UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data
Abstract
:1. Introduction
2. Methodology
2.1. The Region of Interest
2.2. Ground Measurements
2.3. Satellite-Derived UVI from OMI Aura
2.4. Three-Dimensional Regional Air Quality Model
2.5. UV Index Determination
3. Results
3.1. Obtaining the Contributions of UVA and UVB to GHI
3.2. Developing a UVI Model Using the Broadband UVA and UVB Irradiances
3.3. A Model to Forecast UVA and UVB
3.4. Model Evaluation
3.5. Model Performance during Two Extremely Dusty Days in Doha
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Norval, M.; Cullen, A.P.; De Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; Lucas, R.M.; Noonan, F.P.; Van Der Leun, J.C. The Effects on Human Health from Stratospheric Ozone Depletion and Its Interactions with Climate Change. Photochem. Photobiol. Sci. 2007, 6, 232–251. [Google Scholar] [CrossRef]
- Juzeniene, A.; Moan, J. Beneficial Effects of UV Radiation Other than via Vitamin D Production. Derm.-Endocrinol. 2012, 4, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Diffey, B.L. Ultraviolet Radiation Physics and the Skin. Phys. Med. Biol. 1980, 25, 405–426. [Google Scholar] [CrossRef]
- Zegarska, B.; Pietkun, K.; Zegarski, W.; Bolibok, P.; Wisniewski, M.; Roszek, K.; Czarnecka, J.; Nowacki, M. Air Pollution, UV Irradiation and Skin Carcinogenesis: What We Know, Where We Stand and What Is Likely to Happen in the Future? Adv. Dermatol. Allergol. 2017, 34, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Young, A.R. Acute Effects of UVR on Human Eyes and Skin. Prog. Biophys. Mol. Biol. 2006, 92, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef] [PubMed]
- Fountoukis, C.; Martín-Pomares, L.; Perez-Astudillo, D.; Bachour, D.; Gladich, I. Simulating Global Horizontal Irradiance in the Arabian Peninsula: Sensitivity to Explicit Treatment of Aerosols. Sol. Energy 2018, 163, 347–355. [Google Scholar] [CrossRef]
- Lindfors, A.V.; Kujanpää, J.; Kalakoski, N.; Heikkilä, A.; Lakkala, K.; Mielonen, T.; Sneep, M.; Krotkov, N.A.; Arola, A.; Tamminen, J. The TROPOMI Surface UV Algorithm. Atmos. Meas. Tech. 2018, 11, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; Di Sarra, A.; Villaplana, J.M.; Brogniez, C.; et al. A New Approach to Correct for Absorbing Aerosols in OMI UV. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Weatherhead, B.; Tanskanen, A.; Stevermer, A.; Andersen, S.B.; Arola, A.; Austin, J.; Bernhard, G.; Browman, H.; Fioletov, V.; Herman, J.; et al. Chapter 5: Ozone and Ultraviolet Radiation. In Arctic Climate Impact Assessment Report; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Lenoble, J. Modeling of the Influence of Snow Reflectance on Ultraviolet Irradiance for Cloudless Sky. Appl. Opt. 1998, 37, 2441–2447. [Google Scholar] [CrossRef] [PubMed]
- Kylling, A.; Bais, A.F.; Blumthaler, M.; Schreder, J.; Zerefos, C.S.; Kosmidis, E. Effect of Aerosols on Solar UV Irradiances during the Photochemical Activity and Solar Ultraviolet Radiation Campaign. J. Geophys. Res. Atmos. 1998, 103, 26051–26060. [Google Scholar] [CrossRef]
- Kazadzis, S.; Bais, A.; Balis, D.; Kouremeti, N.; Zempila, M.; Arola, A.; Giannakaki, E.; Amiridis, V.; Kazantzidis, A. Spatial and Temporal UV Irradiance and Aerosol Variability within the Area of an OMI Satellite Pixel. Atmos. Chem. Phys. 2009, 9, 4593–4601. [Google Scholar] [CrossRef] [Green Version]
- Damiani, A.; Cabrera, S.; Muñoz, R.C.; Cordero, R.R.; Labbe, F. Satellite-Derived UV Irradiance for a Region with Complex Morphology and Meteorology: Comparison against Ground Measurements in Santiago de Chile. Int. J. Remote Sens. 2013, 34, 5812–5833. [Google Scholar] [CrossRef]
- Cabrera, S.; Ipiña, A.; Damiani, A.; Cordero, R.R.; Piacentini, R.D. UV Index Values and Trends in Santiago, Chile (33.5 °S) Based on Ground and Satellite Data. J. Photochem. Photobiol. B Biol. 2012, 115, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Cordero, R.R.; Seckmeyer, G.; Damiani, A.; Jorquera, J.; Carrasco, J.; Muñoz, R.; Da Silva, L.; Labbe, F.; Laroze, D. Aerosol Effects on the UV Irradiance in Santiago de Chile. Atmos. Res. 2014, 149, 282–291. [Google Scholar] [CrossRef]
- Deng, X.J.; Zhou, X.J.; Tie, X.X.; Wu, D.; Li, F.; Tan, H.B.; Deng, T. Attenuation of Ultraviolet Radiation Reaching the Surface Due to Atmospheric Aerosols in Guangzhou. Chin. Sci. Bull. Atmos. Sci. 2012, 57, 2759–2766. [Google Scholar] [CrossRef] [Green Version]
- Tereszchuk, K.A.; Rochon, Y.J.; McLinden, C.A.; Vaillancourt, P.A. Optimizing UV Index Determination from Broadband Irradiances. Geosci. Model Dev. 2018, 11, 1093–1113. [Google Scholar] [CrossRef] [Green Version]
- Badarinath, K.V.S.; Kharol, S.K.; Kaskaoutis, D.G.; Kambezidis, H.D. Influence of Atmospheric Aerosols on Solar Spectral Irradiance in an Urban Area. J. Atmos. Sol.-Terr. Phys. 2007, 69, 589–599. [Google Scholar] [CrossRef]
- Staiger, H.; Meteorological, G.; Dwd, S. Scientific Challenges of UV-B Forecasting. In Proceedings of the Seminar on Global Earth-System Monitoring, Reading, UK, 5–9 September 2005. [Google Scholar]
- Roshan, D.R.; Koc, M.; Isaifan, R.; Shahid, M.Z.; Fountoukis, C. Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula-Speciation, Variability, and Distributions. Atmosphere 2019, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Ackermann, L.; Ayoub, M.A.; Gladich, I.; Hoehn, R.D.; Skillern, A. Impact of Atmospheric Dust Emission Schemes on Dust Production and Concentration over the Arabian Peninsula. Model. Earth Syst. Environ. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Planning and Statistics Authority. Monthly Figures on Total Population. Available online: https://www.psa.gov.qa/en/statistics1/StatisticsSite/Pages/Population.aspx (accessed on 6 November 2019).
- Rao, P.G.; Al-Sulaiti, M.; Al-Mulla, A.H. Winter Shamals in Qatar, Arabian Gulf. Weather 2001, 56, 444–451. [Google Scholar] [CrossRef]
- Al-Mostafa, Z.A.; Elminir, H.K.; Abulwfa, A.; Al-Shehri, S.M.; Alshehri, F.A.; Al-Rougy, I.M.; Bazyad, A.A. Evaluation of Erythemal Ultraviolet Solar Radiation over Saudi Arabia. Sol. Energy 2015, 113, 258–271. [Google Scholar] [CrossRef]
- Weather and Climate. Average Monthly Hours of Sunshine in Doha. Available online: https://weather-and-climate.com/average-monthly-hours-Sunshine,doha,Qatar (accessed on 6 November 2019).
- Aïssa, B.; Isaifan, R.J.; Madhavan, V.E.; Abdallah, A.A. Structural and Physical Properties of the Dust Particles in Qatar and Their Influence on the PV Panel Performance. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perez-Astudillo, D.; Bachour, D. DNI, GHI and DHI Ground Measurements in Doha, Qatar. Energy Procedia 2014, 49, 2398–2404. [Google Scholar] [CrossRef] [Green Version]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Zweers, D.C.S.; Duncan, B.N.; Streets, D.G.; Eskes, H.; Van Der, R.A.; et al. The Ozone Monitoring Instrument: Overview of 14 Years in Space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef] [Green Version]
- Schoeberl, M.R.; Douglass, A.R.; Hilsenrath, E.; Bhartia, P.K.; Beer, R.; Waters, J.W.; Gunson, M.R.; Froidevaux, L.; Gille, J.C.; Barnett, J.J.; et al. Overview of the EOS Aura Mission. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1066–1072. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.P.; Bhattarai, B.K.; Sapkota, B.; Kjeldstad, B. Comparison of Ground Based Measurements of Solar UV Index with Satellite Estimation at Four Sites of Nepal. J. Inst. Eng. 2012, 8, 58–71. [Google Scholar] [CrossRef]
- Pitkänen, M.R.A.; Arola, A.; Lakkala, K.; Koskela, T.; Lindfors, A.V. Comparing OMI UV Index to Ground-Based Measurements at Two Finnish Sites with Focus on Cloud-Free and Overcast Conditions. Atmos. Meas. Tech. Discuss. 2015, 8, 487–516. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Fasnacht, Z.; Haffner, D.; Vasilkov, A.; Joiner, J.; Krotkov, N.; Fisher, B.; Spurr, R. A Geometry-Dependent Surface Lambertian-Equivalent Reflectivity Product for UV/Vis Retrievals—Part 1. Evaluation over Land Surfaces Using Measurements from OMI at 466 Nm. Atmos. Meas. Tech. 2019, 12, 3997–4017. [Google Scholar] [CrossRef] [Green Version]
- Antón, M.; Valenzuela, A.; Romn, R.; Lyamani, H.; Krotkov, N.; Arola, A.; Olmo, F.J.; Alados-Arboledas, L. Influence of Desert Dust Intrusions on Ground-Based and Satellite-Derived Ultraviolet Irradiance in Southeastern Spain. J. Geophys. Res. 2012, 117, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.; Deland, M.T.; Huang, L.K.; Labow, G.; Larko, D.; Lloyd, S.A.; Mao, J.; Qin, W.; Weaver, C. A Net Decrease in the Earth’s Cloud, Aerosol, and Surface 340 Nm Reflectivity during the Past 33 Yr (1979–2011). Atmos. Chem. Phys. 2013, 13, 8505–8524. [Google Scholar] [CrossRef] [Green Version]
- O’Byrne, G.; Martin, R.V.; Van Donkelaar, A.; Joiner, J.; Celarier, E.A. Surface Reflectivity from the Ozone Monitoring Instrument Using the Moderate Resolution Imaging Spectroradiometer to Eliminate Clouds: Effects of Snow on Ultraviolet and Visible Trace Gas Retrievals. J. Geophys. Res. 2010, 115, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.M.; Bencherif, H.; Portafaix, T.; Lamy, K.; Ncongwane, K.; Coetzee, G.J.R.; Wright, C.Y. Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites. Int. J. Environ. Res. Public Health 2017, 14, 1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and Distributions of the Dust Aerosols Simulated with the GOCART Model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Geiger, H.; Barnes, I.; Bejan, I.; Benter, T.; Spittler, M. The Tropospheric Degradation of Isoprene: An Updated Module for the Regional Atmospheric Chemistry Mechanism. Atmos. Environ. 2003, 37, 1503–1519. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the Atmospheric Dust Cycle: 1. Design of a Soil-Derived Dust Emission Scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.F. A Scaling Theory for the Size Distribution of Emitted Dust Aerosols Suggests Climate Models Underestimate the Size of the Global Dust Cycle. Proc. Natl. Acad. Sci. USA 2011, 108, 1016–1021. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Report on the WMO-WHO Meeting of Expert on Standardization of UV Indices and Their Dissemination to the Public; WMO: Les Diablerets, Switzerland, 1998; Volume 127. [Google Scholar]
- World Health Organization. World Meteorological Organization, United Nations Environment Programme & International Commission on Non-Ionizing Radiation Protection. In Global Solar UV Index: A Practical Guide; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Pashiardis, S.; Kalogirou, S.; Pelengaris, A. Statistical Analysis and Inter- Comparison of Solar UV and Global Radiation for Athalassa and Larnaca, Cyprus. SM J. Biom. Biostat. 2017, 2, 1020. [Google Scholar]
- Barbero, F.J.; López, G.; Batlles, F.J. Determination of Daily Solar Ultraviolet Radiation Using Statistical Models and Artificial Neural Networks. Ann. Geophys. 2006, 24, 2105–2114. [Google Scholar] [CrossRef] [Green Version]
- Hovila, J.; Arola, A.; Tamminen, J. OMUVB: OMI/Aura Surface UV Irradiance 1-orbit L2 Swath 13x24 km V003. Available online: https://disc.gsfc.nasa.gov/datasets/OMUVB_V003/summary (accessed on 3 September 2019). [CrossRef]
- Tsiouri, V.; Kakosimos, K.E. Concentrations, Sources and Exposure Risks Associated with Particulate Matter in the Middle East Area—A Review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The Impact of Dust Storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Kalenderski, S.; Stenchikov, G.; Zhou, C. Modeling a Typical Winter-Time Dust Event over the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2013, 13, 1999–2014. [Google Scholar] [CrossRef] [Green Version]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Podrascanin, Z.; Atlagic, M.; Mijatovic, Z.; Sremac, A.F. Uv Index Forecasting in Vojvodina Region. RAD Conf. Proc. 2018, 3, 187–190. [Google Scholar] [CrossRef]
- GIOVANNI, NASA. Available online: https://giovanni.gsfc.nasa.gov/giovanni (accessed on 21 May 2019).
GHI (W/m2) | UVA (W/m2) | UVB (W/m2) | UVA/GHI | UVB/GHI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Month | Local Noon | 05:00–06:00 | Local Noon | 05:00–06:00 | Local Noon | 05:00–06:00 | Local Noon | 05:00–06:00 | Local Noon | 05:00–06:00 |
Jan | 642 | 382 | 35 | 20 | 0.9 | 0.5 | 5.49% | 5.24% | 0.15% | 0.13% |
Feb | 749 | 451 | 42 | 24 | 1.2 | 0.6 | 5.56% | 5.39% | 0.17% | 0.14% |
Mar | 824 | 531 | 46 | 29 | 1.5 | 0.8 | 5.61% | 5.41% | 0.18% | 0.15% |
Apr | 883 | 597 | 48 | 32 | 1.7 | 1.0 | 5.49% | 5.31% | 0.19% | 0.16% |
May | 927 | 653 | 50 | 34 | 1.8 | 1.1 | 5.37% | 5.21% | 0.20% | 0.17% |
Jun | 969 | 703 | 52 | 37 | 1.9 | 1.2 | 5.35% | 5.20% | 0.20% | 0.17% |
Jul | 931 | 658 | 50 | 34 | 1.9 | 1.1 | 5.41% | 5.21% | 0.20% | 0.17% |
Aug | 910 | 629 | 49 | 33 | 1.8 | 1.1 | 5.40% | 5.25% | 0.20% | 0.17% |
Sep | 861 | 579 | 46 | 30 | 1.6 | 0.9 | 5.33% | 5.18% | 0.19% | 0.16% |
Oct | 764 | 500 | 40 | 26 | 1.3 | 0.8 | 5.29% | 5.17% | 0.18% | 0.15% |
Nov | 619 | 390 | 33 | 21 | 1.0 | 0.6 | 5.43% | 5.30% | 0.16% | 0.14% |
Dec | 617 | 369 | 32 | 19 | 0.9 | 0.5 | 5.21% | 5.06% | 0.15% | 0.13% |
OMI Satellite Clear-Sky UVI Compared with | MBE (Bias) | MAPE % | RMSE | R |
---|---|---|---|---|
Day-1 model forecasted UVI values | −0.06 | 5.6% | 0.75 | 0.93 |
Day-2 model forecasted UVI values | −0.11 | 5.7% | 0.80 | 0.92 |
Day-3 model forecasted UVI values | −0.10 | 5.8% | 0.77 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshan, D.R.; Koc, M.; Abdallah, A.; Martin-Pomares, L.; Isaifan, R.; Fountoukis, C. UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data. Atmosphere 2020, 11, 96. https://doi.org/10.3390/atmos11010096
Roshan DR, Koc M, Abdallah A, Martin-Pomares L, Isaifan R, Fountoukis C. UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data. Atmosphere. 2020; 11(1):96. https://doi.org/10.3390/atmos11010096
Chicago/Turabian StyleRoshan, Dillan Raymond, Muammer Koc, Amir Abdallah, Luis Martin-Pomares, Rima Isaifan, and Christos Fountoukis. 2020. "UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data" Atmosphere 11, no. 1: 96. https://doi.org/10.3390/atmos11010096
APA StyleRoshan, D. R., Koc, M., Abdallah, A., Martin-Pomares, L., Isaifan, R., & Fountoukis, C. (2020). UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data. Atmosphere, 11(1), 96. https://doi.org/10.3390/atmos11010096