WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, SC15 Inoculation, and Detection of SMV Virus
2.2. RNA Extraction, Library Preparation, and Sequencing
2.3. Analysis of RNA-Seq Data
2.4. Gene Co-Expression Network Analysis
2.5. RT-qPCR Analysis
2.6. SOD, CAT, POD Activity, and H2O2 Content Assays
3. Results
3.1. Detection of SMV Virus in Soybean Lines
3.2. Transcriptome Sequencing Data Analysis
3.3. Identification of DEGs
3.4. Functional Annotation of DEGs
3.5. Gene Co-Expression Network Analysis
3.6. Validation of RNA-Seq Data by RT-qPCR
3.7. KEGG Pathway Enrichment Analysis of DEGs of Eight Modules
3.8. Key Regulatory Pathways in the Plant–Pathogen Interaction Pathway, MAPK Signaling Pathway, and Plant Hormone Signal Transduction Pathway Analysis
3.9. Assay of SOD, CAT, and POD Activitives and H2O2 Level in X149
4. Discussion
4.1. flg22 Regulatory Pathway as Crucial SC15-Responsive Pathway
4.2. Ca2+ and H2O2 Regulatory Pathways as Crucial SC15-Responsive Pathways
4.3. ABA Regulatory Pathway as Crucial SC15-Responsive Pathway
4.4. Candidate SC15-Resistance Hub Gene Mining
4.5. Change of Antioxidant Enzyme Activities and H2O2 Content in X149 under SC15 Infection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, J.H.; Bailey, T.B.; Benner, H.I.; Tachibana, H.; Durand, D.P. Soybean mosaic virus: Effects of primary disease incidence on yield and seed quality. Plant Dis. 1987, 71, 237–239. [Google Scholar] [CrossRef]
- Ren, R.; Liu, S.C.; Karthikeyan, A.; Wang, T.; Niu, H.P.; Yin, J.L.; Yang, Y.H.; Wang, L.Q.; Yang, Q.H.; Zhi, H.J.; et al. Fine-mapping and identification of a novel locus Rsc15 underlying soybean resistance to soybean mosaic virus. Theor. Appl. Genet. 2017, 130, 2395–2410. [Google Scholar]
- Wrather, J.A.; Anderson, T.R.; Arsyad, D.M.; Tan, Y.; Ploper, L.D.; Porta-Puglia, A.; Ram, H.H.; Yorinori, J.T. Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can. J. Plant Pathol. 2001, 23, 115–121. [Google Scholar] [CrossRef]
- Usovsky, M.; Chen, P.Y.; Li, D.X.; Wang, A.M.; Shi, A.N.; Zheng, C.M.; Shakiba, E.; Lee, D.H.; Vieira, C.C.; Lee, Y.C.; et al. Decades of genetic research on soybean mosaic virus resistance in soybean. Viruses 2022, 14, 1122. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanaka, T.; Iida, W.; Tsuda, Y. Studies on virus diseases and causal viruses of soybean in Japan. Bull. Tohoku Natl. Agric. Exp. Stn. 1980, 62, 1–130. [Google Scholar]
- Cho, E.K.; Goodman, R.M. Strains of soybean mosaic virus: Classification based on virulence in resistant soybean cultivars. Phytopathology 1979, 69, 467–470. [Google Scholar] [CrossRef]
- Guo, D.Q.; Zhi, H.J.; Wang, Y.W.; Gai, J.Y.; Zhou, X.A.; Yang, C.L.; Li, K.; Chao, L.H. Identifcation and distribution of soybean mosaic virus strains in Middle and Northern Huang Huai Region of China. Chin. J. Oil Crop Sci. 2005, 27, 64–68. [Google Scholar]
- Li, K.; Xia, Y.C.; Wang, D.G.; Yang, Y.Q.; Ren, R.; Gao, L.; Zhang, K.; Zhi, H.J. Analysis of dynamic change of soybean mosaic virus strains in Heilongjiang province of China. Soybean Sci. 2014, 33, 880–884. [Google Scholar]
- Jiang, H.; Li, K.; Gai, J. Agrobacterium rhizogenes-induced soybean hairy roots versus soybean mosaic virus (ARISHR-SMV) is an efficient pathosystem for studying soybean-virus interactions. Plant Methods 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Wang, X.Q.; Gai, J.Y.; Pu, Z.Q. Classifcation and distribution of strain groups of soybean mosaic virus in middle and lower Huang-Huai and Changjiang valleys. Soybean Sci. 2003, 22, 102–107. [Google Scholar]
- Wang, Y.W.; Zhi, H.J.; Guo, D.Q.; Gai, J.Y.; Chen, Q.S.; Li, K.; Li, H.C. Classifcation and distribution of strain groups of soybean mosaic virus in northern China spring planting soybean region. Soybean Sci. 2005, 24, 263–268. [Google Scholar]
- Wang, D.G.; Li, H.W.; Zhi, H.J.; Tian, Z.; Hu, C.; Hu, G.Y.; Zhi, H.J.; Zhang, L. Identifcation of strains and screening of resistance resources to soybean mosaic virus in Anhui Province. Chin. J. Oil Crop Sci. 2014, 36, 374–379. [Google Scholar]
- Zhan, Y.; Zhi, H.J.; Yu, D.Y.; Gai, J.Y. Identifcation and distribution of SMV strains in Huang-Huai valleys. Sci. Agric. Sin. 2006, 39, 2009–2015. [Google Scholar]
- Galvez, L.C.; Banerjee, J.; Pinar, H.; Mitra, A. Engineered plant virus resistance. Plant Sci. 2014, 228, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Widyasari, K.; Alazem, M.; Kim, K.H. Soybean resistance to soybean mosaic virus. Plants 2020, 9, 219. [Google Scholar] [CrossRef]
- Hayes, A.J.; Ma, G.R.; Buss, G.R.; Maroof, M.S. Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci. 2000, 40, 1434–1437. [Google Scholar] [CrossRef]
- Jin, T.T.; Yin, J.L.; Wang, T.; Xue, S.; Li, B.W.; Zong, T.X.; Yang, Y.H.; Liu, H.; Liu, M.Z.; Xu, K.; et al. RSC3K of soybean cv. Kefeng No. 1 confers resistance to soybean mosaic virus by interacting with the viral protein P3. J. Integr. Plant Biol. 2022, 65, 838–853. [Google Scholar] [CrossRef]
- Luan, H.X.; Zhong, Y.K.; Wang, D.G.; Ren, R.; Gao, L.; Zhi, H.J. Genetic analysis and fine-mapping of soybean mosaic virus SC7 and SC13 resistance genes in soybean (Glycine max). Crop Pasture Sci. 2020, 71, 477–483. [Google Scholar] [CrossRef]
- Shen, Y.; Xie, L.J.; Chen, B.Y.; Cai, H.; Chen, Y.Y.; Zhi, H.J.; Li, K. Fine mapping of the RSC9 gene and preliminary functional analysis of candidate resistance genes in soybean (Glycine max). Plant Breed. 2022, 141, 49–62. [Google Scholar] [CrossRef]
- Wang, D.G.; Li, K.; Zhi, H.J. Progresses of resistance on soybean mosaic virus in soybean. Sci. Agric. Sin. 2018, 51, 3040–3059. [Google Scholar]
- Wang, D.G.; Chen, S.N.; Huang, Z.P.; Yu, G.Y.; Wu, Q.; Hu, G.Y.; Li, J.K. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC3 in soybean cultivar Wandou 33. Chin. J. Oil Crop Sci. 2019, 41, 531–536. [Google Scholar]
- Lin, J.; Lan, Z.J.; Hou, W.H.; Yang, C.Y.; Wang, D.G.; Zhang, M.C.; Zhi, H.J. Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections. Plant Sci. 2020, 292, 110367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, J.L.; Wang, L.; Yang, M.P.; Hu, K.F.; Li, W.W.; Sun, X.H.; Xue, H.; Dong, Q.Z.; Zhang, M.M.; et al. Identifying quantitative trait loci and candidate genes conferring resistance to soybean mosaic virus SC7 by quantitative trait loci-sequencing in soybean. Front. Plant Sci. 2022, 13, 843633. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.H.; Li, W.L.; Piao, D.R.; Lin, F.; Huo, X.B.; Zhang, H.; Du, H.; Kong, Y.B.; Jin, Y.; Li, X.H.; et al. Identification of a major QTL related to resistance to soybean mosaic virus in diverse soybean genetic populations. Euphytica 2021, 217, 1–11. [Google Scholar] [CrossRef]
- Li, M.; Liu, N.X.; Ma, Q.B.; Lian, T.X.; Cai, Z.D.; Nian, H. Fine mapping and analyses of the RSC15ZH resistance candidate gene for the soybean mosaic virus. Euphytica 2020, 216, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.L.; Deng, W.J.; Liu, J.H.; Fang, Y.; Liu, Y.; Ma, T.S.; Zhang, Y.; Xue, Y.G.; Tang, X.F.; et al. Fine mapping the soybean mosaic virus resistance gene in soybean cultivar Heinong 84 and development of CAPS Markers for rapid identification. Viruses 2022, 14, 2533. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, Y.N.; Zhang, C.; Liu, X.T.; Liu, C.C.; Guo, R.; Niu, K.X.; Zhu, A.Q.; Yang, J.Y.; Chen, J.Q.; et al. Molecular mapping of the gene(s) conferring resistance to soybean mosaic virus and bean common mosaic virus in the soybean cultivar Raiden. Theor. Appl. Genet. 2019, 132, 3101–3114. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jing, Y.; Luo, Z.H.; Gao, S.N.; Teng, W.L.; Zhan, Y.H.; Qiu, L.J.; Zheng, H.K.; Li, W.B.; Han, Y.P. GmST1, which encodes a sulfotransferase, confers resistance to soybean mosaic virus strains G2 and G3. Plant. Cell Environ. 2021, 44, 2777–2792. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Wang, D.G.; Zheng, G.J.; Ma, Y.; Yang, Z.L.; Cao, D.D.; Huang, Y.T.; Zhi, H.J. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC13 in soybean[Glycine soja Sieb. & Zucc.]. J. Plant Genet. Resour. 2020, 21, 139–145. [Google Scholar]
- Tran, P.T.; Widyasari, K.; Seo, J.K.; Kim, K.H. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus. Virology 2018, 513, 153–159. [Google Scholar] [CrossRef]
- Li, N.; Yin, J.L.; Li, C.; Wang, D.G.; Yang, Y.Q.; Karthikeyan, A.; Luan, H.X.; Zhi, H.J. NB-LRR gene family required for Rsc4-mediated resistance to soybean mosaic virus. Crop Pasture Sci. 2016, 67, 541–552. [Google Scholar] [CrossRef]
- Yin, J.L.; Wang, L.Q.; Jin, T.T.; Nie, Y.; Liu, H.; Qiu, Y.L.; Yang, Y.H.; Li, B.W.; Zhang, J.J.; Wang, D.G.; et al. A cell wall-localized NLR confers resistance to soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Mol. Plant 2021, 14, 1881–1900. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.Y.; Jiang, H.; Xiang, W.Y.; Nie, Y.; Xue, S.; Zhi, H.J.; Li, K.; Gai, J.Y. A MADS-box gene is involved in soybean resistance to multiple soybean mosaic virus strains. Crop J. 2022, 10, 802–808. [Google Scholar] [CrossRef]
- Díaz-Cruz, G.A.; Cassone, B.J. A tale of survival: Molecular defense mechanisms of soybean to overcome soybean mosaic virus infection. Physiol. Mol. Plant Pathol. 2018, 102, 79–87. [Google Scholar] [CrossRef]
- Alazem, M.; Tseng, K.C.; Chang, W.C.; Seo, J.K.; Kim, K.H. Elements involved in the Rsv3-mediated extreme resistance against an avirulent strain of soybean mosaic virus. Viruses 2018, 10, 581–597. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Li, H.N.; Sun, H.Y.; Li, A.G.; Liu, S.X.; Yu, R.N.; Cui, X.Q.; Zhang, D.J.; Wuriyanghan, H.D. Salicylic acid and broad spectrum of NBS-LRR family genes are involved in SMV-soybean interactions. Plant Physiol. Biochem. 2018, 123, 132–140. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.Q.; Yin, J.L.; Shen, Y.C.; Li, B.W.; Wang, L.Q.; Zhi, H.J. Transcriptome-based discovery of genes and networks related to RSC3Q-mediated resistance to soybean mosaic virus in soybean. Crop Pasture Sci. 2020, 71, 987–995. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Shen, Y.; Chen, B.Y.; Xie, L.J.; Xiao, Y.M.; Chong, Z.; Cai, H.; Xing, G.N.; Zhi, H.J.; Li, K. Comparative transcriptome analyses between resistant and susceptible varieties in response to soybean mosaic virus infection. Agronomy 2022, 12, 1785. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.Y.; Yuan, X.X.; Chen, X.; Cui, X.Y. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Front. Microbiol. 2023, 14, 1241076–1241096. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf. 2008, 9, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Chang, X.F.; Luo, S.X.; Wang, Y.H.; Xuan, S.X.; Zhao, J.J.; Shen, S.X.; Ma, W.; Chen, X.P. Transcriptome analysis of two pepper genotypes infected with pepper mild mottle virus. Front. Genet. 2023, 14, 1164730–1164745. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.C.; Wang, P.; Fang, H.R.; Zheng, J.M.; Zhong, C.; Yang, Y.J.; Yu, W.J. Weighted gene co-expression analysis network-based analysis on the candidate pathways and hub genes in eggplant bacterial wilt-resistance: A plant research study. Int. J. Mol. Sci. 2021, 22, 13279–13298. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.P.; Yang, C.N.; Zhao, J.Z.; Chen, Y.T.; Wang, Y.X.; Li, L.; Wang, M.; Yue, A.Q.; Du, W.J. Genome-wide association mapping of resistance to soybean mosaic virus SC7 and SC15 in soybean. Chin. J. Oil Crop Sci. 2024, 46, 166–174. [Google Scholar]
- Liu, Z.M.; Faizan, M.; Chen, C.; Zheng, L.H.; Yu, F.Y. The combined analysis of transcriptome and antioxidant enzymes revealed the mechanism of EBL and ZnO NPs enhancing Styrax tonkinensis seed abiotic stress resistance. Genes 2022, 13, 2170–2188. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.B.; Pan, Y.B.; Su, Y.C.; Zou, W.H.; Xu, F.; Sun, T.T.; Grisham, M.P.; Yang, S.L.; Xu, L.P.; Que, Y.X. WGCNA identifies a comprehensive and dynamic gene co-expression network that associates with smut resistance in sugarcane. Int. J. Mol. Sci. 2022, 23, 10770. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.Y.; Li, J.Q.; Wu, S.F.; Zhu, Y.P.; Chen, Y.W.; He, F.C. Integrated nr database in protein annotation system and its localization. Comput. Eng. 2006, 32, 71–74. [Google Scholar]
- Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004, 32, 115–119. [Google Scholar] [CrossRef]
- Finn, R.D.; Alex, B.; Jody, C.; Penelope, C.; Eberhardt, R.Y.; Eddy, S.R.; Andreas, H.; Kirstie, H.; Liisa, H.; Jaina, M. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Balasubramanian, N.; Chu, G. Impute: Imputation for Microarray Data, R package version 1.42. 0; 2017. Available online: https://bioconductor.org/packages/devel/bioc/html/impute.html (accessed on 23 April 2024).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yu, G.; Shi, C.P.; Liu, L.M.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.X.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. IMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Luo, C.B.; Li, Y.Q.; Liao, H.; Yang, Y.J. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. Biotechnol. Biofuels 2018, 11, 1–20. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.Z.; Huang, J.J.; Ding, Y.; Wu, J.M.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L.P. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, 316–322. [Google Scholar] [CrossRef]
- Shen, Y.C.; Karthikeyan, A.; Yang, Y.H.; Ma, N.; Yin, J.L.; Yuan, Y.; Wang, L.Q.; Zhi, H.J. Functional Analysis of A Soybean Ferredoxin-NADP Reductase (FNR) Gene in Response to soybean Mosaic Virus. Agronomy 2021, 11, 1592. [Google Scholar] [CrossRef]
- Macho, A.P.; Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 2014, 54, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Zvereva, A.S.; Golyaev, V.; Turco, S.; Gubaeva, E.G.; Rajeswaran, R.; Schepetilnikov, M.V.; Srour, O.; Ryabova, A.L.; Boller, T.; Pooggin, M.M. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol. 2016, 211, 1020–1034. [Google Scholar] [CrossRef] [PubMed]
- Marcec, M.J.; Tanaka, K. Crosstalk between calcium and ROS signaling during flg22-triggered immune response in Arabidopsis leaves. Plants 2022, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Garnelo, G.B.; Zhang, D.; Rosas-Díaz, T.; Wei, Y.L.; Macho, A.P.; Lozano-Durán, R. The C4 protein from tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses 2019, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Allan, A.C.; Lapidot, M.; Culver, J.N.; Fluhr, R. An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol. 2001, 126, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, Y.; Pan, B.S.; Xu, W.Y.; Zhang, S.L. Transcriptome analysis of pear leaves in response to calcium treatment during botryosphaeria dothidea infection. Phytopathology 2021, 111, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Cheval, C.; Aldon, D.; Galaud, J.P.; Ranty, B. Calcium/calmodulin-mediated regulatory of plant immunity. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1766–1771. [Google Scholar] [CrossRef]
- Dekomah, S.D.; Bi, Z.Z.; Dormatey, R.; Wang, Y.H.; Haider, F.U.; Sun, C.; Yao, P.F.; Bai, J.P. The role of CDPKs in plant development, nutrient and stress signaling. Front. Genet. 2022, 13, 996203. [Google Scholar] [CrossRef]
- Nozaki, M.; Kita, K.; Kodaira, T.; Ishikawa, A. AtRbohF contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci. Biotechnol. Biochem. 2013, 77, 1323–1325. [Google Scholar] [CrossRef]
- Otulak-Kozieł, K.; Kozieł, E.; Bujarski, J.J.; Frankowska-Łukawska, J.; Torres, M.A. Respiratory burst oxidase homologs rbohd and rbohf as key modulating components of response in Turnip mosaic Virus—Arabidopsis thaliana (L.) Heyhn System. Int. J. Mol. Sci. 2020, 21, 8510. [Google Scholar] [CrossRef]
- Rentel, M.C.; Lecourieux, D.; Ouaked, F.; Usher, S.L.; Petersen, L.; Okamoto, H.; Knight, H.; Peck, S.C.; Grierson, C.S.; Hirt, H.; et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 2004, 427, 858–861. [Google Scholar] [CrossRef]
- Fujita, M.; Fujita, Y.; Noutoshi, Y.; Takahashi, F.; Narusaka, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006, 9, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Alazem, M.; Bwalya, J.; Hsuan, P.; Yu, J.; Chu, H.C.; Burch-Smith, T.; Kim, K.H. Viral synergism suppresses R gene-mediated resistance by impairing downstream defense mechanisms in soybean. Plant Physiol. 2023, 192, 3088–3105. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.N.; Martin, G.B.; Pombo, M.A.; Rosli, H.G. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. Plant Mol. Biol. 2021, 105, 65–82. [Google Scholar] [CrossRef]
- Sarowar, S.; Alam, S.T.; Makandar, R.; Lee, Y.; Trick, H.N.; Dong, Y.H.; Shah, J. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum. Mol. Plant Pathol. 2019, 20, 626–640. [Google Scholar] [CrossRef]
- Alazem, M.; Lin, K.Y.; Lin, N.S. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol. Plant Microbe Interact. 2014, 27, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Liu, S.; Zhang, Q.; Cui, M.X.; Zhao, M.; Li, N.Y.; Wang, S.N.; Wu, R.G.; Zhang, L.; Cao, Y.P.; et al. The interaction of ABA and ROS in plant growth and stress resistances. Front. Plant Sci. 2022, 13, 1050132. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K.; Kwon, S.J.; Cho, W.K.; Choi, H.S.; Kim, K.H. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci. Rep. 2014, 4, 5905. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Sun, P.P.; Kong, W.N.; Xie, Z.Z.; Li, C.L.; Liu, J.H. SnRK2. 4-mediated phosphorylation of ABF2 regulates arginine decarboxylase expression and putrescine accumulation under drought stress. New Phytol. 2023, 238, 216–236. [Google Scholar] [CrossRef]
- Jeon, E.J.; Tadamura, K.; Murakami, T.; Murakami, T.; Inaba, J.; Kim, B.M.; Sato, M.; Atsumi, G.; Kuchitsu, K.; Masuta, C.; et al. rgs-CaM detects and counteracts viral RNA silencing suppressors in plant immune priming. J. Virol. 2017, 91, e00761-17. [Google Scholar] [CrossRef]
- Zhang, X.B.; Gonzalez-Carranza, Z.H.; Zhang, S.L.; Miao, Y.C.; Liu, C.J.; Roberts, J.A. F-Box proteins in plants. Annu. Plant Rev. 2019, 2, 307–328. [Google Scholar]
- Cao, Y.F.; Yang, Y.Y.; Zhang, H.J.; Li, D.Y.; Zheng, Z.; Song, F.M. Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Physiol. Plant. 2008, 134, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.M.; Kong, X.Z.; Kang, H.H.; Sun, X.D.; Wang, W. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS ONE 2015, 10, e0122117. [Google Scholar] [CrossRef] [PubMed]
- Sehrish, A.; Wei, Y.; Yuan, Y.; Khan, M.T.; Qin, L.F.; Powell, C.A.; Chen, B.S.; Zhang, M.Q. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biol. 2020, 20, 1–12. [Google Scholar]
- Garg, N.; Manchanda, G. ROS generation in plants: Boon or bane? Plant Biosyst. 2009, 143, 81–96. [Google Scholar] [CrossRef]
- Otulak-Kozieł, K.; Kozieł, E.; Valverde, R.A. The respiratory burst oxidase homolog D (RbohD) cell and tissue distribution in potato-potato virus Y (PVYNTN) hypersensitive and susceptible reactions. Int. J. Mol. Sci. 2019, 20, 2741. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Sun, T.J.; Sun, X.Z.; Li, F.K.; Ma, N.; Wang, M.X.; Chen, Y.; Liu, N.; Jin, Y.; Zhang, J.; Hou, C.Y.; et al. H2O2 mediates transcriptome reprogramming during soybean mosaic virus-induced callose deposition in soybean. Crop J. 2021, 10, 262–272. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Zhao, J.; Guo, Q.; Zhang, H.; Yue, A.; Zhao, J.; Yin, C.; Wang, M.; Du, W. WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus. Genes 2024, 15, 566. https://doi.org/10.3390/genes15050566
Niu J, Zhao J, Guo Q, Zhang H, Yue A, Zhao J, Yin C, Wang M, Du W. WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus. Genes. 2024; 15(5):566. https://doi.org/10.3390/genes15050566
Chicago/Turabian StyleNiu, Jingping, Jing Zhao, Qian Guo, Hanyue Zhang, Aiqin Yue, Jinzhong Zhao, Congcong Yin, Min Wang, and Weijun Du. 2024. "WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus" Genes 15, no. 5: 566. https://doi.org/10.3390/genes15050566
APA StyleNiu, J., Zhao, J., Guo, Q., Zhang, H., Yue, A., Zhao, J., Yin, C., Wang, M., & Du, W. (2024). WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus. Genes, 15(5), 566. https://doi.org/10.3390/genes15050566