The Fork in the Road: Histone Partitioning During DNA Replication
Abstract
:1. Introduction
"When you come to a fork in the road, take it!"Y. Berra
2. Taking the Fork in the Road
3. The Stability of the H32H42 Tetramer and Tetramer "Splitting"
3.1. Early Studies
3.2. Splitting Revisited
4. The Involvement of Histone Chaperones
5. Epigenetic Considerations
5.1. An Epigenetic Code?
5.2. Histone Methylation
5.3. Histone Acetylation
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hamkalo, B.A.; Miller, O.L., Jr. Electron microscopy of genetic activity. Ann. Rev. Biochem. 1973, 42, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Olins, A.L.; Olins, D.E. Spheroid chromatin units (v bodies). J. Cell. Biol. 1973, 59, A252. [Google Scholar]
- Olins, A.L.; Olins, D.E. Spheroid chromatin units (v bodies). Science 1974, 183, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, C.L.F. Ultrastructure of inactive chromatin. J. Cell. Biol. 1973, 59, A368. [Google Scholar]
- McKnight, S.L.; Bustin, M.; Miller, O.L., Jr. Electron microscopic analysis of chromosome metabolism in the Drosophila melanogaster embryo. Cold Spring Harb Symp Quant. Biol 1978, 42, 741–754. [Google Scholar] [CrossRef] [PubMed]
- McKnight, S.L.; Miller, O.L., Jr. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell. 1977, 12, 795–804. [Google Scholar] [CrossRef]
- Groth, A. Replicating chromatin: A tale of histones. Biochem. Cell Biol. 2009, 87, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, A.T. Assembling chromatin: The long and winding road. Biochim Biophys Acta 2013, 1819, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, W.; Chen, S.; Zhu, B. A model for mitotic inheritance of histone lysine methylation. EMBO Reports 2012, 13, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.L.; Chen, X.; Walters, M.A.; Zhang, Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from rtt109 histone acetyltransferases. Crit Rev. Biochem Mol. Biol 2015, 50, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.I.; Stafford, J.M.; Reinberg, D. Epigenetic inheritance: Histone bookmarks across generations. Trends Cell. Biol. 2014, 24, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Budhavarapu, V.N.; Chavez, M.; Tyler, J.K. How is epigenetic information maintained through DNA replication? Epigen. Chrom. 2013, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Gurard-Levin, Z.A.; Quivy, J.P.; Almouzni, G. Histone chaperones: Assisting histone traffic and nucleosome dynamics. Ann. Rev. Biochem. 2014, 83, 487–517. [Google Scholar] [CrossRef] [PubMed]
- Ray-Gallet, D.; Almouzni, G. Molecular biology. Mixing or not mixing. Science 2010, 328, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Commerford, S.L.; Carsten, A.L.; Cronkite, E.P. Histone turnover within nonproliferating cells. Proc. Natl Acad Sci U.S.A 1982, 79, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, S.; Ivanova, E.; Djondjurov, L. Metabolic behaviors of the core histones in proliferating friend cells. Exp. Cell. Res. 1989, 180, 94–105. [Google Scholar] [CrossRef]
- Annunziato, A.T.; Seale, R.L. Maturation of nucleosomal and nonnucleosomal components of nascent chromatin: Differential requirement for concurrent protein synthesis. Biochemistry 1982, 21, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- Seale, R.L. Studies on the mode of segregation of histone nu bodies during replication in HeLa cells. Cell. 1976, 9, 423–429. [Google Scholar] [CrossRef]
- Seale, R.L.; Simpson, R.T. Effects of cycloheximide on chromatin biosynthesis. J. Molec. Biol. 1975, 94, 479–501. [Google Scholar] [CrossRef]
- Cremisi, C.; Chestier, A.; Yaniv, M. Assembly of SV40 and polyoma minichromosomes during replication. Cold Spring Harb. Symp. Quant. Biol. 1978, 42, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, H. Cooperative alignment of nu bodies during chromosome replication in the presence of cycloheximide. Cell. 1976, 9, 419–422. [Google Scholar] [CrossRef]
- Krude, T.; Knippers, R. Transfer of nucleosomes from parental to replicated chromatin. Molec. Cell. Biol. 1991, 11, 6257–6267. [Google Scholar] [PubMed]
- Yuan, G.C.; Liu, Y.J.; Dion, M.F.; Slack, M.D.; Wu, L.F.; Altschuler, S.J.; Rando, O.J. Genome-scale identification of nucleosome positions in S-cerevisiae. Science 2005, 309, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Prior, C.P.; Cantor, C.R.; Johnson, E.M.; Allfrey, V.G. Incorporation of exogenous pyrene-labeled histone into physarum chromatin: A system for studying changes in nucleosomes assembled in vivo. Cell. 1980, 20, 597–608. [Google Scholar] [CrossRef]
- Camerini-Otero, R.D.; Felsenfeld, G. Histone H3 disulfide dimers and nucleosome structure. Proc. Natl Acad Sci U.S.A 1977, 74, 5519–5523. [Google Scholar] [CrossRef] [PubMed]
- Thiriet, C.; Hayes, J.J. A novel labeling technique reveals a function for histone H2A/H2B dimer tail domains in chromatin assembly in vivo. Genes Devel. 2001, 15, 2048–2053. [Google Scholar] [CrossRef] [PubMed]
- Meselson, M.; Stahl, F.W. The replication of DNA in Escherichia coli. Proc. Natl Acad Sci U S A 1958, 44, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Leffak, I.M. Conservative segregation of nucleosome core histones. Nature 1984, 307, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Leffak, I.M.; Grainger, R.; Weintraub, H. Conservative assembly and segregation of nucleosomal histones. Cell. 1977, 12, 837–845. [Google Scholar] [CrossRef]
- Jackson, V. In vivo studies on the dynamics of histone-DNA interaction: Evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 1990, 29, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Yamasu, K.; Senshu, T. Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication. J. Biochem (Tokyo) 1990, 107, 15–20. [Google Scholar] [PubMed]
- Sogo, J.M.; Stahl, H.; Koller, T.; Knippers, R. Structure of replicating simian virus chromosomes. J. Mol. Biol. 1986, 189, 189–204. [Google Scholar] [CrossRef]
- Gruss, C.; Wu, J.R.; Koller, T.; Sogo, J.M. Disruption of the nucleosomes at the replication fork. EMBO J. 1993, 12, 4533–4545. [Google Scholar] [PubMed]
- Cusick, M.F.; DePamphilis, M.L.; Wassarman, P.M. Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes. J. Mol. Biol. 1984, 178, 249–271. [Google Scholar] [CrossRef]
- Randall, S.K.; Kelly, T.J. The fate of parental nucleosomes during SV40 DNA replication. J. Biol Chem 1992, 267, 14259–14265. [Google Scholar]
- Vestner, B.; Waldmann, T.; Gruss, C. Histone octamer dissociation is not required for in vitro replication of simian virus 40 minichromosomes. J. Biol Chem 2000, 275, 8190–8195. [Google Scholar] [CrossRef] [PubMed]
- Katan-Khaykovich, Y.; Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad Sci U.S.A 2011, 108, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Dion, M.F.; Kaplan, T.; Kim, M.; Buratowski, S.; Friedman, N.; Rando, O.J. Dynamics of replication-independent histone turnover in budding yeast. Science 2007, 315, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Rufiange, A.; Jacques, P.E.; Bhat, W.; Robert, F.; Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3K56 acetylation and Asf1. Molec. Cell. 2007, 27, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Jamai, A.; Imoberdorf, R.M.; Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Molecular Cell. 2007, 25, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Long, C.; Chen, X.; Huang, C.; Chen, S.; Zhu, B. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 2010, 328, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, Z.; Xu, M.; Li, Y.; Li, Z.; Ma, Y.; Cai, T.; Zhu, B. H3.3-H4 tetramer splitting events feature cell-type specific enhancers. PLoS genetics 2013, 9, e1003558. [Google Scholar] [CrossRef] [PubMed]
- Mito, Y.; Henikoff, J.G.; Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genetics 2005, 37, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Elsaesser, S.J.; Goldberg, A.D.; Allis, C.D. New functions for an old variant: No substitute for histone H3.3. Curr Opin Genet. Dev. 2010, 20, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell. 2002, 9, 1191–1200. [Google Scholar] [CrossRef]
- Schwartz, B.E.; Ahmad, K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Devel. 2005, 19, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Ray-Gallet, D.; Woolfe, A.; Vassias, I.; Pellentz, C.; Lacoste, N.; Puri, A.; Schultz, D.C.; Pchelintsev, N.A.; Adams, P.D.; Jansen, L.E.; et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Molec. Cell. 2011, 44, 928–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Zang, C.; Wei, G.; Cui, K.; Peng, W.; Zhao, K.; Felsenfeld, G. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat. Genet. 2009, 41, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Thiriet, C.; Hayes, J.J. Histone dynamics during transcription: Exchange of H2A/H2B dimers and H3/H4 tetramers during Pol II elongation. Results Probl Cell. Differ. 2006, 41, 77–90. [Google Scholar] [PubMed]
- Kimura, H.; Cook, P.R. Kinetics of core histones in living human cells: Little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell. Biol. 2001, 153, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Linger, J.; Tyler, J.K. Global replication-independent histone H4 exchange in budding yeast. Eukaryot Cell. 2006, 5, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Baxevanis, A.D.; Godfrey, J.E.; Moudrianakis, E.N. Associative behavior of the histone (H3-H4)2 tetramer - dependence on ionic environment. Biochemistry 1991, 30, 8817–8823. [Google Scholar] [CrossRef] [PubMed]
- Tagami, H.; Ray-Gallet, D.; Almouzni, G.; Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004, 116, 51–61. [Google Scholar] [CrossRef]
- English, C.M.; Maluf, N.K.; Tripet, B.; Churchill, M.E.; Tyler, J.K. Asf1 binds to a heterodimer of histones H3 and H4: A two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 2005, 44, 13673–13682. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.J.; Gu, Y.L.; Yakovleva, T.; Tong, K.; Barrows, C.; Strack, C.L.; Cook, R.G.; Mizzen, C.A.; Annunziato, A.T. Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J. Biol. Chem. 2006, 281, 9287–9296. [Google Scholar] [CrossRef] [PubMed]
- Elsasser, S.J.; Huang, H.; Lewis, P.W.; Chin, J.W.; Allis, C.D.; Patel, D.J. Daxx envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 2012, 491, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, A.T. Split decision: What happens to nucleosomes during DNA replication? J. Biol. Chem 2005, 280, 12065–12068. [Google Scholar] [CrossRef] [PubMed]
- English, C.M.; Adkins, M.W.; Carson, J.J.; Churchill, M.E.A.; Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell. 2006, 127, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Natsume, R.; Eitoku, M.; Akai, Y.; Sano, N.; Horikoshi, M.; Senda, T. Structure and function of the histone chaperone Cia/Asf1 complexed with histones H3 and H4. Nature 2007, 446, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Mousson, F.; Lautrette, A.; Thuret, J.Y.; Agez, M.; Courbeyrette, G.; Amigues, B.; Becker, E.; Neumann, J.M.; Guerois, R.; Mann, C.; et al. Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5975–5980. [Google Scholar] [CrossRef] [PubMed]
- Antczak, A.J.; Tsubota, T.; Kaufman, P.D.; Berger, J.M. Structure of the yeast histone H3-Asf1 interaction: Implications for chaperone mechanism, species-specific interactions, and epigenetics. BMC Struct Biol 2006, 6, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Agez, M.; Chen, J.; Guerois, R.; van Heijenoort, C.; Thuret, J.Y.; Mann, C.; Ochsenbein, F. Structure of the histone chaperone Asf1 bound to the histone H3 C-terminal helix and functional insights. Structure 2007, 15, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Mello, J.A.; Sillje, H.H.W.; Roche, D.M.J.; Kirschner, D.B.; Nigg, E.A.; Almouzni, G. Human Asf1 and Caf-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Reports 2002, 3, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Krawitz, D.C.; Kama, T.; Kaufman, P.D. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Molec. Cell. Biol. 2002, 22, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Sanematsu, F.; Takami, Y.; Barman, H.K.; Fukagawa, T.; Ono, T.; Shibahara, K.I.; Nakayama, T. Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J. Biol. Chem. 2006, 281, 13817–13827. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.D.; Banaszynski, L.A.; Noh, K.M.; Lewis, P.W.; Elsaesser, S.J.; Stadler, S.; Dewell, S.; Law, M.; Guo, X.; Li, X.; et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010, 140, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Latreille, D.; Bluy, L.; Benkirane, M.; Kiernan, R.E. Identification of histone 3 variant 2 interacting factors. Nucleic Acids Research 2014, 42, 3542–3550. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.I.; Fillingham, J.; Li, G.; Zheng, H.; Voigt, P.; Kuo, W.H.; Seepany, H.; Gao, Z.; Day, L.A.; Greenblatt, J.F.; et al. The program for processing newly synthesized histones H3.1 and H4. Nat. Struct. Molec. Biol. 2010, 17, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Tyler, J.K.; Collins, K.A.; Prasad-Sinha, J.; Amiott, E.; Bulger, M.; Harte, P.J.; Kobayashi, R.; Kadonaga, J.T. Interaction between the Drosophila CAF-1 and Asf1 chromatin assembly factors. Molec. Cell. Biol. 2001, 21, 6574–6584. [Google Scholar]
- Schulz, L.L.; Tyler, J.K. The histone chaperone Asf1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB J. 2006, 20, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.A.; Lam, W.M.; Burgers, P.M.; Kaufman, P.D. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Devel. 2005, 19, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Groth, A.; Corpet, A.; Cook, A.J.L.; Roche, D.; Bartek, J.; Lukas, J.; Almouzni, G. Regulation of replication fork progression through histone supply and demand. Science 2007, 318, 1928–1931. [Google Scholar] [CrossRef] [PubMed]
- Jasencakova, Z.; Scharf, A.N.; Ask, K.; Corpet, A.; Imhof, A.; Almouzni, G.; Groth, A. Replication stress interferes with histone recycling and predeposition marking of new histones. Molec. Cell. 2010, 37, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Ishimi, Y.; Komamura, Y.; You, Z.Y.; Kimura, H. Biochemical function of mouse minichromosome maintenance 2 protein. J. Biol. Chem. 1998, 273, 8369–8375. [Google Scholar] [CrossRef] [PubMed]
- Holland, L.; Gauthier, L.; Bell-Rogers, P.; Yankulov, K. Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme. Eur. J. Biochem. FEBS 2002, 269, 5192–5202. [Google Scholar] [CrossRef]
- Foltman, M.; Evrin, C.; De Piccoli, G.; Jones, R.C.; Edmondson, R.D.; Katou, Y.; Nakato, R.; Shirahige, K.; Labib, K. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell. Rep. 2013, 3, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Richet, N.; Liu, D.; Legrand, P.; Velours, C.; Corpet, A.; Gaubert, A.; Bakail, M.; Moal-Raisin, G.; Guerois, R.; Compper, C.; et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with Asf1 at the replication fork. Nucleic Acids Res. 2015, 43, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Ohsumi, T.; Tada, S.; Natsume, R.; Kundu, L.R.; Nozaki, N.; Senda, T.; Enomoto, T.; Horikoshi, M.; Seki, M. Roles of histone chaperone Cia/Asf1 in nascent DNA elongation during nucleosome replication. Genes Cells Mol. Cell. Mech. 2011, 16, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Shibahara, K.; Stillman, B. Replication-dependent marking of DNA by PCNA facilitates Caf-1-coupled inheritance of chromatin. Cell 1999, 96, 575–585. [Google Scholar] [CrossRef]
- Gerard, A.; Koundrioukoff, S.; Ramillon, V.; Sergere, J.C.; Mailand, N.; Quivy, J.P.; Almouzni, G.V. The replication kinase cdc7-dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Reports 2006, 7, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Roemer, S.C.; Port, A.M.; Churchill, M.E. Caf-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res. 2012, 40, 11229–11239. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.D.; Zhou, H.; Dar, M.A.; Zhang, Z.; Luger, K. Yeast Caf-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res. 2012, 40, 10139–10149. [Google Scholar] [CrossRef] [PubMed]
- Radman-Livaja, M.; Verzijlbergen, K.F.; Weiner, A.; van Welsem, T.; Friedman, N.; Rando, O.J.; van Leeuwen, F. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. Plos Biol. 2011, 9, e1001075. [Google Scholar] [CrossRef] [PubMed]
- Alabert, C.; Groth, A. Chromatin replication and epigenome maintenance. Nature Rev. Molec. Cell. Biol. 2012, 13, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xu, M.; Zhu, B. Epigenetic inheritance mediated by histone lysine methylation: Maintaining transcriptional states without the precise restoration of marks? Phil. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20110332. [Google Scholar] [CrossRef] [PubMed]
- Rivera, C.; Gurard-Levin, Z.A.; Almouzni, G.; Loyola, A. Histone lysine methylation and chromatin replication. Biochim. Biophys. Acta 2014, 1839, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Gurard-Levin, Z.A.; Almouzni, G. Histone modifications and a choice of variant: A language that helps the genome express itself. F1000Prime Rep. 2014, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.D.; Rando, O.J. Chromatin as a potential carrier of heritable information. Curr. Opin. Cell. Biol. 2010, 22, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.; Turner, B.M. The inactive X-chromosome in female mammals is distinguished by a lack of histone-H4 acetylation, a cytogenetic marker for gene expression. Cell 1993, 74, 281–289. [Google Scholar] [CrossRef]
- Boggs, B.A.; Connors, B.; Sobel, R.E.; Chinault, A.C.; Allis, C.D. Reduced levels of histone H3 acetylation on the inactive X chromosome in human females. Chromosoma 1996, 105, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, N.D.; Keohane, A.M.; Turner, B.M. Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum. Genet. 1996, 97, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Honda, B.M.; Candido, P.M.; Dixon, G.H. Histone methylation, its occurrence in different cell types and relation to histone H4 metabolism in developing trout testis. J. Biol. Chem. 1975, 250, 8686–8689. [Google Scholar] [PubMed]
- Peters, A.H.F.M.; Mermoud, J.E.; OCarroll, D.; Pagani, M.; Schweizer, D.; Brockdorff, N.; Jenuwein, T. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 2002, 30, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Reinberg, D.; Chuikov, S.; Farnham, P.; Karachentsev, D.; Kirmizis, A.; Kuzmichev, A.; Margueron, R.; Preissner, N.T.S.; Sarma, K.; Abate-Shen, C.; et al. Steps toward understanding the inheritance of repressive methyl-lysine marks in histones. Cold Spring Harb. Symp. Quant. Biol. 2004, 69, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.C.; Nishioka, K.; Sarma, K.; Steward, R.; Reinberg, D.; Allis, C.D. Mitotic-specific methylation of histone H4 lys 20 follows increased Pr-Set7 expression and its localization to mitotic chromosomes. Genes. Dev. 2002, 16, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Noma, K.; Grewal, S.I.S. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc. Natl. Acad. Sci. USA 2002, 99, 16438–16445. [Google Scholar] [CrossRef] [PubMed]
- Fischle, W.; Tseng, B.S.; Dormann, H.L.; Ueberheide, B.M.; Garcia, B.A.; Shabanowitz, J.; Hunt, D.F.; Funabiki, H.; Allis, C.D. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005, 438, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.A.; Allis, C.D.; Annunziato, A.T. Parental nucleosomes segregated to newly replicated chromatin are underacetylated relative to those assembled de novo. Biochemistry 1993, 32, 13615–13623. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.A.; Dadd, C.A.; Allis, C.D.; Annunziato, A.T. Analysis of nucleosome assembly and histone exchange using antibodies specific for acetylated H4. Biochemistry 1993, 32, 13605–13614. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.I.S.; Elgin, S.C.R. Transcription and RNA interference in the formation of heterochromatin. Nature 2007, 447, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.I.; Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 2007, 8, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009, 457, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Holoch, D.; Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 2015, 16, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, E.; Bayne, E.H.; Allshire, R.C. On the connection between RNAi and heterochromatin at centromeres. Cold Spring Harb. Symp. Quant. Biol. 2011, 75, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Francis, N.J. Mechanisms of epigenetic inheritance: Copying of polycomb repressed chromatin. Cell. Cycle 2009, 8, 3521–3526. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; Kingston, R.E. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Molec. Cell. 2013, 49, 808–824. [Google Scholar] [CrossRef] [PubMed]
- Francis, N.J.; Follmer, N.E.; Simon, M.D.; Aghia, G.; Butler, J.D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 2009, 137, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Lengsfeld, B.M.; Berry, K.N.; Ghosh, S.; Takahashi, M.; Francis, N.J. A polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins. Sci. Rep. 2012, 2, 661. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.M.; Follmer, N.E.; Lengsfeld, B.M.; Madamba, E.V.; Seong, S.; Grau, D.J.; Francis, N.J. A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro. Molec. Cell. 2012, 46, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Margueron, R.; Justin, N.; Ohno, K.; Sharpe, M.L.; Son, J.; Drury, W.J., 3rd; Voigt, P.; Martin, S.R.; Taylor, W.R.; De Marco, V.; et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009, 461, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Margueron, R.; Reinberg, D. The polycomb complex PRC2 and its mark in life. Nature 2011, 469, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Petruk, S.; Sedkov, Y.; Johnston, D.M.; Hodgson, J.W.; Black, K.L.; Kovermann, S.K.; Beck, S.; Canaani, E.; Brock, H.W.; Mazo, A. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 2012, 150, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Petruk, S.; Black, K.L.; Kovermann, S.K.; Brock, H.W.; Mazo, A. Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication. Nat. Commun. 2013, 4, 2841. [Google Scholar] [CrossRef] [PubMed]
- Gaydos, L.J.; Wang, W.; Strome, S. Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 2014, 345, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Alabert, C.; Bukowski-Wills, J.C.; Lee, S.B.; Kustatscher, G.; Nakamura, K.; de Lima Alves, F.; Menard, P.; Mejlvang, J.; Rappsilber, J.; Groth, A. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nature Cell. Biol. 2014, 16, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Scharf, A.N.; Barth, T.K.; Imhof, A. Establishment of histone modifications after chromatin assembly. Nucleic Acids Res. 2009, 37, 5032–5040. [Google Scholar] [CrossRef] [PubMed]
- Sweet, S.M.; Li, M.; Thomas, P.M.; Durbin, K.R.; Kelleher, N.L. Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J. Biol. Chem. 2010, 285, 32778–32786. [Google Scholar] [CrossRef] [PubMed]
- Zee, B.M.; Britton, L.M.; Wolle, D.; Haberman, D.M.; Garcia, B.A. Origins and formation of histone methylation across the human cell cycle. Molec. Cell. Biol. 2012, 32, 2503–2514. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, J.J.; Yang, H.; Kelleher, N.L.; Mizzen, C.A. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Molec. Cell. Biol. 2008, 28, 468–486. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, N.A.; Bell, O.; Hodges, C.; Miller, E.L.; Neel, D.S.; Crabtree, G.R. Dynamics and memory of heterochromatin in living cells. Cell 2012, 149, 1447–1460. [Google Scholar] [CrossRef] [PubMed]
- Alabert, C.; Barth, T.K.; Reveron-Gomez, N.; Sidoli, S.; Schmidt, A.; Jensen, O.N.; Imhof, A.; Groth, A. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 2015, 29, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Carrillo, A.; Wangh, L.J.; Allfrey, V.G. Processing of newly synthesized histone molecules. Science 1975, 190, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Jackson, V.; Shires, A.; Tanphaichitr, N.; Chalkley, R. Modifications to histones immediately after synthesis. J. Molec. Biol. 1976, 104, 471–483. [Google Scholar] [CrossRef]
- Allis, C.D.; Chicoine, L.G.; Richman, R.; Schulman, I.G. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc. Natl Acad Sci USA 1985, 82, 8048–8052. [Google Scholar] [CrossRef] [PubMed]
- Sobel, R.E.; Cook, R.G.; Perry, C.A.; Annunziato, A.T.; Allis, C.D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad Sci USA 1995, 92, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Loyola, A.; Bonaldi, T.; Roche, D.; Imhof, A.; Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Molec. Cell. 2006, 24, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Carson, J.J.; Feser, J.; Tamburini, B.; Zabaronick, S.; Linger, J.; Tyler, J.K. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 2008, 134, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Zhou, H.; Horazdovsky, B.; Zhang, K.L.; Xu, R.M.; Zhang, Z.G. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 2007, 315, 653–655. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Ruiz, M.; Gonzalez-Prieto, R.; Prado, F. Histone H3K56 acetylation, CAF1, and rtt106 coordinate nucleosome assembly and stability of advancing replication forks. PLoS Genet. 2011, 7, e1002376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recht, J.; Tsubota, T.; Tansy, J.C.; Diaz, R.L.; Berger, J.M.; Zhang, X.; Garcia, B.A.; Shabanowitzn, J.; Burlingame, A.L.; Hunt, D.F.; et al. Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl Acad Sci USA 2006, 103, 6988–6993. [Google Scholar] [CrossRef] [PubMed]
- Parthun, M.R. Histone acetyltransferase 1: More than just an enzyme? Biochim. Biophys. Acta 2011, 1819, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Loyola, A.; Almouzni, G. Marking histone H3 variants: How, when and why? Trends Biochem. Sci. 2007, 32, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Cousens, L.S.; Alberts, B.M. Accessibility of newly synthesized chromatin to histone acetylase. J. Biol. Chem. 1982, 257, 3945–3949. [Google Scholar] [PubMed]
- Annunziato, A.T.; Seale, R.L. Histone deacetylation is required for the maturation of newly replicated chromatin. J. Biol. Chem. 1983, 258, 12675–12684. [Google Scholar] [PubMed]
- Perry, C.A.; Annunziato, A.T. Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin. Nucleic Acids Res. 1989, 17, 4275–4291. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.A.; Annunziato, A.T. Histone acetylation reduces H1-mediated nucleosome interactions during chromatin assembly. Exp. Cell. Res. 1991, 196, 337–345. [Google Scholar] [CrossRef]
- Spencer, V.A.; Davie, J.R. Dynamically acetylated histone association with transcriptionally active and competent genes in the avian adult beta-globin gene domain. J. Biol. Chem. 2001, 276, 34810–34815. [Google Scholar] [CrossRef] [PubMed]
- Waterborg, J.H. Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem. Cell Biol. 2002, 80, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Dion, M.F.; Altschuler, S.J.; Wu, L.F.; Rando, O.J. Genomic characterization reveals a simple histone H4 acetylation code. Proc. Natl. Acad. Sci. USA 2005, 102, 5501–5506. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, R.; Wellinger, R.E.; Sogo, J.M. Nucleosome positioning at the replication fork. EMBO J. 2001, 20, 7294–7302. [Google Scholar] [CrossRef] [PubMed]
- Segal, E.; FondufeMittendorf, Y.; Chen, L.Y.; Thastrom, A.; Field, Y.; Moore, I.K.; Wang, J.P.Z.; Widom, J. A genomic code for nucleosome positioning. Nature 2006, 442, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiong, J.; Xu, M.; Chen, S.; Zhu, B. Symmetrical modification within a nucleosome is not required globally for histone lysine methylation. EMBO Rep. 2011, 12, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Voigt, P.; LeRoy, G.; Drury, W.J., 3rd; Zee, B.M.; Son, J.; Beck, D.B.; Young, N.L.; Garcia, B.A.; Reinberg, D. Asymmetrically modified nucleosomes. Cell 2012, 151, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Schubeler, D.; MacAlpine, D.M.; Scalzo, D.; Wirbelauer, C.; Kooperberg, C.; vanLeeuwen, F.; Gottschling, D.E.; ONeill, L.P.; Turner, B.M.; Delrow, J.; et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 2004, 18, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Kaplan, T.; Kim, M.; Buratowski, S.; Schreiber, S.L.; Friedman, N.; Rando, O.J. Single-nucleosome mapping of histone modifications in S-cerevisiae. Plos Biology 2005, 3, 1753–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annunziato, A.T. The Fork in the Road: Histone Partitioning During DNA Replication. Genes 2015, 6, 353-371. https://doi.org/10.3390/genes6020353
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes. 2015; 6(2):353-371. https://doi.org/10.3390/genes6020353
Chicago/Turabian StyleAnnunziato, Anthony T. 2015. "The Fork in the Road: Histone Partitioning During DNA Replication" Genes 6, no. 2: 353-371. https://doi.org/10.3390/genes6020353
APA StyleAnnunziato, A. T. (2015). The Fork in the Road: Histone Partitioning During DNA Replication. Genes, 6(2), 353-371. https://doi.org/10.3390/genes6020353