Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland
Abstract
:1. Introduction
2. Related Works
3. Material and Methods
3.1. Study Area
3.2. Measurement Method
3.3. Analysed Contaminants
3.4. Air Quality Standards
3.5. Air Quality Index
4. Results and Discussion
4.1. Concentrations of Pollutants in Ambient Air
4.2. Air Quality Standards
4.3. Air Quality Index
5. Conclusions
- Air quality standards in the Niedzica recreational area (for existing 24 h and 8 h averaging periods) were exceeded in seven out of twelve locations in the case of PM10 and in all twelve locations in the case of PM2.5.
- The highest air pollution was recorded on non-working days. Heating during winter days was recognised as a major source of air contamination with different PM fractions.
- The European CAQI index demonstrated that PM10 and PM2.5 were primarily responsible for high values of air pollution during winter days, based on core pollutants in the background index.
- Due to the wide spectrum of measured parameters and the calibration and validation procedures carried out by the manufacturer, the application of medium-cost sensors seems to be a good alternative to both professional measurement stations and low-cost devices.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAQI | Common Air Quality Index |
GBD | Global Burden of Disease |
GPS | Global Positioning System |
GSM | Global System for Mobile Communications |
LTE/3G | Long-Term Evolution/3 Generation |
OPC | Optical particle counter |
WHO | World Health Organization |
NASA SRTM | National Aeronautics and Space Administration Shuttle Radar Topography Mission |
References
- OECD. The Economic Consequences of Outdoor Pollution; OECD Publishing: Paris, France, 2016. [Google Scholar]
- European Parliament. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. 2008. Available online: http://news.cleartheair.org.hk/wp-content/uploads/2013/02/LexUriServ.pdf (accessed on 26 May 2019).
- Sobolewski, M. Air Protection in Poland/Ochrona Powietrza w Polsce; Biuro Analiz Sejmowych: Warszawa, Poland, 2016.
- European Environment Agency. Air Quality in Europe—2013 Report; EEA Report No 9/2013; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.; Medina-Ramón, M.; Künzli, N.; Alastuey, A.; Pey, J.; Pérez, N.; Garcia, R.; Tobias, A.; Querol, X.; Sunyer, J. Size Fractionate Particulate Matter, Vehicle Traffic, and Case-Specific Daily Mortality in Barcelona, Spain. Environ. Sci. Technol. 2009, 43, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Yu, I.T.S.; Tian, L.; Wang, X.; Tse, L.A.; Tam, W.; Wong, T.W. Effects of Coarse Particulate Matter on Emergency Hospital Admissions for Respiratory Diseases: A Time-Series Analysis in Hong Kong. Environ. Health Perspect. 2012, 120, 572–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, F.J.; Fussell, J.C. Linking ambient particulate matter pollution effects with oxidative biology and immune responses. Ann. N. Y. Acad. Sci. 2015, 1340, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Loeb, L.A. A Mutator Phenotype in Cancer. Cancer Res. 2001, 61, 3230–3239. Available online: http://cancerres.aacrjournals.org/content/61/8/3230.full.pdf (accessed on 26 May 2019). [PubMed]
- Potgieter-Vermaak, S.; Rotondo, G.; Novakovic, V.; Rollins, S.; Van Grieken, R. Component-specific toxic concerns of the inhalable fraction of urban road dust. Environ. Geochem. Health 2012, 34, 689–696. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia; World Health Organization (WHO) Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Federal Council; Swiss Confederation. Environment Switzerland 2018, Report of the Federal Council, Swiss Confederation; No UI-1813-E; Federal Council: Bern, Switzerland, 2018.
- Regional Inspectorate for Environmental Protection in Kraków, Poland. Available online: http://krakow.pios.gov.pl/ (accessed on 26 May 2019).
- Gerboles, M.; Spinelle, L.; Borowiak, A. Measuring Air Pollution with Low-Cost Sensors. Thoughts on the Quality of Data Measured by Sensors; Joint Research Centre, EU Science Hub: Brussels, Belgium, 2017. [Google Scholar]
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; EPA/600/R-14/159 (NTIS PB2015-100610); U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- Liu, D.; Zhang, Q.; Jiang, J.; Chen, D.R. Performance calibration of low-cost and portable particular matter (PM) sensors. J. Aerosol Sci. 2017, 112, 1–10. [Google Scholar] [CrossRef]
- Yang, D.; Ye, C.; Wang, X.; Lu, D.; Xu, J.; Yang, H. Global distribution and evolvement of urbanization and PM2.5 (1998–2015). Atmos. Environ. 2018, 182, 171–178. [Google Scholar] [CrossRef]
- Wang, L.; Fang, B.; Law, R. Effect of air quality in the place of origin on outbound tourism demand: Disposable income as a moderator. Tour. Manag. 2018, 68, 152–161. [Google Scholar] [CrossRef]
- Bełcik, M.; Trusz-Zdybek, A.; Zaczyńska, E.; Czarny, A.; Piekarska, K. Genotoxic and cytotoxic properties of PM2.5 collected over the year in Wrocław (Poland). Sci. Total Environ. 2018, 637, 480–497. [Google Scholar] [CrossRef] [PubMed]
- Dzikuć, M. Problems associated with the low emission limitation in Zielona Góra (Poland): Prospects and challenges. J. Clean. Prod. 2017, 166, 81–87. [Google Scholar] [CrossRef]
- Alphasense Ltd, Sensor Technology House. Technical Specification for OPC-N2 Performance Data. Doc. ref. OPC-N2/APR15; Great Notley, UK. 2015. Available online: http://www.bjsydz.com/data/Datasheet/OPC-N2.pdf (accessed on 26 May 2019).
- Minister of the Environment. Regulation of the Minister of the Environment Concerning the Levels of Certain Substances in the Air of 24 August 2012; Item 1031; Dziennik Ustaw: Warszawa, Poland, 2012.
- Annesi-Maesano, I. The air of Europe: Where are we going? Eur. Respir. Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Air Quality in Europe—2018 Report; EEA Report No 12/2018; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Van den Elshout, S.; Bartelds, H.; Heich, H.; Léger, K. CAQI Air Quality Index. Comparing Urban Air Quality across Borders; European Union, European Regional Development Fund: Brussels, Belgium, 2012. [Google Scholar]
Location | Location Number | Place | Coordinates | Date of Measurement | |
---|---|---|---|---|---|
Latitude | Longitude | ||||
Maniowy | 1 | school | 49.46188 N | 20.26934 E | 18 December 2017–3 January 2018 |
Łapsze Wyżne | 2 | school | 49.39477 N | 20.19147 E | 3 January 2018–8 January 2018 |
Frydman | 3 | school | 49.44837 N | 20.22652 E | 8 January 2018–15 January 2018 |
Klikuszowa | 4 | school | 49.52095 N | 19.99045 E | 15 January 2018–19 January 2018 |
Jurgów | 5 | comparative area | 49.34218 N | 20.13555 E | 19 January 2018–22 January 2018 |
Huba | 6 | fire station | 49.47947 N | 20.23062 E | 23 January 2018–28 January 2018 |
Ludźmierz | 7 | school | 49.46872 N | 19.97737 E | 31 January 2018–5 February 2018 |
Kacwin | 8 | school | 49.37533 N | 20.29423 E | 6 February 2018–12 February 2018 |
Dębno | 9 | school | 49.46648 N | 20.20809 E | 12 February 2018–20 February 2018 |
Czorsztyn | 10 | fire station | 49.43738 N | 20.32869 E | 20 February 2018–27 February 2018 |
Niedzica | 11 | school | 49.40762 N | 20.29574 E | 27 February 2018–6 February 2018 |
Waksmund | 12 | school | 49.48339 N | 20.07615 E | 6 March 2018–9 March 2018 |
Location | Location Number | CO | CO | O | O | NO | PM10 | PM2.5 | PM1 |
---|---|---|---|---|---|---|---|---|---|
g/m | |||||||||
Maniowy | 1 | 358 | 315 | 97.1 | 48.7 | 68.7 | 120 | 37.7 | 29.4 |
Łapsze Wyżne | 2 | 577 | 339 | 89.2 | 45.7 | 70.2 | 48.7 | 37.9 | 30.7 |
Frydman | 3 | 325 | 270 | 94.6 | 48.8 | 69.7 | 28.0 | 27.4 | 23.3 |
Klikuszowa | 4 | 225 | 186 | 112 | 56.2 | 87.4 | 20.3 | 19.8 | 17.1 |
Jurgów | 5 | 584 | 377 | 99.9 | 47.4 | 92.1 | 32.0 | 31.5 | 26.6 |
Huba | 6 | 352 | 258 | 106 | 55.9 | 71.5 | 138 | 55.3 | 41.6 |
Ludźmierz | 7 | 344 | 349 | 85.6 | 42.2 | 65.5 | 58.1 | 43.5 | 35.6 |
Kacwin | 8 | 518 | 419 | 85.1 | 42.5 | 88.9 | 63.9 | 63.3 | 52.5 |
Dębno | 9 | 647 | 531 | 78.0 | 39.8 | 109 | 107 | 95.2 | 80.2 |
Czorsztyn | 10 | 264 | 225 | 109 | 54 | 129 | 31.0 | 29.4 | 25.1 |
Niedzica | 11 | 574 | 513 | 98.9 | 49.5 | 141 | 60.4 | 59.4 | 50.9 |
Waksmund | 12 | 598 | 561 | 95.5 | 46.3 | 71.5 | 68.8 | 64.3 | 53.3 |
study area | 447 | 362 | 96.0 | 48.1 | 88.7 | 65.0 | 47.1 | 38.9 | |
Regional monitoring system station in Nowy Targ | n1 | nd | nd | nd | nd | nd | 90.1 | nd | nd |
Regional monitoring system station in Zakopane | n2 | 887 | 1474 | 40.6 | 59.4 | 32.4 | 51.9 | nd | nd |
Averaging period * | |||||||||
Permissible level Poland [22] | 10,000 | – | – | 120 | – | 50 | – | – | |
EU guideline [24] | 10,000 | – | – | 120 | – | 50 | – | – | |
WHO AQGs [24] | – | – | – | 100 | – | 50 | 25 | – |
European CAQI Grid | Index Class |
---|---|
0 to 25 | Very low |
26 to 50 | Low |
51 to 75 | Medium |
76 to 100 | High |
>100 | Very high |
Location | Place | Day of the Week | |||||||
---|---|---|---|---|---|---|---|---|---|
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | |||
Maniowy | school | Date | 18.12.2017 | 19.12.2017 | 20.20.2017 | 21.12.2017 | 22.12.2017 | 23.12.2017 | 24.12.2017 |
CAQI | 76 (PM2.5) | 53 (PM10) | 62 (PM2.5) | 62 (PM2.5) | 32 (PM2.5) | 27 (O) | 26 (O) | ||
Date | 25.12.2017 | 26.12.2017 | 27.12.2017 | 28.12.2017 | 29.12.2017 | 30.12.2017 | 31.12.2017 | ||
CAQI | 91 (PM10) | >100 (PM10) | >100 (PM10) | 54 (PM2.5) | 84 (PM2.5) | >100 (PM2.5) | >100 (PM10) | ||
Date | 01.01.2018 | 02.01.2018 | – | – | – | – | – | ||
CAQI | >100 (PM10) | >100 (PM10) | – | – | – | – | – | ||
Łapsze | school | Date | – | – | 03.01.2018 | 04.01.2018 | 05.01.2018 | 06.01.2018 | 07.01.2018 |
Wyżne | CAQI | – | – | 85 (PM2.5) | 63 (PM2.5) | 76 (PM2.5) | >100 (PM2.5) | 75 (PM2.5) | |
Frydman | school | Date | 08.01.2018 | 09.01.2018 | 10.01.2018 | 11.01.2018 | 12.01.2018 | 13.01.2018 | 14.01.2018 |
CAQI | 81 (PM2.5) | 33 (PM10) | 31 (PM10) | 76 (PM10) | 62 (PM2.5) | 31 (PM10) | 32 (PM10) | ||
Kilku- | school | Date | 15.01.2018 | 16.01.2018 | 17.01.2018 | 18.01.2018 | 19.01.2018 | – | – |
szowa | CAQI | 79 (PM10) | 54 (PM2.5) | 21 (PM10) | 27 (O) | 29 (O) | – | – | |
Jurgów | comparative area | Date | – | – | – | – | – | 20.01.2018 | 21.01.2018 |
CAQI | – | – | – | – | – | 85 (PM2.5) | 63 (PM2.5) | ||
Date | 22.01.2018 | – | – | – | – | – | – | ||
CAQI | 84 (PM2.5) | – | – | – | – | – | – | ||
Huba | fire station | Date | – | 23.01.2018 | 24.01.2018 | 25.01.2018 | 26.01.2018 | 27.01.2018 | 28.01.2018 |
CAQI | – | >100 (PM2.5) | 34 (PM10) | 27 (O) | 48 (PM2.5) | >100 (PM10) | >100 (PM10) | ||
Ludź-mierz | school | Date | – | – | 31.01.2018 | 01.02.2018 | 02.02.2018 | 03.02.2018. | 04.02.2018. |
CAQI | – | – | 38 (PM2.5) | >100 (PM2.5) | 76 (PM10) | >100 (PM10) | 86 (PM2.5) | ||
Date | 05.02.2018 | – | – | – | – | – | – | ||
CAQI | 31 (PM10) | – | – | – | – | – | – | ||
Kacwin | school | Date | – | 06.02.2018 | 07.02.2018 | 08.02.2018 | 09.02.2018 | 10.02.2018 | 11.02.2018 |
CAQI | – | >100 (PM2.5) | >100 (PM2.5) | >100 (PM2.5) | 86 (PM2.5) | 80 (PM10) | 85 (PM2.5) | ||
Dębno | school | Date | 12.02.2018 | 13.02.2018 | 14.02.2018 | 15.02.2018 | 16.02.2018 | 17.02.2018. | 18.02.2018 |
CAQI | >100 (PM10) | >100 (PM2.5) | 84 (PM2.5) | 78 (PM10) | >100 (PM10) | >100 (PM10) | >100 (PM2.5) | ||
Date | 19.02.2018 | – | – | – | – | – | – | ||
CAQI | 77 (PM2.5) | – | – | – | – | – | – | ||
Czorsztyn | fire station | Date | – | 20.02.2018 | 21.02.2018 | 22.02.2018 | 23.02.2018 | 24.02.2018 | 25.02.2018 |
CAQI | – | 94 (PM2.5) | 84 (PM2.5) | 61 (PM2.5) | 76 (PM2.5) | 34 (PM10) | 60 (PM2.5) | ||
Date | 26.02.2018 | – | – | – | – | – | – | ||
CAQI | 62 (PM2.5) | – | – | – | – | – | – | ||
Niedzica | school | Date | – | 27.02.2018 | 28.02.2018 | 01.03.2018 | 02.03.2018 | 03.03.2018 | 04.03.2018 |
CAQI | – | 80 (PM2.5) | 85 (PM2.5) | >100 (PM2.5) | 79 (PM10) | >100 (PM2.5) | >100 (PM2.5) | ||
Date | 05.03.2018 | – | – | – | – | – | – | ||
CAQI | 86 (PM2.5) | – | – | – | – | – | – | ||
Waks-mund | school | Date | – | 06.03.2018 | 07.03.2018 | 08.03.2018 | 09.03.2018 | – | – |
CAQI | – | 82 (PM2.5) | 76 (PM10) | >100 (PM10) | >100 (PM2.5) | – | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiec, E.; Dajda, J.; Gruszecka-Kosowska, A.; Helios-Rybicka, E.; Kisiel-Dorohinicki, M.; Klimek, R.; Pałka, D.; Wąs, J. Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere 2019, 10, 393. https://doi.org/10.3390/atmos10070393
Adamiec E, Dajda J, Gruszecka-Kosowska A, Helios-Rybicka E, Kisiel-Dorohinicki M, Klimek R, Pałka D, Wąs J. Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere. 2019; 10(7):393. https://doi.org/10.3390/atmos10070393
Chicago/Turabian StyleAdamiec, Ewa, Jacek Dajda, Agnieszka Gruszecka-Kosowska, Edeltrauda Helios-Rybicka, Marek Kisiel-Dorohinicki, Radosław Klimek, Dariusz Pałka, and Jarosław Wąs. 2019. "Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland" Atmosphere 10, no. 7: 393. https://doi.org/10.3390/atmos10070393
APA StyleAdamiec, E., Dajda, J., Gruszecka-Kosowska, A., Helios-Rybicka, E., Kisiel-Dorohinicki, M., Klimek, R., Pałka, D., & Wąs, J. (2019). Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere, 10(7), 393. https://doi.org/10.3390/atmos10070393