Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. City Selection
2.2. Sample Location Selection
2.3. Filter-Based Air Sample Collection
2.4. Sample Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Air Concentration of TRWP and Tread in PM2.5
3.2. Air Concentration of TRWP and Tread in PM10
3.3. PM2.5/PM10 Ratios
3.4. Statistical Analysis
3.5. Uncertainties
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Kiesewetter, G.; Amann, M. Urban PM2.5 Levels under the EU Clean Air Policy Package; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2014. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Particulate Matter (PM2.5) Trends. Available online: https://www.epa.gov/air-trends/particulate-matter-pm25-trends (accessed on 5 May 2018).
- European Environment Agency. Air Quality in Europe—2014 Report; EEA Report 2014, No 5/2014; European Environmental Agency: Copenhagen, Denmark, 2014. [Google Scholar]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Sundvor, I.; Balaguer, N.C.; Viana, M.; Querol, X.; Reche, C.; Amato, F.; Mellios, G.; Guerreiro, C. Road Traffic’s Contribution to air Quality in European Cities; ETC/ACM Technical Paper 2012/14; European Topic Center and Climate Change Mitigation: Bilthoven, The Netherlands, 2012. [Google Scholar]
- Amato, F. Non-Exhaust Emissions—An Urban Air Quality Problem for Public Health; Impact and Mitigation Measures, 1st ed.; Amato, F., Ed.; Academic Press: London, UK, 2018. [Google Scholar]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol Air Quality Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Fauser, P. Particulate Air Pollution with Emphasis on Traffic Generated Aerosols. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 1999. [Google Scholar]
- Grigoratos, T.; Martini, G. Non-Exhaust Traffic Related Emissions. Brake and Tyer Wear PM; Literature Survey; JRC Science and Policy Reports; EC Joint Research Center: Ispra, Italy, 2014. [Google Scholar]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Weinbruch, S.; Worringen, A.; Ebert, M.; Scheuvens, D.; Kandler, K.; Pfeffer, U.; Bruckmann, P. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy. Atmos. Environ. 2014, 99, 175–182. [Google Scholar] [CrossRef]
- Wagner, S.; Huffer, T.; Klockner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- American Lung Association. State of the Air 2013. Available online: http://www.stateoftheair.org/2013/states/ (accessed on 20 April 2016).
- European Environment Agency. Particulate Matter (PM2.5): Annual Mean Concentrations in Europe. Available online: http://www.eea.europa.eu/themes/air/interactive/pm2_5 (accessed on 20 April 2016).
- Ministry of the Environment Government of Japan. Atmospheric Environmental Regional Observation System: AEROS. Available online: http://soramame.taiki.go.jp/Index.php (accessed on 20 April 2016).
- United States Environmental Protection Agency. Air Quality Statistics Report 2012. Available online: https://www3.epa.gov/airdata/ad_rep_con.html (accessed on 20 April 2016).
- United States Census. PEPANNRES: Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2011; U.S. Census Bureau: Washington, DC, USA, 2011.
- World Health Organization. Urban Outdoor Air Pollution Database; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- European Union. Urban Access Regulation in Europe: Low Emission Zones. Available online: http://urbanaccessregulations.eu/low-emission-zones-main (accessed on 20 April 2016).
- United States Department of Transportation. Policy and Governmental Affairs Office of Highway Policy Information. Available online: http://www.fhwa.dot.gov/policyinformation/statistics/2011/hm71.cfm (accessed on 20 April 2016).
- United States Environmental Protection Agency. Air Emissions Inventories: 2011 National Emissions Inventory (NEI) Data. Available online: https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data (accessed on 20 April 2016).
- United Nations. UNData: Statistics—City Population by Sex, City and City Type. Available online: http://data.un.org/Data.aspx?d=POP&f=tableCode%3A240 (accessed on 20 April 2016).
- Unice, K.M.; Kreider, M.L.; Panko, J.M. Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment. Int. J. Environ. Res. Public Health 2012, 9, 4033–4055. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. 40 CFR Appendix J to Part 50—Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere; 52 FR 24664, 52 FR 29467; USEPA Federal Registry: Washington, DC, USA, 1987.
- ISO. Ambient air—Determination of the mass concentration of tire and road wear particles (TRWP)—Pyrolysis-GC-MS method. In Technical Specification; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Esposito, G.G. Quantitative pyrolytic gas chromatography by internal standard. Anal. Chem. 1964, 36, 2183–2185. [Google Scholar] [CrossRef]
- Moldoveanu, S.C. Pyrolysis GC/MS, present and future (recent past and present needs). J. Microcolumn Sep. 2001, 13, 102–125. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Air Data: Pre-Generated Data Files. Available online: https://aqs.epa.gov/aqsweb/airdata/download_files.html (accessed on 15 May 2018).
- Fishman, R.; Turner, J. Tyre Wear Contributions to Ambient Particulate Matter; Washington University: St. Louis, MI, USA, 1999. [Google Scholar]
- Schauer, J.J.; Fraser, M.P.; Cass, G.R.; Simoneit, B.R. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode. Environ. Sci. Technol. 2002, 36, 3806–3814. [Google Scholar] [CrossRef] [PubMed]
- JATMA. Japan Automobile Tire Manufacturers Association; JATMA: Tokyo, Japan, 2001. [Google Scholar]
- Annema, J.; Booji, H.; Hesse, J.; van der Meulen, A.; Slooff, W.E. Integrated Criteria Document Fine Particulate Matter; RIVM: Bilthoven, The Netherlands, 1996; Volume 102. [Google Scholar]
- Israel, G.; Pesch, M.; Schlums, C. Bedeutung des Reifenabriebs für die Rußemission des Kfz-Verkehrs. Staub-Reinhaltung der Luft 1994, 54, 423–430. (In German) [Google Scholar]
- Rauterberg-Wulff, A. Beitrag des Reifen- und Bremsenabriebs zur Rußemission an Straßen; Dissertation am Fachgebiet Luftreinhaltung im Institut für Technischen Umweltschutz der Technischen Universität: Berlin, Germany, 1998. [Google Scholar]
- Huglin, C.; Gehrig, R. Contributions of Road Traffic to Ambient PM10 and PM2.5 Concentrations—Chemical Speciation of Fine Particulates and Source Attribution with a Receptor Model; Swiss Transport Conference: Monte Verita, Switzerland, 2000; Volume 14. [Google Scholar]
- Gualtieri, M.; Andrioletti, M.; Mantecca, P.; Vismara, C.; Camatini, M. Impact of tire debris on in vitro and in vivo systems. Part. Fibre Toxicol. 2005, 2, 1. [Google Scholar] [CrossRef]
- BLIC. BLIC Annual Report 2004–2005; European Tire and Rubber Manufacturers Association: Brussels, Belgium, 2005. [Google Scholar]
- Atkinson, R.W.; Analitis, A.; Samoli, E.; Fuller, G.W.; Green, D.C.; Mudway, I.S.; Anderson, H.R.; Kelly, F.J. Short-term exposure to traffic-related air pollution and daily mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 2015, 26, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.W.; Fuller, G.W.; Anderson, H.R.; Harrison, R.M.; Armstrong, B. Urban Ambient Particle Metrics and Health. Epidemiology 2010, 21, 501–511. [Google Scholar] [CrossRef]
- Bohnenstengel, S.I.; Belcher, S.E.; Aiken, A.; Allan, J.D.; Allen, G.; Bacak, A.; Bannan, T.J.; Barlow, J.F.; Beddows, D.C.S.; Bloss, W.J.; et al. Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bull. Am. Meteorol. Soc. 2015, 96, 779–804. [Google Scholar] [CrossRef] [Green Version]
- Font, A.; Fuller, G.W. Did policies to abate atmospheric emissions from traffic have a positive effect in London? Environ. Pollut. 2016, 218, 463–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.; Nieuwenhuijsen, M.J. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment. Environ. Sci. Technol. 2009, 43, 4737–4743. [Google Scholar] [CrossRef]
- Kendrick, C.M.; Koonce, P.; George, L.A. Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial. Atmos. Environ. 2015, 122, 133–141. [Google Scholar] [CrossRef]
- Tolis, E.I.; Saraga, D.E.; Ammari, G.Z.; Gkanas, E.I.; Gougoulas, T.; Papaioannou, C.C.; Sarioglou, A.K.; Kougioumtzidis, E.; Skemperi, A.; Bartzis, J.G. Chemical characterization of particulate matter (PM) and source apportionment study during winter and summer period for the city of Kozani, Greece. Cent. Eur. J. Chem. 2014, 12, 643–651. [Google Scholar] [CrossRef]
- Akyüz, M.; Çabuk, H. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J. Hazard. Mater. 2009, 170, 13–21. [Google Scholar] [CrossRef]
- Grigoratos, T.; Gustafsson, M.; Eriksson, O.; Martini, G. Experimental investigation of tread wear and particle emission from tyres with different treadwear marking. Atmos. Environ. 2018, 182, 200–212. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Beddows, D.C.S.; Gietl, J.K.; Olatunbosun, O.A.; Yang, X.; Harrison, R.M. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS). Atmos. Environ. 2014, 94, 224–230. [Google Scholar] [CrossRef]
City | Site Name * | n | Distance from Road (m) | Annual Average Daily Traffic Count | Speed Limit (mile/h) | Meteorological Conditions (range) | |||
---|---|---|---|---|---|---|---|---|---|
Wind Speed (m/s) | Temperature(°C) | Humidity (%RH) | Precipitation (mm) | ||||||
Los Angeles | Anaheim | 4 | 7 | 38,738 | 35 | 1.7 (1.5–2.2) | 25 (23.0–27.0) | 61 (55–65) | 0 |
Compton | 4 | 10 | 7701 | 30 | 2.1 (1.8–2.4) | 22.3 (21.4–24.1) | 71 (67–74) | 0 | |
Exposition Park | 4 | 7 | 32,831 | 35 | 1.2 (0.9–1.3) | 23.9 (22.2–25.7) | 65 (62–68) | 0 | |
Long Beach North | 4 | 40 | 32,686 | 35 | 2.7 (2.4–3.0) | 23.6 (22.2–23.9) | 66 (63–70) | 0 | |
Mira Loma | 4 | 9 | 6284 | 40 | 1.8 (1.3–2.1) | 25.7 (23.3–28.5) | 54 (44–62) | 0 | |
Pico Rivera 2 | 4 | 7 | 11,864 | 45 | 2.1 (1.8–2.8) | 24.8 (22.9–27.4) | 51 (40–60) | 0 | |
London | Blackwall Tunnel Approach (PM2.5) | 5 | 4 | 97,672 | 40 | 1.6 (0.9–2.2) | 7.8 (6.4–9.7) | 72 (64–81) | 1.3 (0–4.2) |
Blackwall Tunnel Approach (PM10) | 5 | 4 | |||||||
Brent, North Circular (PM2.5) | 5 | 4 | 109,673 | 40 | 1.5 (1.9–3.5) | 5.2 (2.7–6.9) | 80 (76–88) | 3.4 (0–8.6) | |
Brent, North Circular (PM10) | 5 | 4 | |||||||
Camden, Swiss Cottage | 4 | 1.5 | 47,250 | 30 | 1.5 (0.4–2.7) | 5.2 (2.7–6.9) | 80 (76–88) | 4.2 (0–8.6) | |
Greenwich Blackheath (PM2.5) | 5 | 10 | 34,377 | 30 | 2.5 (1.–3.5) | 7.0 (5–7.8) | 71 (63–81) | 4.4 (0–9.2) | |
Greenwich Blackheath (PM10) | 5 | 10 | |||||||
Greenwich Falconwood | 4 | 12 | 87,774 | 50 | 2.7 (1.9–3.5) | 7.5 (7.1–7.8) | 69 (63–77) | 3.3 (0–7.4) | |
Marylebone Road | 5 | 1.5 | 66,404 | 30 | 1.6 (0.9–2.2) | 7.8 (6.4–9.7) | 72 (64–81) | 1.3 (0–4.2) | |
North Kensington | 14 | 4 | -- | -- | 1.8 (0.4–2.8) | 6.8 (2.7–9.7) | 74 (63–88) | 2.6 (0–8.6) | |
Greater Tokyo | Kawasaki: Industrial Road (PM2.5) | 4 | 6 | 36,861 | 37 | 0.8 (0.6–1.1) | 22.5 (21.2–23.6) | 66 (58–73) | 1.2 (0–3.7) |
Kawasaki: Industrial Road (PM10) | 4 | 6 | |||||||
Tokyo: Ring Road No. 8 (PM2.5) | 4 | 4.5 | 66,792 | 25 | 1 (0.9–1.1) | 22.3 (21.0–23.2) | 59 (52–68) | 1.3 (0–2.5) | |
Tokyo: Ring Road No. 8 (PM10) | 4 | 1.5 | |||||||
Tokyo: Suburban Way | 10 | 16,658 | 25 | 1.7 (1.3–2.7) | 21.8 (20.4–22.6) | 66 (59–73) | 3.6 (0–10.4) | ||
Tokyo: Route 15 | 4 | 2.4 | 52,532 | 31 | 1.9 (1.5–2.4) | 22.9 (22.0–23.4) | 65 (57–71) | 5.1 (0–17.1) |
City (n) | Site (n) | Average Total PM2.5 (µg/m3) | TRWP Detection Frequency—at least One Polymer Dimer Detected (%) | TRWP Air Concentration (µg/m3) | Average Contribution to PM2.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average * | Minimum Detected | Maximum Detected | |||||||||
TRWP | Tread | TRWP | Tread | TRWP | Tread | TRWP | Tread | ||||
Los Angeles (24) | 7.09 | 21 | 0.012 | 0.006 | 0.004 | 0.002 | 0.072 | 0.04 | 0.19% | 0.10% | |
Anaheim (4) | 6.00 | 0 | ND | ND | ND | ND | ND | ND | ND | ND | |
Compton (4) | 5.00 | 25 | 0.004 | 0.002 | 0.004 | 0.002 | 0.004 | 0.002 | 0.10% | 0.05% | |
Exposition Park (4) | 8.67 | 0 | ND | ND | ND | ND | ND | ND | ND | ND | |
Long Beach North (4) | 6.00 | 0 | ND | ND | ND | ND | ND | ND | ND | ND | |
Mira Loma (4) | 11.00 | 0 | ND | ND | ND | ND | ND | ND | ND | ND | |
Pico Rivera #2 (4) | 7.25 | 100 | 0.044 | 0.022 | 0.010 | 0.005 | 0.072 | 0.04 | 0.68% | 0.34% | |
London (42) | 18.35 | 93 | 0.042 | 0.021 | 0.012 | 0.006 | 0.29 | 0.15 | 0.27% | 0.14% | |
Blackwall Tunnel Approach (5) | 26.60 | 80 | 0.104 | 0.052 | 0.030 | 0.015 | 0.29 | 0.15 | 0.49% | 0.25% | |
Brent, North Circular (5) | 27.46 | 100 | 0.032 | 0.016 | 0.016 | 0.008 | 0.056 | 0.03 | 0.11% | 0.06% | |
Camden, Swiss Cottage (4) | 19.69 | 100 | 0.027 | 0.013 | 0.015 | 0.008 | 0.054 | 0.03 | 0.13% | 0.06% | |
Greenwich Blackheath (5) | 6.23 | 100 | 0.014 | 0.007 | 0.014 | 0.007 | 0.015 | 0.01 | 0.37% | 0.19% | |
Greenwich Falconwood (4) | 5.87 | 100 | 0.015 | 0.008 | 0.013 | 0.007 | 0.018 | 0.01 | 0.27% | 0.14% | |
Marylebone Road (5) | 28.38 | 80 | 0.071 | 0.036 | 0.018 | 0.009 | 0.27 | 0.14 | 0.25% | 0.13% | |
North Kensington (14) | 16.09 | 93 | 0.034 | 0.017 | 0.012 | 0.006 | 0.127 | 0.06 | 0.26% | 0.13% | |
Greater Tokyo (16) | 12.48 | 88 | 0.022 | 0.011 | 0.010 | 0.005 | 0.1 | 0.05 | 0.17% | 0.09% | |
Kawasaki: Industrial Road (4) | 15.20 | 100 | 0.028 | 0.014 | 0.022 | 0.011 | 0.037 | 0.02 | 0.18% | 0.09% | |
Tokyo: Ring Road No. 8 (4) | 11.55 | 100 | 0.038 | 0.019 | 0.014 | 0.007 | 0.1 | 0.05 | 0.33% | 0.17% | |
Tokyo: Route 15 (4) | 11.95 | 50 | 0.012 | 0.006 | 0.015 | 0.008 | 0.023 | 0.01 | 0.10% | 0.05% | |
Tokyo: Suburban Way (4) | 11.23 | 100 | 0.012 | 0.006 | 0.010 | 0.005 | 0.016 | 0.01 | 0.10% | 0.05% | |
Overall (82) | 14.50 | 72 | 0.030 | 0.015 | 0.004 | 0.002 | 0.29 | 0.15 | 0.23% | 0.12% |
City (n) | Site (n) | Average PM10 (µg/m3) | TRWP Air Concentration (µg/m3) | Average Contribution to PM10 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TRWP Detection Frequency—at least One Polymer Dimer Detected (%) | Average | Minimum Detected | Maximum Detected | ||||||||
TRWP | Tread | TRWP | Tread | TRWP | Tread | TRWP | Tread | ||||
London (15) | 47.43 | 100 | 1.25 | 0.62 | 0.34 | 0.17 | 4.48 | 2.24 | 2.40% | 1.20% | |
Blackwall Tunnel Approach (5) | 53.10 | 100 | 1.35 | 0.67 | 0.48 | 0.24 | 3.24 | 1.62 | 2.48% | 1.24% | |
Brent, North Circular (5) | 67.73 | 100 | 1.91 | 0.95 | 0.45 | 0.225 | 4.48 | 2.24 | 2.46% | 1.23% | |
Greenwich Blackheath (5) | 21.47 | 100 | 0.49 | 0.24 | 0.34 | 0.17 | 0.73 | 0.365 | 2.27% | 1.13% | |
Greater Tokyo (8) | 26.06 | 100 | 0.30 | 0.15 | 0.081 | 0.0405 | 0.66 | 0.33 | 1.07% | 0.53% | |
Kawasaki: Industrial Road (4) | 30.65 | 100 | 0.51 | 0.26 | 0.35 | 0.175 | 0.66 | 0.33 | 1.69% | 0.84% | |
Tokyo: Ring Road No. 8 (4) | 21.48 | 100 | 0.095 | 0.05 | 0.081 | 0.0405 | 0.1 | 0.05 | 0.45% | 0.23% | |
Grand Total (23) | 40.00 | 100 | 0.92 | 0.46 | 0.081 | 0.0405 | 4.48 | 2.24 | 1.94% | 0.97% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere 2019, 10, 99. https://doi.org/10.3390/atmos10020099
Panko JM, Hitchcock KM, Fuller GW, Green D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere. 2019; 10(2):99. https://doi.org/10.3390/atmos10020099
Chicago/Turabian StylePanko, Julie M., Kristen M. Hitchcock, Gary W. Fuller, and David Green. 2019. "Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments" Atmosphere 10, no. 2: 99. https://doi.org/10.3390/atmos10020099
APA StylePanko, J. M., Hitchcock, K. M., Fuller, G. W., & Green, D. (2019). Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere, 10(2), 99. https://doi.org/10.3390/atmos10020099