |
114-CB | 1.46 | 7.58 | 0.535 | 92.3 | 580 | 11.8 |
118-CB | 1421 | 4444 | 191 | 7023 | 26,709 | 1192 |
123-CB | 12.5 | 28.8 | 1.10 | 164 | 1826 | 22.0 |
126-CB | 1.67 | 6.85 | 0.217 | 14.9 | 6.85 | 2.01 |
156-CB | 666 | 1750 | 68.3 | 453 | 2606 | 104 |
157-CB | 19.8 | 34.2 | 2.10 | 8.36 | 34.2 | 1.10 |
167-CB | 276 | 630 | 22.7 | 287 | 1103 | 62.4 |
169-CB | 1.67 | 6.85 | 0.217 | 1.67 | 6.85 | 1.48 |
189-CB | 53.4 | 184 | 2.21 | 13.7 | 84.9 | 7.04 |
Total PCBs | 2578 | 7683 | 315 | 10,912 | 43,134 | 1826 |
Urban (U) | Urban Background (UB) | |||||
---|---|---|---|---|---|---|
Inorganic Fraction | ||||||
PM10 vs. PM2.5 | PM10 vs. PM2.5 | |||||
#1 | #2 | #3 | #1 | #2 | #3 | |
Metals | 0.223 | 0.296 | 0.652 | 0.187 | 0.096 | 0.616 |
PM10 | PM2.5 | |||||
#1 vs. #2 | #1 vs. #3 | #2 vs. #3 | #1 vs. #2 | #1 vs. #3 | #2 vs. #3 | |
Metals | 0.994 | 0.999 | 0.998 | 0.994 | 0.964 | 0.987 |
Metals | 0.963 | 0.616 | 0.754 | 0.985 | 0.716 | 0.605 |
Organic Fraction | ||||||
PM10 vs. PM2.5 | PM10 vs. PM2.5 | |||||
#1 | #2 | #3 | #1 | #2 | #3 | |
PAHs | 0.999 | 0.880 | 0.881 | 0.533 | −0.049 | 0.813 |
PCCD/Fs | 0.951 | 0.984 | 0.820 | 0.941 | 0.523 | 0.928 |
PCBs | 0.986 | 0.945 | 0.949 | 0.878 | 0.927 | 0.945 |
All Data | 0.987 | 0.952 | 0.956 | 0.896 | 0.925 | 0.948 |
PM10 | PM2.5 | |||||
#1 vs. #2 | #1 vs. #3 | #2 vs. #3 | #1 vs. #2 | #1 vs. #3 | #2 vs. #3 | |
PAHs | 0.901 | 0.834 | 0.837 | −0.050 | 0.953 | −0.120 |
PCCD/Fs | 0.958 | 0.869 | 0.755 | 0.875 | 0.946 | 0.936 |
PCBs | 0.996 | 0.993 | 0.993 | 0.995 | 0.999 | 0.999 |
All Data | 0.996 | 0.997 | 0.993 | 0.982 | 0.991 | 0.987 |
PM2.5 | PM2.5 | |||||
#1 vs. #2 | #1 vs. #3 | #2 vs. #3 | #1 vs. #2 | #1 vs. #3 | #2 vs. #3 | |
PAHs | 0.999 | 0.980 | 0.981 | 0.999 | 0.917 | 0.900 |
PCCD/Fs | 0.985 | 0.955 | 0.975 | 0.614 | 0.872 | 0.401 |
PCBs | 0.969 | 0.995 | 0.995 | 0.998 | 0.998 | 0.998 |
All Data | 0.973 | 0.962 | 0.995 | 0.998 | 0.992 | 0.990 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soggiu, M.E.; Inglessis, M.; Gagliardi, R.V.; Settimo, G.; Marsili, G.; Notardonato, I.; Avino, P. PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy. Atmosphere 2020, 11, 94. https://doi.org/10.3390/atmos11010094
Soggiu ME, Inglessis M, Gagliardi RV, Settimo G, Marsili G, Notardonato I, Avino P. PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy. Atmosphere. 2020; 11(1):94. https://doi.org/10.3390/atmos11010094
Chicago/Turabian StyleSoggiu, Maria Eleonora, Marco Inglessis, Roberta Valentina Gagliardi, Gaetano Settimo, Giovanni Marsili, Ivan Notardonato, and Pasquale Avino. 2020. "PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy" Atmosphere 11, no. 1: 94. https://doi.org/10.3390/atmos11010094
APA StyleSoggiu, M. E., Inglessis, M., Gagliardi, R. V., Settimo, G., Marsili, G., Notardonato, I., & Avino, P. (2020). PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy. Atmosphere, 11(1), 94. https://doi.org/10.3390/atmos11010094