The Effect of the Surface Wind Field Representation in the Operational Storm Surge Model of the National Hurricane Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Background Wind
2.2. Parametric Wind Profile
2.3. Maximum Wind Speed
2.4. Hindcasts
2.5. Storm Surge Data
3. Results
3.1. Baseline Case
3.2. Surface Background Wind Modification
3.3. Parametric Wind Profile Modification
3.4. Maximum Wind Speed Modification
3.5. Combined Modifications
3.6. Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SLOSH | Sea, Lake, and Overland Surges from Hurricanes |
NHC | National Hurricane Center |
NWS | National Weather Service |
USGS | United States Geological Survey |
NOAA | National Oceanic and Atmospheric Administration |
MEOW | Maximum Envelope of Water |
MOM | Maximum of MEOWs |
background wind speed of the atmosphere | |
V | axisymmetric wind speed |
translational speed | |
maximum wind speed | |
radius of maximum wind speed | |
HURDAT | HURricane DATabases |
NAVD 88 | North American Vertical Datum of 1988 |
FEMA | Federal Emergency Management Agency |
References
- Rappaport, E.N. Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Storm Surge Overview. Available online: https://www.nhc.noaa.gov/surge/ (accessed on 12 March 2019).
- Hoffman, R.N.; Dailey, P.; Hopsch, S.; Ponte, R.M.; Quinn, K.; Hill, E.M.; Zachry, B. An estimate of increases in storm surge risk to property from sea level rise in the first half of the twenty-first century. Weather. Clim. Soc. 2010, 2, 271–293. [Google Scholar] [CrossRef]
- Pielke, R.A., Jr.; Gratz, J.; Landsea, C.W.; Collins, D.; Saunders, M.A.; Musulin, R. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 2008, 9, 29–42. [Google Scholar] [CrossRef]
- Irish, J.L.; Resio, D.T. A hydrodynamics-based surge scale for hurricanes. Ocean Eng. 2010, 37, 69–81. [Google Scholar] [CrossRef]
- Mayo, T.; Butler, T.; Dawson, C.; Hoteit, I. Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient. Ocean Model. 2014, 76, 43–58. [Google Scholar] [CrossRef]
- Rego, J.L.; Li, C. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. J. Geophys. Res. 2010, 115, 6020. [Google Scholar] [CrossRef]
- Resio, D.T.; Irish, J.; Cialone, M. A surge response function approach to coastal hazard assessment—Part 1: Basic concepts. Nat. Hazards 2009, 51, 163–182. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith, T.J., III. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 2012, 102, 11–23. [Google Scholar] [CrossRef]
- Dietrich, J.; Bunya, S.; Westerink, J.; Ebersole, B.; Smith, J.; Atkinson, J.; Jensen, R.; Resio, D.; Luettich, R.; Dawson, C.; et al. A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analysis of Hurricanes Katrina and Rita. Mon. Weather Rev. 2010, 138, 378–404. [Google Scholar] [CrossRef]
- Forbes, C.; Rhome, J.; Mattocks, C.; Taylor, A. Predicting the storm surge threat of Hurricane Sandy with the National Weather Service SLOSH model. J. Mar. Sci. Eng. 2014, 2, 437–476. [Google Scholar] [CrossRef]
- Mandli, K.T.; Dawson, C.N. Adaptive mesh refinement for storm surge. Ocean Model. 2014, 75, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.K.; Kanjanda, S.; Musinguzi, A. Effect of Bottom Friction, Wind Drag Coefficient, and Meteorological Forcing in Hindcast of Hurricane Rita Storm Surge Using SWAN+ ADCIRC Model. J. Mar. Sci. Eng. 2017, 5, 38. [Google Scholar] [CrossRef]
- Butler, T.; Altaf, M.U.; Dawson, C.; Hoteit, I.; Luo, X.; Mayo, T. Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon. Weather Rev. 2012, 140, 2215–2231. [Google Scholar] [CrossRef]
- Kennedy, A.B.; Gravois, U.; Zachry, B.C.; Westerink, J.J.; Hope, M.E.; Dietrich, J.C.; Powell, M.D.; Cox, A.T.; Luettich, R.A.; Dean, R.G. Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Ramos Valle, A.N.; Curchitser, E.N.; Bruyere, C.L.; Fossell, K.R. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing. J. Mar. Sci. Eng. 2018, 6, 35. [Google Scholar] [CrossRef]
- Jelesnianski, C.P.; Chen, J.; Shaffer, W.A. SLOSH: Sea, Lake, and Overland Surges From Hurricanes; US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 1992.
- Taylor, A.A.; Glahn, B. Probabilistic guidance for hurricane storm surge. In Proceedings of the 19th Conference on Probability and Statistics, New Orleans, LA, USA, 20–24 January 2008; Volume 74. [Google Scholar]
- Glahn, B.; Taylor, A.; Kurkowski, N.; Shaffer, W.A. The role of the SLOSH model in National Weather Service storm surge forecasting. Natl. Weather Dig. 2009, 33, 3–14. [Google Scholar]
- Lin, N.; Emanuel, K.; Smith, J.; Vanmarcke, E. Risk assessment of hurricane storm surge for New York City. J. Geophys. Res. 2010, 115, D18121. [Google Scholar] [CrossRef]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Mayo, T.; Lin, N. Hurricane Storm Surge Risk Analysis for Structures of Coastal Resilience. 2019. in preparation. [Google Scholar]
- Cyriac, R.; Dietrich, J.; Fleming, J.; Blanton, B.; Kaiser, C.; Dawson, C.; Luettich, R. Variability in Coastal Flooding predictions due to forecast errors during Hurricane Arthur. Coast. Eng. 2018, 137, 59–78. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Muhammad, A.; Curcic, M.; Fathi, A.; Dawson, C.; Chen, S.; Luettich, R., Jr. Sensitivity of Storm Surge Predictions to Atmospheric Forcing during Hurricane Isaac. J. Waterw. Port Coast. Ocean Eng. 2017, 144, 04017035. [Google Scholar] [CrossRef]
- Nordenson, C.S.; Nordenson, G.; Chapman, J. Structures of Coastal Resilience; Island Press: Washington, DC, USA, 2018. [Google Scholar]
- Lin, N.; Chavas, D. On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.; Rotunno, R. Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci. 2011, 68, 2236–2249. [Google Scholar] [CrossRef]
- Chan, J.C. The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 2005, 37, 99–128. [Google Scholar] [CrossRef]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. A statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 2006, 87, 299–314. [Google Scholar] [CrossRef]
- Mattocks, C.; Forbes, C. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model. 2008, 25, 95–119. [Google Scholar] [CrossRef]
- Phadke, A.C.; Martino, C.D.; Cheung, K.F.; Houston, S.H. Modeling of tropical cyclone winds and waves for emergency management. Ocean Eng. 2003, 30, 553–578. [Google Scholar] [CrossRef]
- Powell, M.; Soukup, G.; Cocke, S.; Gulati, S.; Morisseau-Leroy, N.; Hamid, S.; Dorst, N.; Axe, L. State of Florida hurricane loss projection model: Atmospheric science component. J. Wind Eng. Ind. Aerodyn. 2005, 93, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Vickery, P.J.; Wadhera, D.; Powell, M.D.; Chen, Y. A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteorol. Climatol. 2009, 48, 381–405. [Google Scholar] [CrossRef]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Willoughby, H.; Rahn, M. Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Weather Rev. 2004, 132, 3033–3048. [Google Scholar] [CrossRef]
- Chavas, D.R.; Lin, N.; Emanuel, K. A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci. 2015, 72, 3647–3662. [Google Scholar] [CrossRef]
- Emanuel, K. Tropical cyclone energetics and structure. In Atmospheric Turbulence and Mesoscale Meteorology; Cambridge University Press: Cambridge, UK, 2004; pp. 165–191. [Google Scholar]
- Jelesnianski, C.P.; Taylor, A. A Preliminary View of Storm Surges before and after Storm Modifications; Environmental Research Laboratories, Weather Modification Program Office: Silver Spring, MD, USA, 1973; Volume 3. [Google Scholar]
- Jelesnianski, C.P. Numerical computations of storm surges without bottom stress. Mon. Weather Rev. 1966, 94, 379–394. [Google Scholar] [CrossRef]
- Houston, S.H.; Powell, M.D. Observed and modeled wind and water-level response from Tropical Storm Marco (1990). Weather Forecast. 1994, 9, 427–439. [Google Scholar] [CrossRef]
- Houston, S.H.; Shaffer, W.A.; Powell, M.D.; Chen, J. Comparisons of HRD and SLOSH surface wind fields in hurricanes: Implications for storm surge modeling. Weather Forecast. 1999, 14, 671–686. [Google Scholar] [CrossRef]
- Powell, M.D.; Houston, S.H.; Reinhold, T.A. Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Weather Forecast. 1996, 11, 304–328. [Google Scholar] [CrossRef]
- Nolan, D.S.; Zhang, J.A.; Uhlhorn, E.W. On the limits of estimating the maximum wind speeds in hurricanes. Mon. Weather Rev. 2014, 142, 2814–2837. [Google Scholar] [CrossRef]
- Demuth, J.L.; DeMaria, M.; Knaff, J.A. Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteorol. Climatol. 2006, 45, 1573–1581. [Google Scholar] [CrossRef]
- Morrow, B.H.; Lazo, J.K.; Rhome, J.; Feyen, J. Improving storm surge risk communication: Stakeholder perspectives. Bull. Am. Meteorol. Soc. 2015, 96, 35–48. [Google Scholar] [CrossRef]
- Storm Surge Watch/Warning Graphic. Available online: https://www.nhc.noaa.gov/surge/warning/ (accessed on 12 March 2019).
- Dow, K.; Cutter, S.L. Crying Wolf: Repeat Responses to Hurricane Evacuation Orders. In Hazards Vulnerability and Environmental Justice; Routledge: Abingdon, UK, 2012; p. 209. [Google Scholar]
Name | Date | Category at Peak Intensity | Maximum Storm Surge Calculated from NOAA Tide Gauge Data (m) |
---|---|---|---|
Narragansett Bay, Rhode Island | |||
Bob | 08/1991 | 3 | 1.57 |
Grace | 10/1991 | 2 | 1.09 |
Bertha | 07/1996 | 3 | 0.43 |
Edouard | 08/1996 | 4 | 0.28 |
Josephine | 10/1996 | TS | 0.61 |
Danny | 07/1997 | 1 | 0.11 |
Floyd | 09/1999 | 4 | 0.76 |
Ophelia | 09/2005 | 1 | 0.19 |
Hanna | 09/2008 | 1 | 0.40 |
Earl | 09/2010 | 4 | 0.50 |
Irene | 08/2011 | 3 | 0.98 |
Jamaica Bay, New York | |||
Bob | 08/1991 | 3 | 0.63 |
Bertha | 07/1996 | 3 | 0.61 |
Josephine | 10/1996 | TS | 0.91 |
Floyd | 09/1999 | 4 | 1.08 |
Allison | 06/2001 | TS | 0.14 |
Barry | 06/2007 | 1 | 0.55 |
Hanna | 09/2008 | 1 | 0.64 |
Irene | 08/2011 | 3 | 1.43 |
Sandy | 10/2012 | 3 | 2.61 |
Atlantic City, New Jersey | |||
Bob | 08/1991 | 3 | 0.41 |
Bertha | 07/1996 | 3 | 0.58 |
Josephine | 10/1996 | TS | 0.94 |
Danny | 07/1997 | 1 | 0.45 |
Floyd | 09/1999 | 4 | 0.81 |
Helene | 09/2000 | TS | 0.39 |
Allison | 06/2001 | TS | 0.23 |
Ernesto | 08/2006 | 1 | 0.91 |
Barry | 06/2007 | 1 | 0.49 |
Hanna | 09/2008 | 1 | 0.70 |
Irene | 08/2011 | 3 | 1.00 |
Sandy | 10/2012 | 3 | 1.77 * |
Norfolk, Virginia | |||
Bob | 08/1991 | 3 | 0.29 |
Emily | 08/1993 | 3 | 0.99 |
Allison | 06/1995 | 1 | 0.27 |
Bertha | 07/1996 | 3 | 0.44 |
Fran | 09/1996 | 3 | 0.49 |
Josephine | 10/1996 | TS | 0.98 |
Danny | 07/1997 | 1 | 0.49 |
Bonnie | 08/1998 | 3 | 0.95 |
Earl | 09/1998 | 2 | 0.39 |
Dennis | 09/1999 | 2 | 0.63 |
Floyd | 09/1999 | 4 | 0.91 |
Helene | 09/2000 | 1 | 0.38 |
Gustav | 09/2002 | 2 | 0.38 |
Kyle | 10/2002 | 1 | 0.50 |
Isabel | 09/2003 | 5 | 1.46 |
Alex | 09/2004 | 3 | 0.41 |
Ophelia | 09/2005 | 1 | 0.31 |
Ernesto | 08/2006 | TS | 1.07 |
Barry | 06/2007 | TS | 0.32 |
Cristobal | 07/2008 | TS | 0.11 |
Hanna | 09/2008 | 1 | 0.21 |
Irene | 08/2011 | 3 | 1.20 |
Beryl | 05/2012 | TS | 0.30 |
Location | Station ID | Latitude | Longitude |
---|---|---|---|
Narragansett Bay, Rhode Island | 8452660 | 4130.2 N | 7119.6 W |
Jamaica Bay, New York | 8531680 | 4028 N | 740.6 W |
Atlantic City, New Jersey | 8534720 | 3921.4 N | 7425.1 W |
Norfolk, Virginia | 8638863 | 3658 N | 766.8 W |
Average (Percent) Error (m) | Mean Absolute Error (m) | Root Mean Square Error (m) | |
---|---|---|---|
Baseline Case | |||
all surges | −0.14 (−22.2%) | 0.22 | 0.31 |
large surges | −0.16 (−15.2%) | 0.30 | 0.41 |
Surface Background Wind Modification | |||
all surges | −0.11 (−20.9%) | 0.22 | 0.31 |
large surges | −0.08 (−9.7%) | 0.30 | 0.41 |
Parametric Wind Profile Modification | |||
all surges | −0.21 (−36.1%) | 0.26 | 0.34 |
large surges | −0.27 (−23.7%) | 0.37 | 0.47 |
Maximum Wind Speed Modification | |||
all surges | −0.03 (−3.8%) | 0.29 | 0.43 |
large surges | −0.07 (−1.2%) | 0.49 | 0.66 |
Combined Modifications | |||
all surges | −0.07 (−11.1%) | 0.34 | 0.46 |
large surges | −0.03 (−4.6%) | 0.56 | 0.69 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayo, T.; Lin, N. The Effect of the Surface Wind Field Representation in the Operational Storm Surge Model of the National Hurricane Center. Atmosphere 2019, 10, 193. https://doi.org/10.3390/atmos10040193
Mayo T, Lin N. The Effect of the Surface Wind Field Representation in the Operational Storm Surge Model of the National Hurricane Center. Atmosphere. 2019; 10(4):193. https://doi.org/10.3390/atmos10040193
Chicago/Turabian StyleMayo, Talea, and Ning Lin. 2019. "The Effect of the Surface Wind Field Representation in the Operational Storm Surge Model of the National Hurricane Center" Atmosphere 10, no. 4: 193. https://doi.org/10.3390/atmos10040193
APA StyleMayo, T., & Lin, N. (2019). The Effect of the Surface Wind Field Representation in the Operational Storm Surge Model of the National Hurricane Center. Atmosphere, 10(4), 193. https://doi.org/10.3390/atmos10040193