Spatial Distribution, Chemical Speciation and Health Risk of Heavy Metals from Settled Dust in Qingdao Urban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Experimental Setup
2.2. Analysis of Samples
2.3. Enrichment Factor Analysis
2.4. Health Risk Assessment
3. Results and Discussion
3.1. Heavy Metal Contents and its Speciation in Settled Dust
3.2. Spatial Distribution Characteristics of Heavy Metals
3.3. Source Identification of Atmospheric Settled Dust
3.4. Enrichment Factors and Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pang, X.G.; Wang, X.M.; Dai, J.R.; Guo, R.P.; Yu, C.; Cui, Y.J.; Dong, J. Study on Atmospheric Dust Deposition Geochemistry and Pollution Terminal in Jinan City. Geol. China 2014, 41, 285–293. [Google Scholar]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227–228, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, L.J.; Yu, L.; Guo, Z.B.; Shan, C.Q.; Lin, J.Q.; Gu, Y.G.; Yang, Z.B.; Yang, Y.X.; Shao, J.R.; et al. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.E. Can metal concentrations in indoor dust be predicted from soil geochemistry? J. Anal. Sci. Spectrosc. 2004, 49, 166–174. [Google Scholar]
- Wang, W.; Simonich, S.L.M.; Xue, M.; Zhao, J.; Zhang, N.; Wang, R.; Cao, J.; Tao, S. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environ. Pollut. 2010, 18, 1245–1251. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Xiao, Q.; Zong, Y.; Lu, S. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar]
- Peters, A. Particulate matter and heart disease: Evidence from epidemiological studies. Toxicol. Appl. Pharmacol. 2005, 207, 477–482. [Google Scholar] [CrossRef]
- Hu, G.R.; Qi, H.L.; Yu, R.L.; Liu, H.T. Morphological analysis and ecological risk assessment of heavy metals in atmospheric dust. Non-Ferrous Met. 2011, 63, 286–291. [Google Scholar]
- Sun, G.; Li, Z.; Bi, X.; Chen, Y.; Lu, S.; Yuan, X. Distribution, sources and health risk assessment of mercury in kindergarten dust. Atmos. Environ. 2013, 73, 169–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Wang, Y.; Cui, X.; Qi, J. Change characteristic of atmospheric particulate mercury during dust weather of spring in Qingdao, China. Atmos. Environ. 2015, 102, 376–383. [Google Scholar] [CrossRef]
- Padoan, E.; Romè, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Tanner, P.A.; Ma, H.-L.; Yu, P.K.N. Fingerprinting Metals in Urban Street Dust of Beijing, Shanghai, and Hong Kong. Environ. Sci. Technol. 2008, 42, 7111–7117. [Google Scholar] [CrossRef] [PubMed]
- Munksgaard, N.C.; Lottermoser, B.G. Mobility and potential bioavailability of traffic-derived trace metals in a ‘wet-dry’ tropical region, Northern Australia. Environ. Earth Sci. 2010, 60, 1447–1458. [Google Scholar] [CrossRef]
- Davis, B.; Birch, G. Comparison of heavy metal loads in storm water runoff from major and minor urban roads using pollutant yield rating curves. Environ. Pollut. 2010, 158, 2541–2545. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos. Environ. 2011, 45, 1497–1505. [Google Scholar] [CrossRef]
- Pathak, A.K.; Yadav, S.; Kumar, P.; Kumar, R. Source apportionment and spatial-temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Sci. Total Environ. 2013, 443, 662–672. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Wang, Q.; Yang, M.; Li, F.; Sun, Y.; Qian, X.; Wang, J.; Wang, C. Chemical partitioning of fine particle bound metals on haze-fog and non-haze-fog days in Nanjing, China and its contribution to human health risks. Atmos. Res. 2017, 183, 142–150. [Google Scholar] [CrossRef]
- Kicińska, A.; Bożęcki, P. Metals and mineral phases of dusts collected in different urban parks. Environ. Geochem. Health 2018, 40, 473–488. [Google Scholar] [CrossRef]
- Han, Y.N.; Wang, G.H. Chemical composition, moisture absorption and optical properties of water-soluble substances in atmospheric PM2.5 in north China. J. Earth Environ. 2016, 7, 44–54. [Google Scholar]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, G.; Tokalioglu, S. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis. Ecotoxicol. Environ. Saf. 2016, 124, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs. 2014 Revision of World Urbanization Prospects. Available online: https://www.un.org/development/desa/publications/2014-revision-world-urbanization-prospects.html (accessed on 10 July 2014).
- Li, M.; Zhang, L. Haze in China: Current and future challenges. Environ. Pollut. 2014, 189, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.E.; Beauchemin, S.; Nugent, M.; Dugandzic, R.; Lanouette, M.; Chénier, M. Influence of matrix composition on the bioaccessibility of copper. zinc. and nickel in urban residential dust and soil. Hum. Ecol. Risk Assess. 2008, 14, 351–371. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci. Total Environ. 2013, 456–457, 212–221. [Google Scholar] [CrossRef]
- Tessier, A.; Ampbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Wang, L.; Qi, J.H.; Shi, J.H.; Chen, X.J.; Gao, H.W. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea. Atmos. Environ. 2013, 70, 425–434. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, Z.Y. Heavy metal distribution and health risk assessment of dust in Qingdao city park. Urban Environ. Urban Ecol. 2011, 24, 20–23. [Google Scholar]
- Yu, R.L.; Hu, G.R.; Lin, Y.P.; Feng, J.Y.; Qiu, M.X. Analysis of the source of metal elements in the surface soil of Quanzhou. J. Miner. 2012, 32, 156–164. [Google Scholar]
- Yao, D.; Sun, Y.; Yang, F.G.; Jiang, H.Y.; Li, G.Y.; Ding, C.X. Environmental Geochemistry of heavy metals in soil of Qingdao City. Geol. China 2008, 35, 539–550. [Google Scholar]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A). 1989. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 1 December 2001).
- Li, F.Y.; Hu, C.; Zhang, Y.; Shen, M.L.; Yang, X.N. Environmental impact and health risk assessment of heavy metals in street dust in Shenyang. J. Meteor. Environ. 2010, 26, 59–64. [Google Scholar]
- CEPA (Chinese Environmental Protection Administration). Soil Environmental Quality, Risk Control Standard for Soil Standard for Contamination of Agricultural Land (GB 15618-2018); CEPA: Beijing, China, 2018. (In Chinese)
- CEPA (Chinese Environmental Protection Administration). Soil Environmental Quality, Risk Control Standard for Soil Standard for Contamination of Development Land (GB 36600-2018); CEPA: Beijing, China, 2018. (In Chinese)
- Liu, C.H.; Cen, K. Chemical composition and possible sources of street dust in Beijing. J. Environ. Sci. 2007, 27, 1181–1188. [Google Scholar]
- Qasem, M.J.; Kamal, A.M.; Abdel-Aziz, Q.; Adnan, M. Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environ. Res. 2004, 96, 139–144. [Google Scholar]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Lisiewicz, M.; Heimburger, R.; Golimowski, J. Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. Sci. Total Environ. 2000, 263, 69–78. [Google Scholar] [CrossRef]
- Chang, J.; Liu, M.; Li, X.; Lin, X.; Wang, L.; Gao, L. Health risk assessment of heavy metal pollution on surface dust in Shanghai. Environ. Sci. 2009, 29, 548–554. [Google Scholar]
- Wang, Y.; Ling, M.; Liu, R.; Yu, P.; Tang, A.; Luo, X.G.; Ma, Q. Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay. Phys. Chem Earth 2017, 97, 62–70. [Google Scholar] [CrossRef]
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2007.
- Zhao, J.; Liu, R.; Jin, J.; Ding, X.; Feng, Y.; Shan, H. Vertical distribution and speciation characteristics of heavy metals in wetlands soils of Ziyaxin River downstream. Environ. Chem. 2016, 35, 2044–2050. (In Chinese) [Google Scholar]
- Tokalioğlu, S.; Kartal, S. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial area in Kayseri (Turkey). Atmos Environ. 2006, 40, 2797–2805. [Google Scholar] [CrossRef]
- Mielke, H.W.; Gonzales, C.R.; Smith, M.K.; Mielke, P.W. The urban environment and children’ s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ. Res. Sect. A 1999, 80, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, W.; Ma, Z. Estimation of mercury emission from coal combustion in China. Environ. Sci. Technol. 2000, 34, 2711–2713. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. The Background Value of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990.
- Perrino, C.; Catrambone, M.; Bucchianico, A.D.M.D. Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions. Atmos. Environ. 2002, 36, 5385–5394. [Google Scholar] [CrossRef]
- Cachier, H.; Liousse, C.; Buat-Menard, P.; Gsufivhry, A. Particulate content of savanna fire emissions. J. Atmos. Chem. 1995, 22, 123–148. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. The investigation of metal concentrations in street dust samples in Aqaba City, Jordan. Environ. Geochem. Health 2007, 29, 197–202. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, X.; Chao, S.; Xu, X. Multivariate statistical analysis of heavy metals in less than 100 μm particles of street dust from Xining, China. Environ. Earth Sci. 2014, 73, 2319–2327. [Google Scholar] [CrossRef]
- Kowalezyk, G.S.; Gordon, G.E.; Rheingrover, S.W. Identification of atmospheric particulate sources in Washington, D.C., using chemical element balances. Environ. Sci. Technol. 1982, 16, 79–90. [Google Scholar] [CrossRef]
- Weckwerth, G. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmos. Environ. 2001, 35, 5525–5536. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Harrison, R.M.; Tilling, R.B.; Romero, M.S.C.; Harrad, S.; Jarvis, K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 2003, 37, 2391–2402. [Google Scholar] [CrossRef]
- Liu, H.Y.; Dunea, D.; Iordache, S.; Pohoata, A. A review of airborne particulate matter effects on young children’s respiratory symptoms and diseases. Atmosphere 2018, 9, 150. [Google Scholar] [CrossRef]
Enrichment Factor Index | Pollution Level | Enrichment Degree |
---|---|---|
EF < 2 | 1 | Depleted–minimal |
2 ≤ EF < 5 | 2 | Moderate |
5 ≤ EF < 20 | 3 | Significant |
20 ≤ EF < 40 | 4 | Very high |
EF ≥ 40 | 5 | Extreme |
Cities/Standard | Hg mg/kg | Cu mg/kg | Pb mg/kg | Zn mg/kg | Cd mg/kg | Cr mg/kg | Ni mg/kg | Al % | Fe % | Type | Sources |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.17 * | 456.7 * | 176.0 | 708.3 * | 0.75 * | 153.1 * | 60.9 | 4.63 | 3.82 | Settled dust | This study |
Minimum value | 0.014 | 11.3 | 40.0 | 109 | 0.10 | 32.3 | 2.99 | 0.3 | 0.65 | ||
Maximum value | 3.94 | 5840 | 666 | 2595 | 9.02 | 2395 | 368 | 9.35 | 11.5 | ||
Median | 0.098 | 218 | 138 | 640 | 0.45 | 131.3 | 54.8 | 4.66 | 3.85 | ||
Soil background | 0.035 | 13.2 | 31 | 69 | 0.13 | 31 | 12.3 | 6.62 | 2.72 | Soil | [33] |
Chinese soil quality guidelines | 1.8 | 50 | 90 | 200 | 0.3 | 150 | 70 | — | — | Agricultural land | [37] |
8 | 2000 | 400 | — | 20 | 3 a | 150 | — | — | Residential land | [38] | |
Canadian soil quality guidelines | 6.6 | 63 | 70 | 250 | 1.4 | 64 | 45 | — | — | Agricultural land | [45] |
6.6 | 63 | 140 | 250 | 10 | 64 | 45 | — | — | Residential land | ||
Shanghai | — | 186.4 | 212.9 | 687.3 | 0.97 | 218.9 | 64.9 | — | — | Surface dust | [43] |
Beijing | 0.34 | 41.5 | 54 | 219.2 | 1.1 | 73.5 | 34.1 | — | — | Street dust | [39] |
— | 83.1 | 60.8 | 280 | 0.59 | 92.0 | 32.0 | — | 2.97 | Road dust | [24] | |
Nanjing | — | 102.8 | 82.7 | 302.7 | 4.37 | 67.1 | 46.2 | 0.92 | — | Street dust | [28] |
Chengdu | — | 100 | 82.3 | 296 | 1.66 | 84.3 | 24.4 | — | — | Street dust | [4] |
Hong Kong | 0.6 | 534 | 240 | 4024 | 1.8 | 324 | — | 4.66 | 3.98 | Street dust | [14] |
Jordan | — | 91.9 | 59.5 | 639.8 | 6.36 | 65.5 | — | — | — | Dust, office dust | [40] |
Massachusetts | — | 105 | 73 | 240 | — | 95 | — | — | 2.81 | Road dust | [41] |
Krakow | 1.5 | — | 190 | 956 | 6 | 64 | 61 | 0.53 | 2.17 | Park dust | [20] |
Metals | F1 | F2 | F3 | F4 | F5 | F1 + F2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/kg | % | mg/kg | % | mg/kg | % | mg/kg | % | mg/kg | % | mg/kg | % | |
Cu | 4.3 | 1.9 | 13.8 | 6 | 1.9 | 0.8 | 162.2 | 70.2 | 49 | 21.2 | 18.2 | 7.9 |
Pb | 3.3 | 2.3 | 18.3 | 12.8 | 34 | 23.7 | 21.5 | 15 | 66.3 | 46.3 | 21.6 | 15 |
Zn | 37 | 9.4 | 65.9 | 16.7 | 175.8 | 44.6 | 71.1 | 18 | 44.3 | 11.3 | 102.8 | 26.1 |
Cd | 0.12 | 24.6 | 0.1 | 19 | 0.1 | 19.2 | 0.13 | 26.3 | 0.06 | 12 | 0.22 | 43.6 |
Cr | 0.41 | 0.7 | 0.76 | 1.3 | 9.75 | 17.3 | 6.37 | 11.3 | 39.09 | 69.3 | 1.17 | 2.1 |
Al | 14.5 | 0.1 | 220.1 | 0.9 | 2526.6 | 10.5 | 1417.5 | 5.9 | 19,883.6 | 82.6 | 234.5 | 1 |
Fe | 16.1 | 0.1 | 81.8 | 0.5 | 2213.5 | 13.4 | 765.5 | 4.6 | 13,430.6 | 81.4 | 97.8 | 0.6 |
Elements | Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Na+ | 0.755 | −0.005 | −0.543 | −0.009 | 0.093 |
NH4+ | 0.354 | −0.331 | 0.629 | 0.291 | 0.116 |
K+ | 0.768 | 0.126 | 0.036 | −0.254 | −0.305 |
Mg2+ | 0.884 | −0.264 | −0.12 | −0.025 | −0.085 |
Ca2+ | 0.697 | −0.438 | 0.395 | 0.051 | 0.037 |
Cl− | 0.736 | 0.009 | −0.539 | 0.041 | 0.157 |
NO3− | 0.648 | −0.364 | 0.287 | 0.171 | 0.189 |
SO42− | 0.731 | −0.171 | −0.268 | 0.122 | −0.014 |
Hg | −0.019 | 0.295 | 0.053 | −0.567 | 0.637 |
Al | −0.217 | 0.381 | −0.458 | 0.360 | 0.189 |
Cd | 0.226 | 0.594 | 0.108 | 0.026 | −0.191 |
Cr | 0.244 | 0.785 | 0.211 | 0.103 | −0.254 |
Cu | 0.288 | 0.760 | 0.044 | −0.140 | −0.312 |
Fe | −0.139 | 0.585 | 0.068 | 0.481 | 0.235 |
Ni | 0.335 | 0.461 | 0.125 | 0.325 | 0.303 |
Pb | 0.48 | 0.395 | 0.149 | 0.064 | 0.071 |
Zn | 0.382 | 0.516 | 0.28 | −0.366 | 0.236 |
Eigenvalue | 4.798 | 3.305 | 1.699 | 1.156 | 1.033 |
Variance% | 28.224 | 19.441 | 9.992 | 6.800 | 6.076 |
Cumulative variances% | 23.074 | 35.440 | 47.716 | 58.002 | 67.242 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, Y.; Liu, R.; Wang, M.; Zhang, Y. Spatial Distribution, Chemical Speciation and Health Risk of Heavy Metals from Settled Dust in Qingdao Urban Area. Atmosphere 2019, 10, 73. https://doi.org/10.3390/atmos10020073
Xu H, Wang Y, Liu R, Wang M, Zhang Y. Spatial Distribution, Chemical Speciation and Health Risk of Heavy Metals from Settled Dust in Qingdao Urban Area. Atmosphere. 2019; 10(2):73. https://doi.org/10.3390/atmos10020073
Chicago/Turabian StyleXu, Hongxia, Yan Wang, Ruhai Liu, Mingyu Wang, and Yanyan Zhang. 2019. "Spatial Distribution, Chemical Speciation and Health Risk of Heavy Metals from Settled Dust in Qingdao Urban Area" Atmosphere 10, no. 2: 73. https://doi.org/10.3390/atmos10020073
APA StyleXu, H., Wang, Y., Liu, R., Wang, M., & Zhang, Y. (2019). Spatial Distribution, Chemical Speciation and Health Risk of Heavy Metals from Settled Dust in Qingdao Urban Area. Atmosphere, 10(2), 73. https://doi.org/10.3390/atmos10020073