Evidence for Rayleigh-Taylor Plasma Instability at the Front of Solar Coronal Mass Ejections
Abstract
1. Introduction
2. Observations
3. Analysis and Results
3.1. Wavelet Amplitude Spectrum
3.2. Amplitude Hovmöller
3.3. Wavelet Coherence
4. Discussion
5. Interpretation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Webb, D.F. Coronal mass ejections: The key to major interplanetary and geomagnetic disturbances. Rev. Geophys. 1995, 33, 577–583. [Google Scholar] [CrossRef]
- Sheeley, N.R., Jr.; Walters, J.H.; Wang, Y.M.; Howard, R.A. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J. Geophys. Res. Space Phys. 1999, 104, 24739–24767. [Google Scholar] [CrossRef]
- Aschwanden, M.J.; Caspi, A.; Cohen, C.M.S.; Holman, G.; Jing, J.; Kretzschmar, M.; Kontar, E.P.; McTiernan, J.M.; Mewaldt, R.A.; O’Flannagain, A.; et al. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections. Astrophys. J. 2017, 836, 17. [Google Scholar] [CrossRef]
- Raymond, J.C.; Thompson, B.J.; St. Cyr, O.C.; Gopalswamy, N.; Kahler, S.; Kaiser, M.; Lara, A.; Ciaravella, A.; Romoli, M.; O’Neal, R. SOHO and radio observations of a CME shock wave. Geophys. Res. Lett. 2000, 27, 1439–1442. [Google Scholar] [CrossRef]
- Mancuso, S.; Raymond, J.C.; Kohl, J.; Ko, Y.-K.; Uzzo, M.; Wu, R. UVCS/SOHO observations of a CME-driven shock: Consequences on ion heating mechanisms behind a coronal shock. A&A 2002, 383, 267–274. [Google Scholar] [CrossRef][Green Version]
- Korreck, K.E.; Zurbuchen, T.H.; Lepri, S.T.; Raines, J.M. Heating of Heavy Ions by Interplanetary Coronal Mass Ejection Driven Collisionless Shocks. Astrophys. J. 2007, 659, 773–779. [Google Scholar] [CrossRef]
- Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 1999, 90. [Google Scholar] [CrossRef]
- Chrysaphi, N.; Kontar, E.P.; Holman, G.D.; Temmer, M. CME-driven Shock and Type II Solar Radio Burst Band Splitting. Astrophys. J. 2018, 868, 79. [Google Scholar] [CrossRef]
- Zucca, P.; Morosan, D.E.; Rouillard, A.P.; Fallows, R.; Gallagher, P.T.; Magdalenic, J.; Klein, K.-L.; Mann, G.; Vocks, C.; Carley, E.P.; et al. Shock location and CME 3D reconstruction of a solar type II radio burst with LOFAR. A&A 2018, 615, A89. [Google Scholar] [CrossRef]
- Attrill, G.D.R.; Harra, L.K.; van Driel-Gesztelyi, L.; Démoulin, P. Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? Astrophys. J. 2007, 656, L101–L104. [Google Scholar] [CrossRef]
- Van Driel-Gesztelyi, P.; Démoulin, J.L.; Culhane, S.A.; Matthews, L.K.; Harra, C.H.; Mandrini, K.L.; Klein, H.; Kurokawa, C.P.G.L. A Multiple Flare Scenario where the Classic Long-Duration Flare Was Not the Source of a CME. Sol. Phys. 2007, 240. [Google Scholar] [CrossRef]
- Bemporad, A.; Soenen, A.; Jacobs, C.; Landini, F.; Poedts, S. SIDE Magnetic Reconnections Induced by Coronal Mass Ejections: Observations and Simulations. Astrophys. J. 2010, 718, 251–265. [Google Scholar] [CrossRef]
- Low, B.C. Coronal mass ejections, magnetic flux ropes, and solar magnetism. J. Geophys. Res. Space Phys. 2001, 106, 25141–25163. [Google Scholar] [CrossRef]
- Foullon, C.; Verwichte, E.; Nakariakov, V.M.; Nykyri, K.; Farrugia, C.J. Magnetic kelvin-helmholtz instability at the sun. Astrophys. J. 2011, 729, L8. [Google Scholar] [CrossRef]
- Ofman, L.; Thompson, B.J. Sdo/aia observation of kelvin–helmholtz instability in the solar corona. Astrophys. J. 2011, 734, L11. [Google Scholar] [CrossRef]
- Domingo, V.; Fleck, B.; Poland, A.I. The SOHO Mission, 1st ed.; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Brueckner, G.E.; Howard, R.A.; Koomen, M.J.; Korendyke, C.M.; Michels, D.J.; Moses, J.D.; Socker, D.G.; Dere, K.P.; Lamy, P.L.; Llebaria, A.; et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 1995, 162. [Google Scholar] [CrossRef]
- De Moortel, I.; Ireland, J.; Walsh, R. Observation of oscillations in coronal loops. A&A 2000, 355, L23–L26. [Google Scholar]
- Morgan, H.; Habbal, S.R.; Li, X. Hydrogen Lyα Intensity Oscillations Observed by theSolar and Heliospheric ObservatoryUltraviolet Coronagraph Spectrometer. Astrophys. J. 2004, 605, 521–527. [Google Scholar] [CrossRef]
- Bloomfield, D.S.; McAteer, R.T.J.; Lites, B.W.; Judge, P.G.; Mathioudakis, M.; Keenan, F.P. Wavelet Phase Coherence Analysis: Application to a Quiet-Sun Magnetic Element. Astrophys. J. 2004, 617, 623–632. [Google Scholar] [CrossRef]
- Telloni, D.; Bruno, R.; D’Amicis, R.; Pietropaolo, E.; Carbone, V. Wavelet analysis as a tool to localize magnetic and cross-helicity events in the solar wind. Astrophys. J. 2012, 751, 19. [Google Scholar] [CrossRef]
- Telloni, D.; Perri, S.; Bruno, R.; Carbone, V.; Amicis, R.D. An analysis of magnetohydrodynamic invariants of magnetic fluctuations within interplanetary flux ropes. Astrophys. J. 2013, 776, 3. [Google Scholar] [CrossRef]
- Bemporad, A.; Matthaeus, W.H.; Poletto, G. Low-Frequency Lyα Power Spectra Observed by UVCS in a Polar Coronal Hole. Astrophys. J. 2008, 677, L137–L140. [Google Scholar] [CrossRef]
- Telloni, D.; Bruno, R.; Carbone, V.; Antonucci, E.; D’Amicis, R. Statistics of density fluctuations during the transition from the outer solar corona to the interplanetary space. Astrophys. J. 2009, 706, 238–243. [Google Scholar] [CrossRef]
- Dolla, L.; Marqué, C.; Seaton, D.B.; Doorsselaere, T.V.; Dominique, M.; Berghmans, D.; Cabanas, C.; Groof, A.D.; Schmutz, W.; Verdini, A.; et al. Time delays in quasi-periodic pulsations observed during the x2.2 solar flare on 2011 february 15. Astrophys. J. 2012, 749, L16. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Percival, D.P. On estimation of the wavelet variance. Biometrika 1995, 82, 619–631. [Google Scholar] [CrossRef]
- Spiegel, M.R. Schaum’s Outline of Theory and Problems of Probability and Statistics; Mcgraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Telloni, D.; Antonucci, E.; Bruno, R.; D’Amicis, R. Persistent and self-similar large-scale density fluctuations in the solar corona. Astrophys. J. 2009, 693, 1022–1028. [Google Scholar] [CrossRef]
- Arons, J.; Lea, S.M. Accretion onto magnetized neutron stars - Structure and interchange instability of a model magnetosphere. Astrophys. J. 1976, 207, 914. [Google Scholar] [CrossRef]
- Robinson, K.; Dursi, L.J.; Ricker, P.M.; Rosner, R.; Calder, A.C.; Zingale, M.; Truran, J.W.; Linde, T.; Caceres, A.; Fryxell, B.; et al. Morphology of Rising Hydrodynamic and Magnetohydrodynamic Bubbles from Numerical Simulations. Astrophys. J. 2004, 601, 621–643. [Google Scholar] [CrossRef][Green Version]
- Hester, J.J.; Stone, J.M.; Scowen, P.A.; Jun, B.I.; John, S.I.G.; Norman, M.L.; Ballester, G.E.; Burrows, C.J.; Casertano, S.; Clarke, J.T.; et al. WFPC2 Studies of the Crab Nebula. III. Magnetic Rayleigh-Taylor Instabilities and the Origin of the Filaments. Astrophys. J. 1996, 456, 225. [Google Scholar] [CrossRef]
- Isobe, H.; Miyagoshi, T.; Shibata, K.; Yokoyama, T. Three-Dimensional Simulation of Solar Emerging Flux Using the Earth Simulator I. Magnetic Rayleigh-Taylor Instability at the Top of the Emerging Flux as the Origin of Filamentary Structure. Publ. Astron. Soc. Jpn. 2006, 58, 423–438. [Google Scholar] [CrossRef]
- Berger, T.E.; Slater, G.; Hurlburt, N.; Shine, R.; Tarbell, T.; Title, A.; Lites, B.W.; Okamoto, T.J.; Ichimoto, K.; Katsukawa, Y.; et al. Quiescent prominence dynamics observed with thehinodesolar optical telescope. i. turbulent upflow plumes. Astrophys. J. 2010, 716, 1288–1307. [Google Scholar] [CrossRef]
- Innes, D.E.; Cameron, R.H.; Fletcher, L.; Inhester, B.; Solanki, S.K. Break up of returning plasma after the 7 June 2011 filament eruption by Rayleigh-Taylor instabilities. A&A 2012, 540, L10. [Google Scholar] [CrossRef]
- Carlyle, J.; Williams, D.R.; van Driel-Gesztelyi, L.; Innes, D.; Hillier, A.; Matthews, S. Investigating the dynamics and density evolution of returning plasma blobs from the 2011 june 7 eruption. Astrophys. J. 2014, 782, 87. [Google Scholar] [CrossRef]
- Zhang, J.; Dere, K.P.; Howard, R.A.; Kundu, M.R.; White, S.M. On the Temporal Relationship between Coronal Mass Ejections and Flares. Astrophys. J. 2001, 559, 452–462. [Google Scholar] [CrossRef]
- Zhang, J.; Dere, K.P.; Howard, R.A.; Vourlidas, A. A Study of the Kinematic Evolution of Coronal Mass Ejections. Astrophys. J. 2004, 604, 420–432. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, H.; Cheng, C.Z.; Gary, D.E. Magnetic Reconnection and Mass Acceleration in Flare–Coronal Mass Ejection Events. Astrophys. J. 2004, 604, 900–905. [Google Scholar] [CrossRef]
- Temmer, M.; Veronig, A.M.; Vršnak, B.; Rybák, J.; Gömöry, P.; Stoiser, S.; Maričić, D. Acceleration in Fast Halo CMEs and Synchronized Flare HXR Bursts. Astrophys. J. 2008, 673, L95–L98. [Google Scholar] [CrossRef][Green Version]
- Jiang, B.; Chen, Y.; Wang, J.; Su, Y.; Zhou, X.; Safi-Harb, S.; DeLaney, T. Cavity of molecular gas associated with supernova remnant 3C 397. Astrophys. J. 2010, 712, 1147–1156. [Google Scholar] [CrossRef]
- Maloney, S.A.; Gallagher, P.T. Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. 2010, 724, L127–L132. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Allen, C. Astrophysical Quantities; Springer: New York, NY, USA, 1973. [Google Scholar]
- Withbroe, G.L.; Kohl, J.L.; Weiser, H.; Munro, R.H. Probing the solar wind acceleration region using spectroscopic techniques. Space Sci. Rev. 1982, 33. [Google Scholar] [CrossRef]
- Noci, G.; Kohl, J.L.; Withbroe, G.L. Solar wind diagnostics from Doppler-enhanced scattering. Astrophys. J. 1987, 315, 706. [Google Scholar] [CrossRef]
- Bastian, T.S.; Pick, M.; Kerdraon, A.; Maia, D.; Vourlidas, A. The Coronal Mass Ejection of 1998 April 20: Direct Imaging at Radio Wavelengths. Astrophys. J. 2001, 558, L65–L69. [Google Scholar] [CrossRef]
- Mancuso, S.; Raymond, J.C.; Kohl, J.; Ko, Y.-K.; Uzzo, M.; Wu, R. Plasma properties above coronal active regions inferred from SOHO/UVCS and radio spectrograph observations. A&A 2003, 400, 347–353. [Google Scholar] [CrossRef]
- Cho, K.S.; Lee, J.; Gary, D.E.; Moon, Y.J.; Park, Y.D. Magnetic Field Strength in the Solar Corona from Type II Band Splitting. Astrophys. J. 2007, 665, 799–804. [Google Scholar] [CrossRef]
- Jensen, E.A.; Russell, C.T. Faraday rotation observations of CMEs. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, S.W.; Li, B.; Song, H.Q.; Xia, L.D.; Kong, X.L.; Li, X. A coronal seismological study with streamer waves. Astrophys. J. 2011, 728, 147. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Nitta, N.; Akiyama, S.; Mäkelä, P.; Yashiro, S. Coronal magnetic field measurement from euv images made by thesolar dynamics observatory. Astrophys. J. 2011, 744, 72. [Google Scholar] [CrossRef]
- Kwon, R.Y.; Ofman, L.; Olmedo, O.; Kramar, M.; Davila, J.M.; Thompson, B.J.; Cho, K.S. Stereoobservations of fast magnetosonic waves in the extended solar corona associated with eit/euv waves. Astrophys. J. 2013, 766, 55. [Google Scholar] [CrossRef]
- Hariharan, K.; Ramesh, R.K.C.W.T.J. Simultaneous Near-Sun Observations of a Moving Type IV Radio Burst and the Associated White-Light Coronal Mass Ejection. Sol. Phys. 2016, 291. [Google Scholar] [CrossRef]
- Patsourakos, S.; Georgoulis, M.K. Near-Sun and 1 AU magnetic field of coronal mass ejections: A parametric study. A&A 2016, 595, A121. [Google Scholar] [CrossRef]
- Kooi, J.E.; Fischer, P.D.; Buffo, J.J.; Spangler, S.R. VLA Measurements of Faraday Rotation through Coronal Mass Ejections. Sol. Phys. 2017, 292. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Hoshino, M. Onset of turbulence induced by a Kelvin-Helmholtz vortex. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Zhang, W.; MacFadyen, A.; Wang, P. Three-dimensional relativistic magnetohydrodynamic simulations of the kelvin-helmholtz instability: Magnetic field amplification by a turbulent dynamo. Astrophys. J. 2009, 692, L40–L44. [Google Scholar] [CrossRef]
- Murphy, N.A.; Raymond, J.C.; Korreck, K.E. Plasma heating during a coronal mass ejection observed by thesolar and heliospheric observatory. Astrophys. J. 2011, 735, 17. [Google Scholar] [CrossRef]
- Fermi, E.; von Neumann, J. Taylor Instability of Incompressible Liquids. Part 1. Taylor Instability of an Incompressible Liquid. Part 2. Taylor Instability at the Boundary of Two Incompressible Liquids; Technical Report; Los Alamos Scientific Lab.: Los Alamos, NM, USA, 1953. [Google Scholar] [CrossRef]
- Livescu, D. Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids. Phys. Fluids 2004, 16, 118–127. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telloni, D.; Carbone, F.; Bemporad, A.; Antonucci, E. Evidence for Rayleigh-Taylor Plasma Instability at the Front of Solar Coronal Mass Ejections. Atmosphere 2019, 10, 468. https://doi.org/10.3390/atmos10080468
Telloni D, Carbone F, Bemporad A, Antonucci E. Evidence for Rayleigh-Taylor Plasma Instability at the Front of Solar Coronal Mass Ejections. Atmosphere. 2019; 10(8):468. https://doi.org/10.3390/atmos10080468
Chicago/Turabian StyleTelloni, Daniele, Francesco Carbone, Alessandro Bemporad, and Ester Antonucci. 2019. "Evidence for Rayleigh-Taylor Plasma Instability at the Front of Solar Coronal Mass Ejections" Atmosphere 10, no. 8: 468. https://doi.org/10.3390/atmos10080468
APA StyleTelloni, D., Carbone, F., Bemporad, A., & Antonucci, E. (2019). Evidence for Rayleigh-Taylor Plasma Instability at the Front of Solar Coronal Mass Ejections. Atmosphere, 10(8), 468. https://doi.org/10.3390/atmos10080468