The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018
Abstract
:1. Introduction
2. Data and Methods
2.1. Observed and Reanalysis Data
2.2. Blocking Identification Method
2.3. Detection Method for Midlatitude Quasi-Stationary Wave Trains
2.4. Western Pacific Subtropical High (WPSH) Indices
3. Overview of the Heatwave over Mideastern China in the Summer of 2018
3.1. Spatial and Temporal Characteristics
3.2. Evolution of the Large-Scale Circulation
4. Warming Processes Associated with the Anticyclonic Circulation
5. The Role of Large-Circulation Patterns for the 2018 Heatwave
5.1. Wave Trains
5.2. Western Pacific Subtropical High (WPSH)
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meehl, G.A.; Tebaldi, C. More intense, more frequent and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, 20714. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W.H.; Yan, Z.W. Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol. 2010, 30, 1452–1462. [Google Scholar] [CrossRef]
- Ding, T.; Ke, Z.J. Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theor. Appl. Climatol. 2015, 122, 651–665. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.Y.; Chen, L. Reduced soil moisture contributes to more intense and more frequent heat waves in northern China. Adv. Atmos. Sci. 2015, 32, 1197–1207. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y. An inter–comparison of three heat wave types in China during 1961–2010: Observed basic features and linear trends. Sci. Rep. 2017, 7, 45619. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.H.; Li, W.J. Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J. Meteorol. Res. 2017, 31, 455–467. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Heat waves in Southern China: Synoptic behavior, long–term change and urbanization effects. J. Clim. 2017, 30, 703–720. [Google Scholar] [CrossRef]
- Freychet, N.; Tett, S.; Wang, J.; Hegerl, G. Summer heat waves over Eastern China: Dynamical processes and trend attribution. Environ. Res. Lett. 2017, 12, 2. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.B.; Zwiers, F.W.; Song, L.C.; Wan, H.; Hu, T.; Yin, H.; Ren, G.Y. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.M.; Wang, B.G.; Zhou, M.G.; Li, M.M.; Tong, S.L.; Meng, B.H.; Guo, Y.M.; Liu, Q.Y. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Flach, M.; Sippel, S.; Gans, F.; Bastos, A.; Brenning, A.; Reichstein, M.; Mahecha, M.D. Contrasting biosphere responses to hydrometeorological extremes: Revisiting the 2010 western Russian heatwave. Biogeosciences 2018, 15, 6067–6085. [Google Scholar] [CrossRef]
- Telesca, V.; Lay–Ekuakille, A.; Ragosta, M.; Giorgio, G.A.; Lumpungu, B. Effects on public health of heat waves to improve the urban quality of life. Sustainability 2018, 10, 1082. [Google Scholar] [CrossRef]
- Black, E.; Blackburn, M.; Harrison, G.; Hoskins, B.; Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 2010, 59, 217–223. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García–Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Katsafados, P.; Papadopoulos, A.; Varlas, G.; Papadopoulou, E.; Mavromatidis, E. Seasonal predictability of the 2010 Russian heat wave. Nat. Hazard Earth Sys. 2014, 14, 1531–1542. [Google Scholar] [CrossRef] [Green Version]
- Quandt, L.A.; Keller, J.H.; Martius, O.; Jones, S.C. Forecast variability of the blocking system over Russia in summer 2010 and its impact on surface conditions. Weather Forecast. 2017, 32, 61–82. [Google Scholar] [CrossRef]
- Duan, H.X.; Wang, S.P.; Feng, J.Y. The national drought situation and its impacts and causes in the summer 2013. J. Arid Meteorol. 2013, 31, 633–640. [Google Scholar]
- Sparrow, S.; Su, Q.; Tian, F.X.; Li, S.H.; Chen, Y.; Chen, W.; Luo, F.F.; Freychet, N.; Lott, F.C.; Dong, B.W.; et al. Attributing human influence on the July 2017 Chinese heatwave: The influence of sea–surface temperatures. Environ. Res. Lett. 2018, 13, 11. [Google Scholar] [CrossRef]
- Wang, G.F.; Ye, D.X.; Zhang, Y.X.; Huang, D.P.; Hou, W. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China. Prog. Inquisitiones DE Mutat. Clim. 2018, 14, 341–349. (In Chinese) [Google Scholar]
- Stefanon, M.; D’Andrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 1. [Google Scholar] [CrossRef]
- Perkins, S.E.; Argueso, D.; White, C.J. Relationships between climate variability, soil moisture and Australian heatwaves. J. Geophys. Res. Atmos. 2015, 120, 8144–8164. [Google Scholar] [CrossRef]
- Rex, D.F. Blocking action in the middle troposphere and its effect upon regional climate: I. An aerological study of blocking action. Tellus 1950, 2, 196–211. [Google Scholar] [CrossRef]
- Rex, D.F. Blocking action in the middle troposphere and its effect upon regional climate: II. The climatology of blocking action. Tellus 1950, 2, 275–301. [Google Scholar]
- Wagner, A.J. Weather and circulation of January 1969—Continued strong high-latitude blocking and flood-producing rains in California. Mon. Weather Rev. 1969, 97, 351–358. [Google Scholar] [CrossRef]
- Lyon, B.; Dole, R.M. A diagnostic comparison of the 1980 and 1988 US summer heat wave-droughts. J. Clim. 1995, 8, 1658–1675. [Google Scholar] [CrossRef]
- Athar, H.; Lupo, A.R. Scale analysis of blocking events from 2002 to 2004: A case study of an unusually persistent blocking event leading to a heat wave in the Gulf of Alaska during August 2004. Adv. Meteorol. 2010, 2010, 1–15. [Google Scholar] [CrossRef]
- Schaller, N.; Sillmann, J.; Anstey, J.; Fischer, E.M.; Grams, C.M.; Russo, S. Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environ. Res. Lett. 2018, 13, 5. [Google Scholar] [CrossRef]
- Hauser, M.; Orth, R.; Seneviratne, S.I. Role of soil moisture versus recent climate change for the 2010 heat wave in Western Russia. Geophys. Res. Lett. 2016, 43, 2819–2826. [Google Scholar] [CrossRef]
- Petoukhov, V.; Rahmstorf, S.; Petri, S.; Schellnhuber, H.J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA 2013, 110, 5336–5341. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.H.; Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- Hong, X.W.; Lu, R.Y.; Li, S.L. Amplified summer warming in Europe–West Asia and Northeast Asia after the mid-1990s. Environ. Res. Lett. 2017, 12, 9. [Google Scholar] [CrossRef]
- Sanchez–Benitez, A.; Garcia–Herrera, R.; Barriopedro, D.; Sousa, P.M.; Trigo, R.M. June 2017: The earliest European summer mega–heatwave of reanalysis period. Geophys. Res. Lett. 2018, 45, 1955–1962. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; Jia, X.L.; Zhao, X.C. Analysis on the extreme heat wave over China around Yangtze River region in the Summer of 2013 and its main contributing factors. Adv. Meteorol. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Kim, K.Y.; Roh, J.W.; Lee, D.K.; Jhun, J.G. Physical mechanisms of the seasonal, subseasonal and high-frequency variability in the seasonal cycle of summer precipitation in Korea. J. Geophys. Res. Atmos. 2010, 115, D14110. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA–Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Huang, J.B.; Zhang, X.D.; Zhang, Q.Y.; Lin, Y.L.; Hao, M.J.; Luo, Y.; Zhao, Z.C.; Yao, Y.; Chen, X.; Wang, L.; et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 2017, 7, 875–879. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, D.H.; Dai, A.G.; Simmonds, I. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from Observational Analyses. J. Clim. 2017, 30, 3549–3568. [Google Scholar] [CrossRef]
- Tibaldi, S.; Molteni, F. On the operational predictability of blocking. Tellus 1990, 42, 343–365. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Chang. 2014, 4, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Petoukhov, V.; Rahmstorf, S.; Petri, S.; Schellnhuber, H.J. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA 2014, 111, 12331–12336. [Google Scholar] [CrossRef] [Green Version]
- Li, J.N.; Meng, W.G.; Wang, A.Y.; Liu, L.M.; Feng, R.Q.; Hou, E.B. Climatic characteristics of the intensity and position of the subtropical high in the western Pacific. Trop. Geogr. 2003, 23, 35–39. (In Chinese) [Google Scholar]
- Liu, Y.Y.; Li, W.J.; Ai, M.X.; Li, Q.Q. Reconstruction and application of the monthly western Pacific subtropical high indices. J. Appl. Meteorol. Sci. 2012, 23, 414–423. (In Chinese) [Google Scholar]
- Wang, F.; Zhang, J.Y.; Gu, X.P.; Du, X.L.; Wu, G.H. Relationshio between the western Pacific subtropical high’s characteristic index and summer precipitation over Guizhou. Torrential Rain Disasters 2017, 36, 348–356. (In Chinese) [Google Scholar]
- Perkins, S.E.; Alexander, L.V. On the measurement of heat waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Grotjahn, R.; Black, R.; Leung, R.; Wehner, M.F.; Barlow, M.; Bosilovich, M.; Gershunov, A.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W.; et al. Prabhat, North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling and trends. Clim. Dyn. 2016, 46, 1151–1184. [Google Scholar] [CrossRef]
- Horton, R.M.; Lesk, C.; Mankin, J.S. A review of recent advances in research on extreme heat events. Curr. Clim. Chang. Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Luo, D.H.; Lupo, A.R.; Wan, H. Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic oscillations. J. Atmos. Sci. 2007, 31, 3–28. [Google Scholar] [CrossRef]
- Dong, L.; Mitra, C.; Greer, S.; Burt, E. The dynamical linkage of atmospheric blocking to drought, heatwave and urban heat island in Southeastern US: A multi–scale case study. Atmosphere 2018, 9, 33. [Google Scholar] [CrossRef]
- Plumb, R.A. On the three–dimensional propagation of stationary waves. J. Atmos. Sci. 1985, 42, 217–229. [Google Scholar] [CrossRef]
- Naoe, H.; Matsuda, Y.; Nakamura, H. Rossby wave propagation in idealized and realistic zonally varying flows. J. Meteorol. Soc. Jpn. 1997, 75, 687–700. [Google Scholar] [CrossRef]
- Kushnir, Y.; Robinson, W.A.; Blade, I.; Hall, N.M.J.; Peng, S.; Sutton, R. Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Clim. 2002, 15, 2233–2256. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, D.H. Do European blocking events precede North Atlantic Oscillation events? Adv. Atmos. Sci. 2015, 32, 1106–1118. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, D.H. An asymmetric space-time connection of Euro-Atlantic blocking within the NAO life cycle and European climates. Adv. Atmos. Sci. 2018, 35, 46–62. [Google Scholar] [CrossRef]
- Peng, S.L.; Robinson, W.A.; Li, S.L. Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Clim. 2003, 16, 1987–2004. [Google Scholar] [CrossRef]
- Tao, S.Y.; Wei, J. Severe snow and freezing–rain in January 2008 in the Southern China. Clim. Environ. Res. 2008, 13, 337–350. (In Chinese) [Google Scholar]
- Wang, W.W.; Zhou, W.; Li, X.Z.; Wang, X.; Wang, D.X. Synoptic–scale characteristics and atmospheric controls of summer heat waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Luo, D.H.; Zhou, W.; Wei, K. Dynamics of eddy–driven North Atlantic Oscillations in a localized shifting jet: zonal structure and downstream blocking. Clim. Dyn. 2010, 34, 73–100. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yao, Y.; Luo, D.; Zhong, L. The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018. Atmosphere 2019, 10, 89. https://doi.org/10.3390/atmos10020089
Li M, Yao Y, Luo D, Zhong L. The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018. Atmosphere. 2019; 10(2):89. https://doi.org/10.3390/atmos10020089
Chicago/Turabian StyleLi, Muyuan, Yao Yao, Dehai Luo, and Linhao Zhong. 2019. "The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018" Atmosphere 10, no. 2: 89. https://doi.org/10.3390/atmos10020089
APA StyleLi, M., Yao, Y., Luo, D., & Zhong, L. (2019). The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018. Atmosphere, 10(2), 89. https://doi.org/10.3390/atmos10020089