Next Article in Journal
Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures
Previous Article in Journal
Development and Implementation of a Platform for Public Information on Air Quality, Sensor Measurements, and Citizen Science
Previous Article in Special Issue
Analysis of a Haze Event over Nanjing, China Based on Multi-Source Data
Article Menu

Export Article

Open AccessArticle

Comparison of Columnar, Surface, and UAS Profiles of Absorbing Aerosol Optical Depth and Single-Scattering Albedo in South-East Poland

1
Institute of Geophysics, Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland
2
Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
*
Author to whom correspondence should be addressed.
Atmosphere 2019, 10(8), 446; https://doi.org/10.3390/atmos10080446
Received: 3 July 2019 / Revised: 23 July 2019 / Accepted: 23 July 2019 / Published: 2 August 2019
(This article belongs to the Special Issue Remote Sensing of Aerosols)
  |  
PDF [2711 KB, uploaded 2 August 2019]
  |  

Abstract

The impact of absorbing aerosols on climate is complex, with their potential positive or negative forcing, depending on many factors, including their height distribution and reflective properties of the underlying background. Measurement data is very limited, due to insufficient remote sensing methods dedicated to the retrieval of their vertical distribution. Columnar values of absorbing aerosol optical depth (AAOD) and single scattering albedo (SSA) are retrieved by the Aerosol Robotic Network (AERONET). However, the number of available results is low due to sky condition and aerosol optical depth (AOD) limitation. Presented research describes results of field campaigns in Strzyżów (South-East Poland, Eastern Europe) dedicated to the comparison of the absorption coefficient and SSA measurements performed with on-ground in-situ devices (aethalomter, nephelometer), small unmanned aerial system (UAS) carrying micro-aethalometer, as well as with lidar/ceilometer. An important aspect is the comparison of measurement results with those delivered by AERONET. Correlation of absorption to scattering coefficients measured on ground (0.79) and correlation of extinction on ground to AOD measured by AERONET (0.77) was visibly higher than correlation between AOD and AAOD retrieved by AERONET (0.56). Columnar SSA was weakly correlated with ground SSA (higher values of columnar SSA), which were mainly explained by hygroscopic effects, increasing scattering coefficient in ambient (wet conditions), and partly high uncertainty of SSA retrieval. AAOD derived with the use of profiles from UAS up to PBL height, was estimated to contribute in average to 37% of the total AAOD. A method of AAOD estimation, in the whole troposphere, with use of measured vertical profiles of absorption coefficient and extinction coefficient profiles from lidars was proposed. AAOD measured with this method has poor correlation with AERONET data, however for some measurements, within PBL, AAOD was higher than reported by AERONET, suggesting potential underestimation in photometric measurement under particular conditions. Correlation of absorption coefficient in profile to on ground measurements decrease with altitude. Measurements of SSA from drones agree well with ground measurements and are lower than results from AERONET, which suggests a larger contribution of absorbing aerosols. As an alternative for AAOD estimation in case of lack of AERONET AAOD data simple models are proposed, which base on AOD scaling with SSA measured with different methods. Proposed solution increase potential of absorption coefficient measurements in vertical profiles and columns of the atmosphere. Presented solutions make measurements of absorption coefficients in vertical profiles more affordable and allow rough estimation of columnar values for the whole atmosphere. View Full-Text
Keywords: UAS; AOD; AAOD; SSA; lidar; sunphotometer; aethalometer; vertical profile UAS; AOD; AAOD; SSA; lidar; sunphotometer; aethalometer; vertical profile
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chiliński, M.T.; Markowicz, K.M.; Zawadzka, O.; Stachlewska, I.S.; Lisok, J.; Makuch, P. Comparison of Columnar, Surface, and UAS Profiles of Absorbing Aerosol Optical Depth and Single-Scattering Albedo in South-East Poland. Atmosphere 2019, 10, 446.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top