Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Sampling Location
2.2. Experimental Section
2.3. Data Analysis
3. Results and Discussion
3.1. Identified Sources and Temporal Variability
3.1.1. Nucleation
3.1.2. Traffic 1 and Traffic 2
3.1.3. O3-rich Secondary Aerosol
3.1.4. Residential/Commercial Heating
3.1.5. Secondary Nitrate
3.1.6. Secondary Sulfate
3.1.7. Regionally Transported Aerosol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, P.A.; Crumpler, D.; Flanagan, J.B.; Jayanty, R.K.M.; Rickman, E.E.; McDade, C.E. US national PM2. 5 chemical speciation monitoring networks—CSN and IMPROVE: Description of networks. J. Air Waste Manag. Assoc. 2014, 64, 1410–1438. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Knibbs, L.D.; Cole-Hunter, T.; Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 2011, 45, 2611–2622. [Google Scholar] [CrossRef] [Green Version]
- Strak, M.; Janssen, N.A.; Godri, K.J.; Gosens, I.; Mudway, I.S.; Cassee, F.R.; Lebret, E.; Kelly, F.J.; Harrison, R.M.; Brunekreef, B.; et al. Respiratory health effects of airborne particulate matter: The role of particle size, composition, and oxidative potential-the RAPTES project. Environ. Health Perspect. 2012, 120, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Rich, D.Q.; Zareba, W.; Beckett, W.; Hopke, P.K.; Oakes, D.; Frampton, M.W.; Bisognano, J.; Chalupa, D.; Bausch, J.; O’Shea, K.; et al. Are ambient ultrafine, accumulation mode, and fine particles associated with adverse cardiac responses in patients undergoing cardiac rehabilitation? Environ. Health Perspect. 2012, 120, 1162–1169. [Google Scholar] [CrossRef]
- Ostro, B.; Hu, J.; Goldberg, D.; Reynolds, P.; Hertz, A.; Bernstein, L.; Kleeman, M.J. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: Results from the California teachers study cohort. Environ. Health Perspect. 2015, 123, 549–556. [Google Scholar] [CrossRef]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M.; Pastorkova, A.; Bastian, S.; Cyrys, J.; Zscheppang, A.; et al. Associations between ultrafine and fine particles and mortality in five central European cities—Results from the UFIREG study. Environ. Int. 2016, 88, 44–52. [Google Scholar] [CrossRef]
- Zhang, R.; Khalizov, A.; Wang, L.; Hu, M.; Xu, W. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2012, 112, 1957–2011. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, M.; Petäjä, T.; Ehn, M.; Thornton, J.; Sipilä, M.; Worsnop, D.R.; Kerminen, V.-M. Chemistry of atmospheric nucleation: On the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu. Rev. Phys. Chem. 2014, 65, 21–37. [Google Scholar] [CrossRef]
- George, C.; Ammann, M.; D’Anna, B.; Donaldson, D.J.; Nizkorodov, S.A. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 2015, 115, 4218–4258. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Jeong, C.H.; Hopke, P.K.; Chalupa, D.; Utell, M. Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. Environ. Sci. Technol. 2004, 38, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karjalainen, P.; Pirjola, L.; Heikkila, J.; Lahde, T.; Tzamkiozis, T.; Ntziachristos, L.; Keskinen, L.; Ronkko, T. Exhaust particles of modern gasoline vehicles: A laboratory and an on-road study. Atmos. Environ. 2014, 97, 262–270. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef]
- Anderson, M.; Salo, K.; Hallquist, Ǻ.M.; Fridell, E. Characterization of particles from a marine engine operating at low loads. Atmos. Environ. 2015, 101, 65–71. [Google Scholar] [CrossRef]
- Jeong, C.H.; Traub, A.; Evans, G.J. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 2017, 155, 46–52. [Google Scholar] [CrossRef]
- Riffault, V.; Arndt, J.; Marris, H.; Mbengue, S.; Setyan, A.; Alleman, L.Y.; Deboudt, K.; Flament, P.; Augustin, P.; Delbarre, H. Fine and ultrafine particles in the vicinity of industrial activities: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2305–2356. [Google Scholar] [CrossRef]
- Kheirbek, I.; Haney, J.; Douglas, S.; Ito, K.; Caputo, S., Jr.; Matte, T. The public health benefits of reducing fine particulate matter through conversion to cleaner heating fuels in New York City. Environ. Sci. Technol. 2014, 48, 13573–13582. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Manag. 2015, 37, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, S.R.; Hopke, P.K.; Newtown, M.; Hurlbut, A. Residential-scale biomass boiler emissions and efficiency characterization for several fuels. Energy Fuel 2013, 27, 4840–4849. [Google Scholar] [CrossRef]
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 nonvehicle exhaust sources—A review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.M.; Yoshida, Y.; Lu, Z.; Streets, D.G.; Hurwitz, M.M.; Pickering, K.E. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014). J. Geophys. Res.-Atmos. 2016, 121, 976–996. [Google Scholar] [CrossRef]
- Emami, F.; Masiol, M.; Hopke, P.K. Air pollution at Rochester, NY: Long-term trends and multivariate analysis of upwind SO2 source impacts. Sci. Total Environ. 2018, 612, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Squizzato, S.; Masiol, M.; Rich, D.Q.; Hopke, P.K. PM2.5 and gaseous pollutants in New York State during 2005–2016: Spatial variability, temporal trends, and economic influences. Atmos. Environ. 2018, 183, 209–224. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Long-term study of urban ultrafine particles and other pollutants. Atmos. Environ. 2011, 45, 7672–7680. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Effect of the Shutdown of a Coal-Fired Power Plant on Urban Ultrafine Particles and Other Pollutants. Aerosol Sci. Technol. 2011, 45, 1245–1249. [Google Scholar] [CrossRef] [Green Version]
- Masiol, M.; Squizzato, S.; Chalupa, D.C.; Utell, M.J.; Rich, D.Q.; Hopke, P.K. Long-term trends in submicron particle concentrations in a metropolitan area of the northeastern United States. Sci. Total Environ. 2018, 633, 59–70. [Google Scholar] [CrossRef]
- Ogulei, D.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York. Aerosol Sci. Technol. 2007, 41, 179–201. [Google Scholar] [CrossRef] [Green Version]
- Kasumba, J.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Sci. Total Environ. 2009, 407, 5071–5084. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Xia, X.; Rattigan, O.V.; Chalupa, D.C.; Utell, M.J. Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmos. Environ. 2012, 55, 525–532. [Google Scholar] [CrossRef]
- Emami, F.; Hopke, P.K. Effect of Adding Variables on Rotational Ambiguity in Positive Matrix Factorization Solutions. Chemom. Intell. Lab. Syst. 2017, 62, 198–202. [Google Scholar] [CrossRef]
- Zhou, L.; Kim, E.; Hopke, P.K.; Stanier, C.; Pandis, S.N. Advanced factor analysis on Pittsburgh particle size distribution data. Aerosol Sci. Technol. 2004, 38 (Suppl. 1), 118–132. [Google Scholar] [CrossRef]
- Zhou, L.; Hopke, P.K.; Stanier, C.; Pandis, S.N. Mining airborne particulate size distribution data by positive matrix factorization. J. Geophys. Res. 2005, 110, D07S19. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogulei, D.; Hopke, P.K.; Zhou, L.; Pancras, P.; Nair, N.; Ondov, J.M. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos. Environ. 2006, 40, S396–S410. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska 2. Elemental composition and sources. J. Geophys. Res. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef]
- Belis, C.A.; Larsen, B.R.; Amato, F.; El Haddad, I.; Favez, O.; Harrison, R.M.; Hopke, P.K.; Nava, S.; Paatero, P.; Prévôt, A.; et al. European Guide on Air Pollution Source Apportionment with Receptor Models; JRC Reference Reports EUR26080 EN; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Beddows, D.C.S.; Dall’Osto, M. PMF Analysis of Wide-Range Particle Size Spectra Collected on a Major Highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef] [PubMed]
- Beddows, D.C.S.; Harrison, R.M.; Green, D.C.; Fuller, G.W. Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmos. Chem. Phys. 2015, 15, 10107–10125. [Google Scholar] [CrossRef] [Green Version]
- Masiol, M.; Harrison, R.M.; Vu, T.V.; Beddows, D.C.S. Sources of sub-micrometre particles near a major international airport. Atmos. Chem. Phys. 2017, 17, 12379–12403. [Google Scholar] [CrossRef] [Green Version]
- Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmos. Chem. Phys. 2016, 16, 4849–4866. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, A.; Sowlat, M.H.; Sioutas, C. Diurnal and seasonal trends and source apportionment of redox-active metals in Los Angeles using a novel online metal monitor and Positive Matrix Factorization (PMF). Atmos. Environ. 2018, 174, 15–24. [Google Scholar] [CrossRef]
- Masiol, M.; Vu, T.V.; Beddows, D.C.S.; Harrison, R.M. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy). Atmos. Environ. 2016, 139, 56–74. [Google Scholar] [CrossRef]
- Zhang, K.M.; Allen, G.; Hopke, P.K.; Schwab, J.; Rattigan, O.V.; Felton, H.D. Long-Term, Continuous Aethelometer Monitoring Data Reveal Unexpected Black Carbon and Brown Carbon Sources. In Proceedings of the 10th International Aerosol Conference, St. Louis, MO, USA, 2–7 September 2018. [Google Scholar]
- Zhou, L.; Hopke, P.K.; Stanier, C.; Pandis, S.N.; Ondov, J.M.; Pancras, J.P. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares (PLS) and positive matrix factorization (PMF). J. Geophys. Res. 2005, 110, D07S18. [Google Scholar] [CrossRef]
- Brines, M.; Dall’Osto, M.; Beddows, D.C.S.; Harrison, R.M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G.P.; Saliimi, F.; et al. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmos. Chem. Phys. 2015, 15, 5929–5945. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Hopke, P.K.; Zhou, C.; Holsen, T.M. Ambient mercury source identification at a New York State urban site: Rochester, NY. Sci. Total Environ. 2019, 650, 1327–1337. [Google Scholar] [CrossRef]
- NYSERDA. New York State Energy Research and Development Authority—Patterns and Trends; New York State Energy Profiles: 2000–2014 Final Report; NYSERDA: Albany, NY, USA, 2016. Available online: https://www.nyserda.ny.gov/About/Publications/EA-Reports-and-Studies/Patterns-and-Trends (accessed on 15 March 2018).
- NYSERDA. New York State Energy Research and Development Authority—Patterns and Trends; 1993–2007, New York State Energy Profiles Albany; NYSERDA: Albany, NY, USA, 2009.
- Dall’Osto, M.; Harrison, R.M.; Coe, H.; Williams, P.I.; Allan, J.D. Real time chemical characterization of local and regional nitrate aerosols. Atmos. Chem. Phys. 2009, 9, 3709–3720. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Hopke, P.K.; Zhou, L. Spatial distribution of source locations for particulate nitrate and sulfate in the upper-midwestern United States. Atmos. Environ. 2007, 41, 1831–1847. [Google Scholar] [CrossRef]
- John, W.; Wall, S.M.; Ondo, J.L.; Winklmayr, W. Modes in the Size Distributions of Atmospheric Inorganic Aerosol. Atmos. Environ. 1990, 24, 2349–2359. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M.; Rich, D.Q.; Hopke, P.K. Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 2019, 201, 110–120. [Google Scholar] [CrossRef]
- Vu, T.V.; Delgado-Saborit, J.M.; Harrison, R.M. Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ. 2015, 122, 114–132. [Google Scholar] [CrossRef]
- Hopke, P.K.; Zhou, L.; Poirot, R.L. Reconciling Trajectory Ensemble Receptor Model Results with Emissions. Environ. Sci. Technol. 2005, 39, 7980–7983. [Google Scholar] [CrossRef] [PubMed]
Season | Period | Nucleation (%) | Traffic 1 (%) | Traffic 2 (%) | O3-Rich (%) | Residential/Commercial Heating (%) | Secondary Nitrate (%) | Secondary Sulfate (%) | Regional Transported (%) | Industrial (%) | Mixed (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Winter | 2002–2003 | 20 | 29 | 16 | 2 | 6 | 1 | 25 | |||
2004–2007 | 19 | 26 | 17 | 2 | 8 | 2 | 26 | ||||
2008–2010 | 19 | 32 | 24 | 4 | 16 | 5 | |||||
2011–2013 | 23 | 39 | 26 | 6 | 3 | 4 | |||||
2014–2016 | 25 | 34 | 17 | 6 | 16 | 1 | |||||
Transition | 2002–2003 | 20 | 23 | 10 | 3 | 4 | 1 | 17 | 23 | ||
2004–2007 | 11 | 18 | 14 | 2 | 10 | 3 | 2 | 18 | 21 | ||
2008–2010 | 15 | 28 | 20 | 3 | 0 | 3 | 30 | ||||
2011–2013 | 15 | 27 | 19 | 3 | 3 | 6 | 27 | ||||
2014–2016 | 18 | 28 | 4 | 9 | 19 | 2 | 21 | ||||
Summer | 2002–2003 | 19 | 20 | 14 | 2 | 7 | 2 | 18 | 19 | ||
2004–2007 | 13 | 19 | 15 | 4 | 8 | 2 | 18 | 20 | |||
2008–2010 | 29 | 24 | 29 | 3 | 5 | 9 | |||||
2011–2013 | 24 | 34 | 29 | 6 | 2 | 5 | |||||
2014–2016 | 22 | 26 | 28 | 14 | 7 | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squizzato, S.; Masiol, M.; Emami, F.; Chalupa, D.C.; Utell, M.J.; Rich, D.Q.; Hopke, P.K. Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. Atmosphere 2019, 10, 27. https://doi.org/10.3390/atmos10010027
Squizzato S, Masiol M, Emami F, Chalupa DC, Utell MJ, Rich DQ, Hopke PK. Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. Atmosphere. 2019; 10(1):27. https://doi.org/10.3390/atmos10010027
Chicago/Turabian StyleSquizzato, Stefania, Mauro Masiol, Fereshteh Emami, David C. Chalupa, Mark J. Utell, David Q. Rich, and Philip K. Hopke. 2019. "Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States" Atmosphere 10, no. 1: 27. https://doi.org/10.3390/atmos10010027
APA StyleSquizzato, S., Masiol, M., Emami, F., Chalupa, D. C., Utell, M. J., Rich, D. Q., & Hopke, P. K. (2019). Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. Atmosphere, 10(1), 27. https://doi.org/10.3390/atmos10010027