Enhanced Mid-Latitude Meridional Heat Imbalance Induced by the Ocean
Abstract
:1. Introduction
2. Data and Method
3. Enhanced Mid-Latitude Meridional Heat Imbalance Induced by the Ocean
4. Mechanism
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Solomon, A. The global heat balance: Heat transports in the atmosphere and ocean. Clim. Dyn. 1994, 10, 107–134. [Google Scholar] [CrossRef]
- Cronin, M.F.; Gentemann, C.L.; Edson, J.B.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.; Farrar, J.T.; Gille, S.T.; et al. Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci. 2019, 6, 430. [Google Scholar] [CrossRef]
- Gulev, S.K.; Mojib, L.; Noel, K.; Wonsun, P.; Klaus Peter, K. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 2013, 499, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Herman, A. Trends and variability of the atmosphere–ocean turbulent heat flux in the extratropical Southern Hemisphere. Sci. Rep. 2015, 5, 14900. [Google Scholar] [CrossRef] [PubMed]
- Cione, J.J.; Raman, S.; Pietrafesa, L.J. The effect of Gulf Stream-induced baroclinicity on US East Coast winter cyclones. Mon. Weather Rev. 1993, 121, 421–430. [Google Scholar] [CrossRef]
- Small, R.D.; DeSzoeke, S.; Xie, S.; O’neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Gao, S.; Chiu, L.S.; Shie, C.L. Trends and variations of ocean surface latent heat flux: Results from GSSTF2c data set. Geophys. Res. Lett. 2013, 40, 380–385. [Google Scholar] [CrossRef]
- Wyrtki, K. Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res. Oceans 1985, 90, 7129–7132. [Google Scholar] [CrossRef]
- Chongyin, L. Interaction between anomalous winter monsoon in East Asia and El Nino events. Adv. Atmos. Sci. 1990, 7, 36–46. [Google Scholar] [CrossRef]
- Bove, M.C.; Elsner, J.B.; Landsea, C.W.; Niu, X.; O’Brien, J.J. Effect of El Niño on US landfalling hurricanes, revisited. Bull. Am. Meteorol. Soc. 1998, 79, 2477–2482. [Google Scholar] [CrossRef]
- Ghosh, R.; Müller, W.A.; Baehr, J.; Bader, J. Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Clim. Dyn. 2017, 48, 3547–3563. [Google Scholar] [CrossRef]
- Zampieri, M.; Toreti, A.; Schindler, A.; Scoccimarro, E.; Gualdi, S. Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer. Glob. Planet. Chang. 2017, 151, 92–100. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Lohmann, G.; Shi, X.; Hu, Y.; Chen, X. Ocean-atmosphere dynamics changes associated with prominent ocean surface turbulent heat fluxes trends during 1958–2013. Ocean Dyn. 2016, 66, 353–365. [Google Scholar] [CrossRef]
- Yang, H.; Lohmann, G.; Wei, W.; Dima, M.; Ionita, M.; Liu, J. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 2016, 121, 4928–4945. [Google Scholar] [CrossRef]
- Clarke, R.A.; Gascard, J.C. The formation of Labrador Sea water. Part I: Large-scale processes. J. Phys. Oceanogr. 1983, 13, 1764–1778. [Google Scholar] [CrossRef]
- Moore, G.; Pickart, R.S.; Renfrew, I.A.; Våge, K. What causes the location of the air-sea turbulent heat flux maximum over the Labrador Sea? Geophys. Res. Lett. 2014, 41, 3628–3635. [Google Scholar] [CrossRef]
- Scholz, P.; Kieke, D.; Lohmann, G.; Ionita, M.; Rhein, M. Evaluation of Labrador Sea Water formation in a global Finite-Element Sea-Ice Ocean Model setup, based on a comparison with observational data. J. Geophys. Res. Oceans 2014, 119, 1644–1667. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alekseev, G.V.; Bekryaev, R.V.; Bhatt, U.; Colony, R.L.; Johnson, M.A.; Karklin, V.P.; Makshtas, A.P.; Walsh, D.; Yulin, A.V. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 2002, 29, 25. [Google Scholar] [CrossRef]
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Yu, L.; Weller, R.A. Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005). Bull. Am. Meteorol. Soc. 2007, 88, 527–540. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP-DOE AMIP-II Reanalysis (r-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.; Seidov, D.; Yarosh, E.S.; et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B.S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Frankignoul, C.; Gastineau, G.; Kwon, Y.O. Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Clim. 2017, 30, 9871–9895. [Google Scholar] [CrossRef]
- Rayner, N.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Ionita, M.; Felis, T.; Lohmann, G.; Rimbu, N.; Pätzold, J. Distinct modes of East Asian Winter Monsoon documented by a southern Red Sea coral record. J. Geophys. Res. Oceans 2014, 119, 1517–1533. [Google Scholar] [CrossRef]
- Cheng, W.; Chiang, J.C.; Zhang, D. Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations. J. Clim. 2013, 26, 7187–7197. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.K. Global surface warming enhanced by weak Atlantic overturning circulation. Nature 2018, 559, 387. [Google Scholar] [CrossRef]
- Manabe, S.; Bryan, K.; Spelman, M.J. Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. J. Phys. Oceanogr. 1990, 20, 722–749. [Google Scholar] [CrossRef] [Green Version]
- Dima, M.; Lohmann, G. Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Clim. 2010, 23, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191. [Google Scholar] [CrossRef]
- Nakamura, H.; Sampe, T.; Tanimoto, Y.; Shimpo, A. Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Clim. Ocean Atmos. Interact. Geophys. Monogr. 2004, 147, 329–345. [Google Scholar]
- Hudson, R. Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010. Atmos. Chem. Phys. 2012, 12, 7797–7808. [Google Scholar] [CrossRef] [Green Version]
- Pierrehumbert, R.; Swanson, K. Baroclinic instability. Annu. Rev. Fluid Mech. 1995, 27, 419–467. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.; Emanuel, K.; Ho, C.H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II. Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2019. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.L.; Dixon, K.W.; Gnanadesikan, A.; Stouffer, R.J.; Toggweiler, J. The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Clim. 2006, 19, 6382–6390. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnam, A.E.; Broecker, W.S. Human-induced changes in the distribution of rainfall. Sci. Adv. 2017, 3, e1600871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Model Name | Institutions |
---|---|
BCC-CSM1-1 | Beijing Climate Center, China Meteorological Administration |
BNU-ESM | College of Global Change and Earth System Science, Beijing Normal University |
CanESM2 | Canadian Centre for Climate Modelling and Analysis |
CCSM4 | National Center for Atmospheric Research |
CESM1-BGC | National Science Foundation, Department of Energy, National Center for Atmospheric Research |
CESM1-CAM5 | National Science Foundation, Department of Energy, National Center for Atmospheric Research |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique |
CSIRO-Mk3.6.0 | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence |
FGOALS-g2 | LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University |
FIO-ESM | The First Institute of Oceanography, SOA, China |
GFDL-CM2.1 | Geophysical Fluid Dynamics Laboratory |
GFDL-CM3 | Geophysical Fluid Dynamics Laboratory |
GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory |
GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory |
GISS-E2-H | NASA Goddard Institute for Space Studies |
GISS-E2-R | NASA Goddard Institute for Space Studies |
GISS-E2-H-CC | NASA Goddard Institute for Space Studies |
GISS-E2-R-CC | NASA Goddard Institute for Space Studies |
HadGEM2-AO | Met Office Hadley Centre |
HadGEM2-CC | Met Office Hadley Centre |
HadGEM2-ES | Met Office Hadley Centre |
INM-CM4 | Institute for Numerical Mathematics |
IPSL-CM5A-MR | Institut Pierre-Simon Laplace |
IPSL-CM5B-LR | Institut Pierre-Simon Laplace |
MIROC-ESM-CHEM | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology |
MPI-ESM-LR | Max Planck Institute for Meteorology (MPI-M) |
MPI-ESM-MR | Max Planck Institute for Meteorology (MPI-M) |
MRI-CGCM3 | Meteorological Research Institute |
NorESM1-ME | Norwegian Climate Centre |
NorESM1-M | Norwegian Climate Centre |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Lohmann, G.; Shi, X.; Li, C. Enhanced Mid-Latitude Meridional Heat Imbalance Induced by the Ocean. Atmosphere 2019, 10, 746. https://doi.org/10.3390/atmos10120746
Yang H, Lohmann G, Shi X, Li C. Enhanced Mid-Latitude Meridional Heat Imbalance Induced by the Ocean. Atmosphere. 2019; 10(12):746. https://doi.org/10.3390/atmos10120746
Chicago/Turabian StyleYang, Hu, Gerrit Lohmann, Xiaoxu Shi, and Chao Li. 2019. "Enhanced Mid-Latitude Meridional Heat Imbalance Induced by the Ocean" Atmosphere 10, no. 12: 746. https://doi.org/10.3390/atmos10120746
APA StyleYang, H., Lohmann, G., Shi, X., & Li, C. (2019). Enhanced Mid-Latitude Meridional Heat Imbalance Induced by the Ocean. Atmosphere, 10(12), 746. https://doi.org/10.3390/atmos10120746