Genome-Wide Association Mapping for Heat and Drought Adaptive Traits in Pea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Trials and Plant Growth Conditions
2.3. Phenotyping
2.4. Phenotypic Data Analysis
2.5. Genotyping
2.6. Association Mapping
2.7. Identification of Candidate Genes
3. Results
3.1. Phenotypic Distributions
3.2. Genome-Wide Association Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Bueckert, R.A.; Wagenhoffer, S.; Hnatowich, G.; Warkentin, T.D. Effect of heat and precipitation on pea yield and reproductive performance in the field. Can. J. Plant Sci. 2015, 95, 629–639. [Google Scholar] [CrossRef]
- Tafesse, E.G.; Warkentin, T.D.; Bueckert, R.A. Canopy architecture and leaf type as traits of heat resistance in pea. Field Crop. Res. 2019, 241, 107561. [Google Scholar] [CrossRef]
- Guilioni, L.; Wery, J.; Tardieu, F. Heat Stress-induced Abortion of Buds and Flowers in Pea: Is Sensitivity Linked to Organ Age or to Relations between Reproductive Organs? Ann. Bot. 1997, 80, 159–168. [Google Scholar] [CrossRef]
- Jiang, Y.; Lahlali, R.; Karunakaran, C.; Kumar, S.; Davis, A.R.; Bueckert, R.A. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant. Cell Environ. 2015, 38, 2387–2397. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Dirks, I.; Raviv, B.; Shelef, O.; Hill, A.; Eppel, A.; Aidoo, M.K.; Hoefgen, B.; Rapaport, T.; Gil, H.; Geta, E.; et al. Green roofs: What can we learn from desert plants? Isr. J. Ecol. Evol. 2016, 62, 58–67. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Zhang, X.; Lu, X.; Chen, G.; Chen, Z.H. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ebercon, A.; Blum, A.; Jordan, W.R. A Rapid Colorimetric Method for Epicuticular Wax Contest of Sorghum Leaves. Crop Sci. 1977, 17, 179–180. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.J.; Manzanares, M.; De Andrés, E.F.; Tenorio, J.L.; Ayerbe, L. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur. J. Agron. 2001, 15, 57–70. [Google Scholar] [CrossRef]
- Willick, I.R.; Lahlali, R.; Vijayan, P.; Muir, D.; Karunakaran, C.; Tanino, K.K. Wheat flag leaf epicuticular wax morphology and composition in response to moderate drought stress are revealed by SEM, FTIR-ATR and synchrotron X-ray spectroscopy. Physiol. Plant. 2018, 162, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Elango, D.; Xue, W.; Chopra, S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. Physiol. Mol. Biol. Plants 2020, 26, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Klepper, B.; Browning, V.D.; Taylor, H.M. Stem Diameter in Relation to Plant Water Status. Plant Physiol. 1971, 48, 683–685. [Google Scholar] [CrossRef] [Green Version]
- Tafesse, E.G. Heat Stress Resistance in Pea (Pisum sativum L.) Based on Canopy and Leaf Traits. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2018; pp. 1–166. [Google Scholar]
- Bueckert, R.A.; Clarke, J.M. Review: Annual crop adaptation to abiotic stress on the Canadian prairies: Six case studies. Can. J. Plant Sci. 2013, 93, 375–385. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Viña, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based Standardized Vegetation Index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Kyratzis, A.; Skarlatos, D.; Fotopoulos, V.; Vamvakousis, V.; Katsiotis, A. Investigating Correlation among NDVI Index Derived by Unmanned Aerial Vehicle Photography and Grain Yield under Late Drought Stress Conditions. Procedia Environ. Sci. 2015, 29, 225–226. [Google Scholar] [CrossRef] [Green Version]
- Trapp, J.J.; Urrea, C.A.; Zhou, J.; Khot, L.R.; Sankaran, S.; Miklas, P.N. Selective phenotyping traits related to multiple stress and drought response in dry bean. Crop Sci. 2016, 56, 1460–1472. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, S.A.; Godoy, J.G.V.; Garland-Campbell, K.; Carter, A.H. Using spectral reflectance indices as proxy phenotypes for genome-wide association studies of yield and yield stability in pacific northwest winter wheat. Crop Sci. 2018, 58, 1232–1241. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Wang, B.; Wang, X.; Hu, K.; Li, K.; Li, Z.; Li, S.; Yan, L.; Guan, C.; Zhang, J.; et al. Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.). Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gali, K.K.; Sackville, A.; Tafesse, E.G.; Lachagari, V.B.R.; McPhee, K.; Hybl, M.; Mikić, A.; Smýkal, P.; McGee, R.; Burstin, J.; et al. Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.). Front. Plant Sci. 2019, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Abdurakhmonov, I.Y.; Abdukarimov, A. Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int. J. Plant Genom. 2008, 2008, 574927. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.A.; Ali, S.; Salgotra, R.K.; Mir, Z.A.; Dutta, S.; Jadon, V.; Tyagi, A.; Mushtaq, M.; Jain, N.; Singh, P.K.; et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Desgroux, A.; L’Anthoëne, V.; Roux-Duparque, M.; Rivière, J.P.; Aubert, G.; Tayeh, N.; Moussart, A.; Mangin, P.; Vetel, P.; Piriou, C.; et al. Genome-Wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genom. 2016, 17, 124. [Google Scholar] [CrossRef]
- Dissanayaka, D.N.; Gali, K.K.; Jha, A.B.; Lachagari, V.B.R.; Warkentin, T.D. Genome-Wide association study to identify single nucleotide polymorphisms associated with Fe, Zn, and Se concentration in field pea. Crop Sci. 2020, 60, 2070–2084. [Google Scholar] [CrossRef] [Green Version]
- Tafesse, E.G.; Gali, K.K.; Reddy Lachagari, V.B.; Bueckert, R.; Warkentin, T.D. Genome-Wide association mapping for heat stress responsive traits in field pea. Int. J. Mol. Sci. 2020, 21, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Zhan, J.; Yang, Y.; Ye, J.; Huang, S.; Li, R.; Wang, X.; Liu, G.; Wang, H. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci. Rep. 2015, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanapal, A.P.; Ray, J.D.; Singh, S.K.; Hoyos-Villegas, V.; Smith, J.R.; Purcell, L.C.; Fritschi, F.B. Genome-Wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol. 2016, 16, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Diapari, M.; Bueckert, R.A.; Tar’an, B.; Warkentin, T.D. Population structure and association mapping of traits related to reproductive development in field pea. Euphytica 2017, 213, 215. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Sallam, A.; Stephen Baenziger, P.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley—A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Desgroux, A.; Baudais, V.N.; Aubert, V.; Le Roy, G.; de Larambergue, H.; Miteul, H.; Aubert, G.; Boutet, G.; Duc, G.; Baranger, A.; et al. Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to aphanomyces euteiches in pea. Front. Plant Sci. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Gali, K.K.; Tar’An, B.; Warkentin, T.D.; Bueckert, R.A. Pea phenology: Crop potential in a warming environment. Crop Sci. 2017, 57, 1540–1551. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, T.; Griffiths, D.W. The effects of stress on plant cuticular waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef]
- Guo, J.; Xu, W.; Yu, X.; Shen, H.; Li, H.; Cheng, D.; Liu, A.; Liu, J.; Liu, C.; Zhao, S.; et al. Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines. Front. Plant Sci. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheenuzzamn, M.; Shi, S.; Sohail, K.; Wu, H.; Liu, T.; An, P.; Wang, Z.; Hasanuzzaman, M. Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnol. Rep. 2021, 15, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Goodwin, S.M.; Boroff, V.L.; Liu, X.; Jenks, M.A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 2003, 15, 1170–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, D.; Liu, S.; Ma, X.; Dietrich, C.R.; Hu, H.C.; Zhang, G.; Liu, Z.; Zheng, J.; Wang, G.; et al. The Maize glossy13 gene, cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 2013, 8, e99563. [Google Scholar] [CrossRef] [Green Version]
- Pighin, J.A.; Zheng, H.; Balakshin, L.J.; Goodman, J.P.; Western, T.L.; Jetter, R.; Kunst, L.; Samuels, A.L. Plant cuticular lipid export requires an ABC transporter. Science 2004, 306, 702–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawłowska, M.; Knopkiewicz, M.; Święcicki, W.; Boros, L.; Wawer, A. Quantitative trait loci for stem strength properties and lodging in two pea biparental mapping populations. Crop Sci. 2021, 61, 1682–1697. [Google Scholar] [CrossRef]
- Porter, L.D.; Hoheisel, G.; Coffman, V.A. Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant Pathol. 2009, 58, 52–60. [Google Scholar] [CrossRef]
- Smitchger, J.A.; Weeden, N.; Akin, I.; Warkentin, T. Stress equation for a cantilever beam: A model of lodging resistance in field pea. Int. Agrophys. 2020, 34, 213–222. [Google Scholar] [CrossRef]
- Smitchger, J.; Weeden, N. Quantitative trait loci controlling lodging resistance and other important agronomic traits in dry field peas. Crop Sci. 2019, 59, 1442–1456. [Google Scholar] [CrossRef]
- Sallam, A.; Hamed, E.; Hashad, M.; Omara, M. Inheritance of stem diameter and its relationship to heat and drought tolerance in wheat (Triticum aestivum L.). J. Plant. Breed. Crop. Sci. 2014, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Weller, J.L.; Ortega, R. Genetic control of flowering time in legumes. Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilioni, L.; Wéry, J.; Lecoeur, J. High temperature and water deficit may reduce seed number in field pea purely by decreasinf plant growth rate. Funct. Plant Biol. 2003, 30, 1151–1164. [Google Scholar] [CrossRef]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under great plains conditions. Crop Sci. 2007, 47, 1426–1440. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, G.E.; Maccaferri, M.; Newcomb, M.; Andrade-Sanchez, P.; White, J.W.; French, A.N.; Sciara, G.; Ward, R.; Tuberosa, R. Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front. Plant Sci. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Monneveux, P.; Jing, R.; Misra, S.C. Phenotyping for drought adaptation in wheat using physiological traits. Front. Physiol. 2012, 3, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source | Lamina Wax | Petiole Wax | Stem Thickness | Flowering Duration | NDVI | NPCI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variance | % of Total | Variance | % of Total | Variance | % of Total | Variance | % of Total | Variance | % of Total | Variance | % of Total | |
Genotype (G) | 55.5 *** | 36.0% | 101.1 *** | 39.8% | 0.059 *** | 34.7% | 8.7 *** | 36.4% | 0.00054 *** | 45.0% | 0.0028 *** | 61.4% |
Environment(E) | 64.0 *** | 41.5% | 92.2 *** | 36.3% | 0.058 *** | 33.9% | 10.6 *** | 44.6% | 0.0002 *** | 16.7% | 0.00014 *** | 3.0% |
Replication | 2.2 ** | 1.4% | 9.7 ** | 3.8% | 0.006 * | 3.3% | 0.0 ns | 0.0% | 0.0001 * | 0.0% | 0.000034 *** | 0.7% |
G × E | 0.0 ns | 0.0% | 5.1 ns | 2.0% | 0.002 ns | 1.2% | 1.6 *** | 6.6% | 0.0001 | 0.0% | 0.0 ns | 0.0% |
Error | 32.1 | 21.1% | 71.4 | 28.1% | 0.046 | 26.9% | 3.0 | 12.5% | 0.00046 | 38.4% | 0.0016 | 34.9% |
Total | 154.3 | 279.5 | 0.171 | 23.8 | 0.0012 | 0.0046 | ||||||
(H2) | 0.78 | 0.73 | 0.72 | 0.82 | 0.70 | 0.78 |
Trait | Environment | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Lamina wax (µg cm−2) | 2015 Saskatoon | 8.6 | 66.8 | 30.9 | 12.9 |
2016 Rosthern | 7.2 | 43.5 | 21.1 | 7.9 | |
2016 Saskatoon | 5.4 | 33.4 | 15.0 | 6.0 | |
Petiole wax (µg cm−2) | 2015 Saskatoon | 29.4 | 140.1 | 63.2 | 23.3 |
2016 Rosthern | 18.2 | 110.9 | 45.4 | 17.6 | |
2016 Saskatoon | 25.3 | 114.5 | 49.7 | 16.8 | |
Stem thickness (mm) | 2015 Saskatoon | 2.57 | 3.25 | 2.85 | 0.13 |
2016 Rosthern | 2.76 | 4.81 | 3.70 | 0.37 | |
2016 Saskatoon | 3.06 | 3.80 | 3.40 | 0.12 | |
2017 Rosthern | 2.87 | 3.64 | 3.22 | 0.13 | |
2017 Saskatoon | 2.42 | 3.70 | 3.03 | 0.23 | |
Flowering duration (days) | 2015 Saskatoon | 15.3 | 29.0 | 20.6 | 2.9 |
2016 Rosthern | 18.1 | 38.9 | 29.0 | 4.5 | |
2016 Saskatoon | 17.5 | 35.6 | 26.6 | 3.0 | |
2017 Rosthern | 14.8 | 36.6 | 24.4 | 3.7 | |
2017 Saskatoon | 12.7 | 33.0 | 22.9 | 3.8 | |
NDVI | 2015 Saskatoon | 0.70 | 0.80 | 0.76 | 0.02 |
2016 Rosthern | 0.74 | 0.85 | 0.79 | 0.02 | |
2016 Saskatoon | 0.63 | 0.85 | 0.76 | 0.04 | |
2017 Rosthern | 0.71 | 0.84 | 0.77 | 0.03 | |
2017 Saskatoon | 0.64 | 0.85 | 0.77 | 0.03 | |
NPCI | 2015 Saskatoon | 0.23 | 0.69 | 0.43 | 0.07 |
2016 Rosthern | 0.21 | 0.62 | 0.41 | 0.06 | |
2016 Saskatoon | 0.25 | 0.70 | 0.42 | 0.07 | |
2017 Rosthern | 0.22 | 0.57 | 0.40 | 0.06 | |
2017 Saskatoon | 0.21 | 0.65 | 0.41 | 0.06 |
Trait | SNP | Environment | p Value | MAF |
---|---|---|---|---|
Lamina wax | Chr1LG6_277526227 | 2015 Saskatoon | 1.30 × 10−4 | 0.08 |
2016 Rosthern | 2.90 × 10−3 | 0.08 | ||
2016 Saskatoon | 6.20 × 10−4 | 0.08 | ||
BLUPs | 3.70 × 10−6 | 0.08 | ||
Chr4LG4_209093982 | 2015 Saskatoon | 8.00 × 10−3 | 0.11 | |
2016 Rosthern | 2.10 × 10−3 | 0.11 | ||
2016 Saskatoon | 2.50 × 10−3 | 0.11 | ||
BLUPs | 3.30 × 10−7 | 0.11 | ||
Chr6LG2_384797968 | 2015 Saskatoon | 4.30 × 10−5 | 0.47 | |
2016 Rosthern | 3.10 × 10−4 | 0.47 | ||
2016 Saskatoon | 1.50 × 10−6 | 0.47 | ||
BLUPs | 2.50 × 10−8 | 0.47 | ||
Chr7LG7_128419954 | 2015 Saskatoon | 3.20 × 10−6 | 0.32 | |
2016 Rosthern | 8.90 × 10−4 | 0.32 | ||
2016 Saskatoon | 1.10 × 10−6 | 0.32 | ||
BLUPs | 2.50 × 10−10 | 0.32 | ||
Petiole wax | Chr4LG4_16602920 | 2015 Saskatoon | 2.40 × 10−2 | 0.36 |
2016 Rosthern | 5.20 × 10−2 | 0.37 | ||
2016 Saskatoon | 2.52 × 10−2 | 0.37 | ||
BLUPs | 5.80 × 10−6 | 0.37 | ||
Chr7LG7_346970562 | 2015 Saskatoon | 1.10 × 10−9 | 0.12 | |
2016 Rosthern | 2.40 × 10−2 | 0.12 | ||
2016 Saskatoon | 2.72 × 10−2 | 0.12 | ||
BLUPs | 4.80 × 10−4 | 0.12 | ||
Uscaffold03717_87257 | 2015 Saskatoon | 7.20 × 10−3 | 0.42 | |
2016 Saskatoon | 9.90 × 10−3 | 0.42 | ||
BLUPs | 1.50 × 10−6 | 0.42 | ||
Stem thickness (mm) | Chr7LG7_120991008 | 2015 Saskatoon | 2.00 × 10−4 | 0.31 |
2016 Saskatoon | 6.70 × 10−4 | 0.31 | ||
2017 Rosthern | 3.00 × 10−3 | 0.31 | ||
2017 Saskatoon | 4.20 × 10−3 | 0.31 | ||
BLUPs | 3.20 × 10−7 | 0.31 | ||
Chr7LG7_415249611 | 2015 Saskatoon | 1.30 × 10−5 | 0.18 | |
2016 Rosthern | 4.20 × 10−8 | 0.18 | ||
2016 Saskatoon | 7.80 × 10−9 | 0.18 | ||
2017 Rosthern | 6.10 × 10−8 | 0.18 | ||
BLUPs | 1.90 × 10−11 | 0.18 | ||
Uscaffold03985_59708 | 2015 Saskatoon | 3.60 × 10−4 | 0.28 | |
2016 Rosthern | 5.00 × 10−5 | 0.28 | ||
2016 Saskatoon | 8.50 × 10−4 | 0.28 | ||
2017 Saskatoon | 6.40 × 10−3 | 0.28 | ||
BLUPs | 8.30 × 10−6 | 0.28 | ||
Flowering duration (days) | Chr3LG5_18677470 | 2015 Saskatoon | 3.20 × 10−6 | 0.18 |
2016 Rosthern | 4.40 × 10−4 | 0.18 | ||
2017 Saskatoon | 1.60 × 10−5 | 0.18 | ||
BLUPs | 7.30 × 10−5 | 0.18 | ||
Chr5LG3_255645703 | 2015 Saskatoon | 6.80 × 10−5 | 0.17 | |
2016 Saskatoon | 7.30 × 10−3 | 0.17 | ||
2017 Rosthern | 2.70 × 10−4 | 0.17 | ||
2017 Saskatoon | 2.20 × 10−8 | 0.17 | ||
BLUPs | 5.90 × 10−4 | 0.17 | ||
NDVI | Chr6LG2_21764881 | 2016 Saskatoon | 8.60 × 10−3 | 0.09 |
2017 Rosthern | 1.40 × 10−4 | 0.09 | ||
2017 Saskatoon | 3.90 × 10−5 | 0.09 | ||
BLUPs | 1.30 × 10−4 | 0.09 | ||
NPCI | Chr5LG3_566189589 | 2015 Saskatoon | 9.80 × 10−4 | 0.36 |
2016 Saskatoon | 8.90 × 10−3 | 0.36 | ||
2017 Rosthern | 4.30 × 10−3 | 0.36 | ||
2017 Saskatoon | 6.60 × 10−5 | 0.36 | ||
BLUPs | 7.10 × 10−6 | 0.36 | ||
Chr6LG2_464876174 | 2015 Saskatoon | 2.80 × 10−3 | 0.30 | |
2016 Rosthern | 5.60 × 10−3 | 0.30 | ||
2016 Saskatoon | 1.70 × 10−2 | 0.30 | ||
2017 Rosthern | 5.00 × 10−3 | 0.30 | ||
2017 Saskatoon | 1.70 × 10−3 | 0.30 | ||
BLUPs | 4.90 × 10−5 | 0.30 |
Trait | SNP Marker | Gene ID | Protein Name | Gene_Name | Organism | Gene Ontology IDs | Molecular Function | Cellular Component |
---|---|---|---|---|---|---|---|---|
Lamina wax | Chr1LG6_277526227 | Psat1g139360 | Hydrolase activity + hydrolyzing O-glycosyl compounds | D0Y65_006627 | Glycine soja | |||
Chr4LG4_209093982 | Psat4g112480 | Arp2/3 complex + 34 kD subunit p34-Arc | 11418544 MTR_8g070640 | Medicago truncatula | GO:0005885; GO:0005737; GO:0051015; GO:0005200; GO:0030041; GO:0034314 | actin filament binding [GO:0051015]; structural constituent of cytoskeleton [GO:0005200] | Arp2/3 protein complex [GO:0005885];cytoplasm [GO:0005737] | |
Chr7LG7_128419954 | Psat7g076840 | NnrU protein | 11437558 MTR_8g097190 MtrunA17_Chr8g0377611 | Medicago truncatula | GO:0016021; GO:0016853 | isomerase activity [GO:0016853] | integral component of membrane [GO:0016021] | |
Petiole wax | Chr4LG4_16602920 | Psat4g011120 | Aminotransferase class-III | 11446047 MTR_4g128620 MtrunA17_Chr4g0072721 | Medicago truncatula | GO:0005739; GO:0004015; GO:0004141; GO:0030170; GO:0009102 | adenosylmethionine-8-amino-7-oxononanoate transaminase activity [GO:0004015]; dethiobiotin synthase activity [GO:0004141]; pyridoxal phosphate binding [GO:0030170] | mitochondrion [GO:0005739] |
Chr7LG7_346970562 | Psat7g186040 | Pyridine nucleotide-disulphide oxidoreductase | LOC101505252 | Cicer arietinum | GO:0005739; GO:0016491 | oxidoreductase activity [GO:0016491] | mitochondrion [GO:0005739] | |
Sc03717_87257 | Psat0s3717g0080 | Unknown gene | LOC101501731 | Cicer arietinum | GO:0016021 | integral component of membrane [GO:0016021] | ||
Stem thickness | Chr7LG7_120991008 | Psat7g071920 | Unknown gene | L195_g021419 | Trifolium pratense | GO:0005634 | nucleus [GO:0005634] | |
Chr7LG7_120991008 | Psat7g072040 | Protein of unknown function (DUF616) | 11413795 MTR_8g085850 MtrunA17_Chr8g0378731 | Medicago truncatula | GO:0016021 | integral component of membrane [GO:0016021] | ||
Chr7LG7_415249611 | Psat7g208760 | Unknown gene | TSUD_89070 | Trifolium subterraneum | ||||
Sc03985_59708 | Psat0s3985g0040 | Myb/SANT-like DNA-binding domain | MtrunA17_Chr1g0176881 | Medicago truncatula | ||||
Flowering duration | Chr3LG5_18677470 | Psat3g006600 | Protein of unknown function (DUF3353) | MtrunA17_Chr7g0274601 | Medicago truncatula | GO:0016021 | integral component of membrane [GO:0016021] | |
Chr5LG3_255645703 | Psat5g140600 | SWIB/MDM2 domain | TSUD_394050 | Trifolium subterraneum | ||||
NDVI | Chr6LG2_21764881 | Psat6g028080 | PB1 domain | FH972_013116 | Carpinus fangiana | GO:0005509 | calcium ion binding [GO:0005509] | |
Chr6LG2_21764881 | Psat6g028120 | Protein kinase domain | 11426285 MTR_5g024450 MtrunA17_Chr5g0407241 | Medicago truncatula | GO:0016021; GO:0005886; GO:0005524; GO:0004674; GO:0046777 | ATP binding [GO:0005524]; protein serine/threonine kinase activity [GO:0004674] | integral component of membrane [GO:0016021];plasma membrane [GO:0005886] | |
NPCI | Chr5LG3_566189589 | Psat5g299040 | PPR repeat family | LOC101504534 | Cicer arietinum | |||
Chr6LG2_464876174 | Psat6g231000 | Dual specificity phosphatase + catalytic domain | 25485578 MTR_1g112080 MtrunA17_Chr1g0210681 | Medicago truncatula | GO:0016021; GO:0008138 | protein tyrosine/serine/threonine phosphatase activity [GO:0008138] | integral component of membrane [GO:0016021] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafesse, E.G.; Gali, K.K.; Lachagari, V.B.R.; Bueckert, R.; Warkentin, T.D. Genome-Wide Association Mapping for Heat and Drought Adaptive Traits in Pea. Genes 2021, 12, 1897. https://doi.org/10.3390/genes12121897
Tafesse EG, Gali KK, Lachagari VBR, Bueckert R, Warkentin TD. Genome-Wide Association Mapping for Heat and Drought Adaptive Traits in Pea. Genes. 2021; 12(12):1897. https://doi.org/10.3390/genes12121897
Chicago/Turabian StyleTafesse, Endale G., Krishna K. Gali, V. B. Reddy Lachagari, Rosalind Bueckert, and Thomas D. Warkentin. 2021. "Genome-Wide Association Mapping for Heat and Drought Adaptive Traits in Pea" Genes 12, no. 12: 1897. https://doi.org/10.3390/genes12121897