Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability
Abstract
:1. Introduction
2. Creation of the Model and Techniques Used to Measure Instability of mtDNA
2.1. Construction of the Model Systems
2.2. Evaluation of mtDNA Instability
2.3. Evaluation of the mtDNA Levels
3. Genes Studied in Yeast
3.1. MPV17/SYM1
3.2. MRM2/MRM2
3.3. OPA1/MGM1
3.4. POLG/MIP1
3.5. RRM2B/RNR2
3.6. SLC25A4 (ANT1)/AAC2
4. Use of the Yeast Models for the Identification of Drugs by Means of a Drug Repurposing Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nass, M.M.; Nass, S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J. Cell Biol. 1963, 19, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Viscomi, C.; Zeviani, M. MtDNA-Maintenance Defects: Syndromes and Genes. J. Inherit. Metab. Dis. 2017, 40, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Rusecka, J.; Kaliszewska, M.; Bartnik, E.; Tońska, K. Nuclear Genes Involved in Mitochondrial Diseases Caused by Instability of Mitochondrial DNA. J. Appl. Genet. 2018, 59, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Vermulst, M.; Wang, Y.E.; Chomyn, A.; Prolla, T.A.; McCaffery, J.M.; Chan, D.C. Mitochondrial Fusion Is Required for MtDNA Stability in Skeletal Muscle and Tolerance of MtDNA Mutations. Cell 2010, 141, 280–289. [Google Scholar] [CrossRef] [Green Version]
- El-Hattab, A.W.; Craigen, W.J.; Scaglia, F. Mitochondrial DNA Maintenance Defects. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1539–1555. [Google Scholar] [CrossRef]
- Koopman, W.J.H.; Distelmaier, F.; Smeitink, J.A.M.; Willems, P.H.G.M. OXPHOS Mutations and Neurodegeneration. EMBO J. 2013, 32, 9–29. [Google Scholar] [CrossRef]
- Filograna, R.; Mennuni, M.; Alsina, D.; Larsson, N.-G. Mitochondrial DNA Copy Number in Human Disease: The More the Better? FEBS Lett. 2021, 595, 976–1002. [Google Scholar] [CrossRef]
- Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian Mitochondrial Nucleoids: Organizing an Independently Minded Genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef]
- Kukat, C.; Wurm, C.A.; Spåhr, H.; Falkenberg, M.; Larsson, N.-G.; Jakobs, S. Super-Resolution Microscopy Reveals That Mammalian Mitochondrial Nucleoids Have a Uniform Size and Frequently Contain a Single Copy of MtDNA. Proc. Natl. Acad. Sci. USA 2011, 108, 13534–13539. [Google Scholar] [CrossRef] [Green Version]
- Bonekamp, N.A.; Larsson, N.-G. SnapShot: Mitochondrial Nucleoid. Cell 2018, 172, 388-388.e1. [Google Scholar] [CrossRef]
- Robberson, D.L.; Kasamatsu, H.; Vinograd, J. Replication of Mitochondrial DNA. Circular Replicative Intermediates in Mouse L Cells. Proc. Natl. Acad. Sci. USA 1972, 69, 737–741. [Google Scholar] [CrossRef] [Green Version]
- Falkenberg, M. Mitochondrial DNA Replication in Mammalian Cells: Overview of the Pathway. Essays Biochem. 2018, 62, 287–296. [Google Scholar] [CrossRef]
- Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA Mutations in Human Disease. Nat. Rev. Genet. 2005, 6, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Sciacco, M.; Bonilla, E.; Schon, E.A.; DiMauro, S.; Moraes, C.T. Distribution of Wild-Type and Common Deletion Forms of MtDNA in Normal and Respiration-Deficient Muscle Fibers from Patients with Mitochondrial Myopathy. Hum. Mol. Genet. 1994, 3, 13–19. [Google Scholar] [CrossRef]
- Basel, D. Mitochondrial DNA Depletion Syndromes. Clin. Perinatol. 2020, 47, 123–141. [Google Scholar] [CrossRef]
- Spinazzola, A.; Viscomi, C.; Fernandez-Vizarra, E.; Carrara, F.; D’Adamo, P.; Calvo, S.; Marsano, R.M.; Donnini, C.; Weiher, H.; Strisciuglio, P.; et al. MPV17 Encodes an Inner Mitochondrial Membrane Protein and Is Mutated in Infantile Hepatic Mitochondrial DNA Depletion. Nat. Genet. 2006, 38, 570–575. [Google Scholar] [CrossRef]
- Gilberti, M.; Baruffini, E.; Donnini, C.; Dallabona, C. Pathological Alleles of MPV17 Modeled in the Yeast Saccharomyces cerevisiae Orthologous Gene SYM1 Reveal Their Inability to Take Part in a High Molecular Weight Complex. PLoS ONE 2018, 13, e0205014. [Google Scholar] [CrossRef]
- Garone, C.; D’Souza, A.R.; Dallabona, C.; Lodi, T.; Rebelo-Guiomar, P.; Rorbach, J.; Donati, M.A.; Procopio, E.; Montomoli, M.; Guerrini, R.; et al. Defective Mitochondrial RRNA Methyltransferase MRM2 Causes MELAS-like Clinical Syndrome. Hum. Mol. Genet. 2017, 26, 4257–4266. [Google Scholar] [CrossRef]
- Del Dotto, V.; Fogazza, M.; Musiani, F.; Maresca, A.; Aleo, S.J.; Caporali, L.; La Morgia, C.; Nolli, C.; Lodi, T.; Goffrini, P.; et al. Deciphering OPA1 Mutations Pathogenicity by Combined Analysis of Human, Mouse and Yeast Cell Models. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3496–3514. [Google Scholar] [CrossRef]
- Nolli, C.; Goffrini, P.; Lazzaretti, M.; Zanna, C.; Vitale, R.; Lodi, T.; Baruffini, E. Validation of a MGM1/OPA1 Chimeric Gene for Functional Analysis in Yeast of Mutations Associated with Dominant Optic Atrophy. Mitochondrion 2015, 25, 38–48. [Google Scholar] [CrossRef]
- Nasca, A.; Rizza, T.; Doimo, M.; Legati, A.; Ciolfi, A.; Diodato, D.; Calderan, C.; Carrara, G.; Lamantea, E.; Aiello, C.; et al. Not Only Dominant, Not Only Optic Atrophy: Expanding the Clinical Spectrum Associated with OPA1 Mutations. Orphanet J. Rare Dis. 2017, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Stuart, G.R.; Santos, J.H.; Strand, M.K.; Van Houten, B.; Copeland, W.C. Mitochondrial and Nuclear DNA Defects in Saccharomyces cerevisiae with Mutations in DNA Polymerase Gamma Associated with Progressive External Ophthalmoplegia. Hum. Mol. Genet. 2006, 15, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Baruffini, E.; Lodi, T.; Dallabona, C.; Puglisi, A.; Zeviani, M.; Ferrero, I. Genetic and Chemical Rescue of the Saccharomyces cerevisiae Phenotype Induced by Mitochondrial DNA Polymerase Mutations Associated with Progressive External Ophthalmoplegia in Humans. Hum. Mol. Genet. 2006, 15, 2846–2855. [Google Scholar] [CrossRef] [Green Version]
- Baruffini, E.; Ferrero, I.; Foury, F. Mitochondrial DNA Defects in Saccharomyces cerevisiae Caused by Functional Interactions between DNA Polymerase Gamma Mutations Associated with Disease in Human. Biochim. Biophys. Acta 2007, 1772, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Szczepanowska, K.; Foury, F. A Cluster of Pathogenic Mutations in the 3′-5′ Exonuclease Domain of DNA Polymerase Gamma Defines a Novel Module Coupling DNA Synthesis and Degradation. Hum. Mol. Genet. 2010, 19, 3516–3529. [Google Scholar] [CrossRef] [Green Version]
- Stricker, S.; Prüss, H.; Horvath, R.; Baruffini, E.; Lodi, T.; Siebert, E.; Endres, M.; Zschenderlein, R.; Meisel, A. A Variable Neurodegenerative Phenotype with Polymerase Gamma Mutation. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1181–1182. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, J.D.; Bailey, C.M.; Spell, D.; Stillwagon, M.; Anderson, K.S.; Copeland, W.C. Mip1 Containing Mutations Associated with Mitochondrial Disease Causes Mutagenesis and Depletion of MtDNA in Saccharomyces cerevisiae. Hum. Mol. Genet. 2010, 19, 2123–2133. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.D.; Horvath, R.; Baruffini, E.; Ferrero, I.; Bulst, S.; Watkins, P.B.; Fontana, R.J.; Day, C.P.; Chinnery, P.F. Polymerase γ Gene POLG Determines the Risk of Sodium Valproate-Induced Liver Toxicity. Hepatology 2010, 52, 1791–1796. [Google Scholar] [CrossRef] [Green Version]
- Baruffini, E.; Horvath, R.; Dallabona, C.; Czermin, B.; Lamantea, E.; Bindoff, L.; Invernizzi, F.; Ferrero, I.; Zeviani, M.; Lodi, T. Predicting the Contribution of Novel POLG Mutations to Human Disease through Analysis in Yeast Model. Mitochondrion 2011, 11, 182–190. [Google Scholar] [CrossRef]
- Baruffini, E.; Serafini, F.; Ferrero, I.; Lodi, T. Overexpression of DNA Polymerase Zeta Reduces the Mitochondrial Mutability Caused by Pathological Mutations in DNA Polymerase Gamma in Yeast. PLoS ONE 2012, 7, e34322. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, J.D.; Copeland, W.C. The Exonuclease Activity of the Yeast Mitochondrial DNA Polymerase γ Suppresses Mitochondrial DNA Deletions between Short Direct Repeats in Saccharomyces cerevisiae. Genetics 2013, 194, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, J.D.; Copeland, W.C. MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants. PLoS Genet. 2014, 10, e1004748. [Google Scholar] [CrossRef]
- Kaliszewska, M.; Kruszewski, J.; Kierdaszuk, B.; Kostera-Pruszczyk, A.; Nojszewska, M.; Łusakowska, A.; Vizueta, J.; Sabat, D.; Lutyk, D.; Lower, M.; et al. Yeast Model Analysis of Novel Polymerase Gamma Variants Found in Patients with Autosomal Recessive Mitochondrial Disease. Hum. Genet. 2015, 134, 951–966. [Google Scholar] [CrossRef] [Green Version]
- Hoyos-Gonzalez, N.; Trasviña-Arenas, C.H.; Degiorgi, A.; Castro-Lara, A.Y.; Peralta-Castro, A.; Jimenez-Sandoval, P.; Diaz-Quezada, C.; Lodi, T.; Baruffini, E.; Brieba, L.G. Modeling of Pathogenic Variants of Mitochondrial DNA Polymerase: Insight into the Replication Defects and Implication for Human Disease. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129608. [Google Scholar] [CrossRef]
- Qian, Y.; Kachroo, A.H.; Yellman, C.M.; Marcotte, E.M.; Johnson, K.A. Yeast Cells Expressing the Human Mitochondrial DNA Polymerase Reveal Correlations between Polymerase Fidelity and Human Disease Progression. J. Biol. Chem. 2014, 289, 5970–5985. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Ziehr, J.L.; Johnson, K.A. Alpers Disease Mutations in Human DNA Polymerase Gamma Cause Catalytic Defects in Mitochondrial DNA Replication by Distinct Mechanisms. Front. Genet. 2015, 6, 135. [Google Scholar] [CrossRef]
- Baruffini, E.; Ferrari, J.; Dallabona, C.; Donnini, C.; Lodi, T. Polymorphisms in DNA Polymerase γ Affect the MtDNA Stability and the NRTI-Induced Mitochondrial Toxicity in Saccharomyces cerevisiae. Mitochondrion 2015, 20, 52–63. [Google Scholar] [CrossRef]
- Baruffini, E.; Lodi, T. Construction and Validation of a Yeast Model System for Studying in Vivo the Susceptibility to Nucleoside Analogues of DNA Polymerase Gamma Allelic Variants. Mitochondrion 2010, 10, 183–187. [Google Scholar] [CrossRef]
- Spinazzola, A.; Invernizzi, F.; Carrara, F.; Lamantea, E.; Donati, A.; Dirocco, M.; Giordano, I.; Meznaric-Petrusa, M.; Baruffini, E.; Ferrero, I.; et al. Clinical and Molecular Features of Mitochondrial DNA Depletion Syndromes. J. Inherit. Metab. Dis. 2009, 32, 143–158. [Google Scholar] [CrossRef]
- Di Punzio, G.; Gilberti, M.; Baruffini, E.; Lodi, T.; Donnini, C.; Dallabona, C. A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int. J. Mol. Sci. 2021, 22, 12223. [Google Scholar] [CrossRef]
- Palmieri, L.; Alberio, S.; Pisano, I.; Lodi, T.; Meznaric-Petrusa, M.; Zidar, J.; Santoro, A.; Scarcia, P.; Fontanesi, F.; Lamantea, E.; et al. Complete Loss-of-Function of the Heart/Muscle-Specific Adenine Nucleotide Translocator Is Associated with Mitochondrial Myopathy and Cardiomyopathy. Hum. Mol. Genet. 2005, 14, 3079–3088. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.J. Induction of an Unregulated Channel by Mutations in Adenine Nucleotide Translocase Suggests an Explanation for Human Ophthalmoplegia. Hum. Mol. Genet. 2002, 11, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, F.; Palmieri, L.; Scarcia, P.; Lodi, T.; Donnini, C.; Limongelli, A.; Tiranti, V.; Zeviani, M.; Ferrero, I.; Viola, A.M. Mutations in AAC2, Equivalent to Human AdPEO-Associated ANT1 Mutations, Lead to Defective Oxidative Phosphorylation in Saccharomyces cerevisiae and Affect Mitochondrial DNA Stability. Hum. Mol. Genet. 2004, 13, 923–934. [Google Scholar] [CrossRef]
- Lodi, T.; Bove, C.; Fontanesi, F.; Viola, A.M.; Ferrero, I. Mutation D104G in ANT1 Gene: Complementation Study in Saccharomyces cerevisiae as a Model System. Biochem. Biophys. Res. Commun. 2006, 341, 810–815. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Chen, X.J. Misfolding of Mutant Adenine Nucleotide Translocase in Yeast Supports a Novel Mechanism of Ant1-Induced Muscle Diseases. Mol. Biol. Cell 2015, 26, 1985–1994. [Google Scholar] [CrossRef]
- Wang, X.; Salinas, K.; Zuo, X.; Kucejova, B.; Chen, X.J. Dominant Membrane Uncoupling by Mutant Adenine Nucleotide Translocase in Mitochondrial Diseases. Hum. Mol. Genet. 2008, 17, 4036–4044. [Google Scholar] [CrossRef] [Green Version]
- Kaukonen, J.; Juselius, J.K.; Tiranti, V.; Kyttälä, A.; Zeviani, M.; Comi, G.P.; Keränen, S.; Peltonen, L.; Suomalainen, A. Role of Adenine Nucleotide Translocator 1 in MtDNA Maintenance. Science 2000, 289, 782–785. [Google Scholar] [CrossRef]
- Dallabona, C.; Baruffini, E.; Goffrini, P.; Lodi, T. Dominance of Yeast Aac2R96H and Aac2R252G Mutations, Equivalent to Pathological Mutations in Ant1, Is Due to Gain of Function. Biochem. Biophys. Res. Commun. 2017, 493, 909–913. [Google Scholar] [CrossRef]
- Thompson, K.; Majd, H.; Dallabona, C.; Reinson, K.; King, M.S.; Alston, C.L.; He, L.; Lodi, T.; Jones, S.A.; Fattal-Valevski, A.; et al. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am. J. Hum. Genet. 2016, 99, 1405. [Google Scholar] [CrossRef]
- Foury, F.; Roganti, T.; Lecrenier, N.; Purnelle, B. The Complete Sequence of the Mitochondrial Genome of Saccharomyces cerevisiae. FEBS Lett. 1998, 440, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Blanc, H.; Dujon, B. Replicator Regions of the Yeast Mitochondrial DNA Responsible for Suppressiveness. Proc. Natl. Acad. Sci. USA 1980, 77, 3942–3946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Zamaroczy, M.; Marotta, R.; Faugeron-Fonty, G.; Goursot, R.; Mangin, M.; Baldacci, G.; Bernardi, G. The Origins of Replication of the Yeast Mitochondrial Genome and the Phenomenon of Suppressivity. Nature 1981, 292, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Maleszka, R.; Skelly, P.J.; Clark-Walker, G.D. Rolling Circle Replication of DNA in Yeast Mitochondria. EMBO J. 1991, 10, 3923–3929. [Google Scholar] [CrossRef]
- Ling, F.; Shibata, T. Recombination-Dependent MtDNA Partitioning: In Vivo Role of Mhr1p to Promote Pairing of Homologous DNA. EMBO J. 2002, 21, 4730–4740. [Google Scholar] [CrossRef]
- Ling, F.; Shibata, T. Mhr1p-Dependent Concatemeric Mitochondrial DNA Formation for Generating Yeast Mitochondrial Homoplasmic Cells. Mol. Biol. Cell 2004, 15, 310–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasai, K.; Robinson, L.C.; Scott, R.S.; Tatchell, K.; Harrison, L. Evidence for Double-Strand Break Mediated Mitochondrial DNA Replication in Saccharomyces cerevisiae. Nucleic Acids Res. 2017, 45, 7760–7773. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.J.; Clark-Walker, G.D. Unveiling the Mystery of Mitochondrial DNA Replication in Yeasts. Mitochondrion 2018, 38, 17–22. [Google Scholar] [CrossRef]
- Ling, F.; Yoshida, M. Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes 2020, 11, 514. [Google Scholar] [CrossRef]
- Dujon, B.; Slonimski, P.P.; Weill, L. Mitochondrial Genetics IX: A Model for Recombination and Segregation of Mitochondrial Genomes in Saccharomyces cerevisiae. Genetics 1974, 78, 415–437. [Google Scholar] [CrossRef]
- Solieri, L. Mitochondrial Inheritance in Budding Yeasts: Towards an Integrated Understanding. Trends Microbiol. 2010, 18, 521–530. [Google Scholar] [CrossRef]
- Hori, A.; Yoshida, M.; Shibata, T.; Ling, F. Reactive Oxygen Species Regulate DNA Copy Number in Isolated Yeast Mitochondria by Triggering Recombination-Mediated Replication. Nucleic Acids Res. 2009, 37, 749–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.J.; Butow, R.A. The Organization and Inheritance of the Mitochondrial Genome. Nat. Rev. Genet. 2005, 6, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, K.A.; Kaniak-Golik, A.; Golik, P. Maintenance and Expression of the S. Cerevisiae Mitochondrial Genome—From Genetics to Evolution and Systems Biology. Biochim. Biophys. Acta 2010, 1797, 1086–1098. [Google Scholar] [CrossRef] [Green Version]
- Kucej, M.; Butow, R.A. Evolutionary Tinkering with Mitochondrial Nucleoids. Trends Cell. Biol. 2007, 17, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Diffley, J.F.; Stillman, B. A Close Relative of the Nuclear, Chromosomal High-Mobility Group Protein HMG1 in Yeast Mitochondria. Proc. Natl. Acad. Sci. USA 1991, 88, 7864–7868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermann, B. Mitochondrial Inheritance in Yeast. Biochim. Biophys. Acta 2014, 1837, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Miyakawa, I. Organization and Dynamics of Yeast Mitochondrial Nucleoids. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 339–359. [Google Scholar] [CrossRef] [Green Version]
- Sherman, F. Respiration-Deficient Mutants of Yeast. I. Genetics. Genetics 1963, 48, 375–385. [Google Scholar] [CrossRef]
- Ephrussi, B.; Slonimski, P.P. Subcellular Units Involved in the Synthesis of Respiratory Enzymes in Yeast. Nature 1955, 176, 1207–1208. [Google Scholar] [CrossRef]
- Dujon, B. Mitochondrial genetics and functions. In The Molecular Biology of the Yeast Saccharomyces. Life Cycle and Inheritance; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1981; pp. 505–635. [Google Scholar]
- Ling, F.; Hori, A.; Shibata, T. DNA Recombination-Initiation Plays a Role in the Extremely Biased Inheritance of Yeast [Rho-] Mitochondrial DNA That Contains the Replication Origin Ori5. Mol. Cell. Biol. 2007, 27, 1133–1145. [Google Scholar] [CrossRef] [Green Version]
- Dujon, B. Mitochondrial Genetics Revisited. Yeast 2020, 37, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Lazowska, J.; Slonimski, P.P. Site-Specific Recombination in “Petite Colony” Mutants of Saccharomyces cerevisiae. I. Electron Microscopic Analysis of the Organization of Recombinant DNA Resulting from End to End Joining of Two Mitochondrial Segments. Mol. Gen. Genet. 1977, 156, 163–175. [Google Scholar] [CrossRef]
- Gaillard, C.; Strauss, F.; Bernardi, G. Excision Sequences in the Mitochondrial Genome of Yeast. Nature 1980, 283, 218–220. [Google Scholar] [CrossRef]
- Contamine, V.; Picard, M. Maintenance and Integrity of the Mitochondrial Genome: A Plethora of Nuclear Genes in the Budding Yeast. Microbiol. Mol. Biol. Rev. 2000, 64, 281–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birky, C.W. The Inheritance of Genes in Mitochondria and Chloroplasts: Laws, Mechanisms, and Models. Annu. Rev. Genet. 2001, 35, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Ling, F. DNA Recombination Protein-Dependent Mechanism of Homoplasmy and Its Proposed Functions. Mitochondrion 2007, 7, 17–23. [Google Scholar] [CrossRef]
- Berger, K.H.; Yaffe, M.P. Mitochondrial DNA Inheritance in Saccharomyces cerevisiae. Trends Microbiol. 2000, 8, 508–513. [Google Scholar] [CrossRef]
- Strausberg, R.L.; Perlman, P.S. The Effect of Zygotic Bud Position on the Transmission of Mitochondrial Genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 1978, 163, 131–144. [Google Scholar] [CrossRef]
- Nunnari, J.; Marshall, W.F.; Straight, A.; Murray, A.; Sedat, J.W.; Walter, P. Mitochondrial Transmission during Mating in Saccharomyces cerevisiae Is Determined by Mitochondrial Fusion and Fission and the Intramitochondrial Segregation of Mitochondrial DNA. Mol. Biol. Cell 1997, 8, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Perlman, P.S.; Butow, R.A. The Sorting of Mitochondrial DNA and Mitochondrial Proteins in Zygotes: Preferential Transmission of Mitochondrial DNA to the Medial Bud. J. Cell Biol. 1998, 142, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Azpiroz, R.; Butow, R.A. Patterns of Mitochondrial Sorting in Yeast Zygotes. Mol. Biol. Cell 1993, 4, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Baruffini, E.; Ferrero, I.; Foury, F. In Vivo Analysis of MtDNA Replication Defects in Yeast. Methods 2010, 51, 426–436. [Google Scholar] [CrossRef]
- Lea, D.E.; Coulson, C.A. The Distribution of the Numbers of Mutants in Bacterial Populations. J. Genet. 1949, 49, 264–285. [Google Scholar] [CrossRef]
- Ceccatelli Berti, C.; di Punzio, G.; Dallabona, C.; Baruffini, E.; Goffrini, P.; Lodi, T.; Donnini, C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes 2021, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, Y.; Tsuji, J.; Fu, S.-C.; Tomii, K.; Horton, P.; Imai, K. MitoFates: Improved Prediction of Mitochondrial Targeting Sequences and Their Cleavage Sites. Mol. Cell Proteom. 2015, 14, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraczek, M.G.; Naseeb, S.; Delneri, D. History of Genome Editing in Yeast. Yeast 2018, 35, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothstein, R.J. One-Step Gene Disruption in Yeast. Methods Enzymol. 1983, 101, 202–211. [Google Scholar] [CrossRef]
- Garí, E.; Piedrafita, L.; Aldea, M.; Herrero, E. A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression in Saccharomyces cerevisiae. Yeast 1997, 13, 837–848. [Google Scholar] [CrossRef]
- Graham, I.R.; Chambers, A. Constitutive Expression Vectors: PGK. Methods Mol. Biol. 1997, 62, 159–169. [Google Scholar] [CrossRef]
- Palmer, E.A.; Kruse, K.B.; McCracken, A.A. A Yeast Expression Vector and Leucine Selection in Escherichia coli to Aid in the Identification of Novel Genes. Plasmid 2001, 46, 57–59. [Google Scholar] [CrossRef]
- Mascorro-Gallardo, J.O.; Covarrubias, A.A.; Gaxiola, R. Construction of a CUP1 Promoter-Based Vector to Modulate Gene Expression in Saccharomyces cerevisiae. Gene 1996, 172, 169–170. [Google Scholar] [CrossRef]
- Gueldener, U.; Heinisch, J.; Koehler, G.J.; Voss, D.; Hegemann, J.H. A Second Set of LoxP Marker Cassettes for Cre-Mediated Multiple Gene Knockouts in Budding Yeast. Nucleic Acids Res. 2002, 30, e23. [Google Scholar] [CrossRef] [Green Version]
- Bellí, G.; Garí, E.; Piedrafita, L.; Aldea, M.; Herrero, E. An Activator/Repressor Dual System Allows Tight Tetracycline-Regulated Gene Expression in Budding Yeast. Nucleic Acids Res. 1998, 26, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liang, Q.; Song, W.; Marchisio, M.A. Nucleotides Upstream of the Kozak Sequence Strongly Influence Gene Expression in the Yeast S. cerevisiae. J. Biol. Eng. 2017, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figuccia, S.; Degiorgi, A.; Ceccatelli Berti, C.; Baruffini, E.; Dallabona, C.; Goffrini, P. Mitochondrial Aminoacyl-TRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int. J. Mol. Sci. 2021, 22, 4524. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, H.; Wesolowski, M. Genetics and Biogenesis of Mitochondria. In Mitochondria; De Gruyter: Berlin, Germany, 1977; pp. 123–131. [Google Scholar]
- Mathews, S.; Schweyen, R.J.; Kaudewitz, F. Genetics and Biogenesis of Mitochondria. In Mitochondria; De Gruyter: Berlin, Germany, 1977; pp. 133–139. [Google Scholar]
- Gonzalez-Hunt, C.P.; Rooney, J.P.; Ryde, I.T.; Anbalagan, C.; Joglekar, R.; Meyer, J.N. PCR-Based Analysis of Mitochondrial DNA Copy Number, Mitochondrial DNA Damage, and Nuclear DNA Damage. Curr. Protoc. Toxicol. 2016, 67, 20.11. [Google Scholar] [CrossRef]
- Taylor, S.D.; Zhang, H.; Eaton, J.S.; Rodeheffer, M.S.; Lebedeva, M.A.; O’rourke, T.W.; Siede, W.; Shadel, G.S. The Conserved Mec1/Rad53 Nuclear Checkpoint Pathway Regulates Mitochondrial DNA Copy Number in Saccharomyces cerevisiae. Mol. Biol. Cell 2005, 16, 3010–3018. [Google Scholar] [CrossRef] [Green Version]
- Weiher, H.; Noda, T.; Gray, D.A.; Sharpe, A.H.; Jaenisch, R. Transgenic Mouse Model of Kidney Disease: Insertional Inactivation of Ubiquitously Expressed Gene Leads to Nephrotic Syndrome. Cell 1990, 62, 425–434. [Google Scholar] [CrossRef]
- Zwacka, R.M.; Reuter, A.; Pfaff, E.; Moll, J.; Gorgas, K.; Karasawa, M.; Weiher, H. The Glomerulosclerosis Gene Mpv17 Encodes a Peroxisomal Protein Producing Reactive Oxygen Species. EMBO J. 1994, 13, 5129–5134. [Google Scholar] [CrossRef]
- Wong, L.-J.C.; Brunetti-Pierri, N.; Zhang, Q.; Yazigi, N.; Bove, K.E.; Dahms, B.B.; Puchowicz, M.A.; Gonzalez-Gomez, I.; Schmitt, E.S.; Truong, C.K.; et al. Mutations in the MPV17 Gene Are Responsible for Rapidly Progressive Liver Failure in Infancy. Hepatology 2007, 46, 1218–1227. [Google Scholar] [CrossRef]
- Karadimas, C.L.; Vu, T.H.; Holve, S.A.; Chronopoulou, P.; Quinzii, C.; Johnsen, S.D.; Kurth, J.; Eggers, E.; Palenzuela, L.; Tanji, K.; et al. Navajo Neurohepatopathy Is Caused by a Mutation in the MPV17 Gene. Am. J. Hum. Genet. 2006, 79, 544–548. [Google Scholar] [CrossRef] [Green Version]
- AlSaman, A.; Tomoum, H.; Invernizzi, F.; Zeviani, M. Hepatocerebral Form of Mitochondrial DNA Depletion Syndrome Due to Mutation in MPV17 Gene. Saudi J. Gastroenterol. 2012, 18, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Blakely, E.L.; Butterworth, A.; Hadden, R.D.M.; Bodi, I.; He, L.; McFarland, R.; Taylor, R.W. MPV17 Mutation Causes Neuropathy and Leukoencephalopathy with Multiple MtDNA Deletions in Muscle. Neuromuscul. Disord. 2012, 22, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garone, C.; Rubio, J.C.; Calvo, S.E.; Naini, A.; Tanji, K.; Dimauro, S.; Mootha, V.K.; Hirano, M. MPV17 Mutations Causing Adult-Onset Multisystemic Disorder with Multiple Mitochondrial DNA Deletions. Arch. Neurol 2012, 69, 1648–1651. [Google Scholar] [CrossRef] [Green Version]
- Sommerville, E.W.; Chinnery, P.F.; Gorman, G.S.; Taylor, R.W. Adult-Onset Mendelian PEO Associated with Mitochondrial Disease. J. Neuromuscul. Dis. 2014, 1, 119–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, A.; Morano, K.A. SYM1 Is the Stress-Induced Saccharomyces cerevisiae Ortholog of the Mammalian Kidney Disease Gene Mpv17 and Is Required for Ethanol Metabolism and Tolerance during Heat Shock. Eukaryot. Cell 2004, 3, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Dallabona, C.; Marsano, R.M.; Arzuffi, P.; Ghezzi, D.; Mancini, P.; Zeviani, M.; Ferrero, I.; Donnini, C. Sym1, the Yeast Ortholog of the MPV17 Human Disease Protein, Is a Stress-Induced Bioenergetic and Morphogenetic Mitochondrial Modulator. Hum. Mol. Genet. 2010, 19, 1098–1107. [Google Scholar] [CrossRef]
- Bottani, E.; Giordano, C.; Civiletto, G.; Di Meo, I.; Auricchio, A.; Ciusani, E.; Marchet, S.; Lamperti, C.; d’Amati, G.; Viscomi, C.; et al. AAV-Mediated Liver-Specific MPV17 Expression Restores MtDNA Levels and Prevents Diet-Induced Liver Failure. Mol. Ther. 2014, 22, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Viscomi, C.; Spinazzola, A.; Maggioni, M.; Fernandez-Vizarra, E.; Massa, V.; Pagano, C.; Vettor, R.; Mora, M.; Zeviani, M. Early-Onset Liver MtDNA Depletion and Late-Onset Proteinuric Nephropathy in Mpv17 Knockout Mice. Hum. Mol. Genet. 2009, 18, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Martorano, L.; Peron, M.; Laquatra, C.; Lidron, E.; Facchinello, N.; Meneghetti, G.; Tiso, N.; Rasola, A.; Ghezzi, D.; Argenton, F. The Zebrafish Orthologue of the Human Hepatocerebral Disease Gene MPV17 Plays Pleiotropic Roles in Mitochondria. Dis. Model. Mech. 2019, 12, dmm037226. [Google Scholar] [CrossRef] [Green Version]
- Parini, R.; Furlan, F.; Notarangelo, L.; Spinazzola, A.; Uziel, G.; Strisciuglio, P.; Concolino, D.; Corbetta, C.; Nebbia, G.; Menni, F.; et al. Glucose Metabolism and Diet-Based Prevention of Liver Dysfunction in MPV17 Mutant Patients. J. Hepatol. 2009, 50, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhold, R.; Krüger, V.; Meinecke, M.; Schulz, C.; Schmidt, B.; Grunau, S.D.; Guiard, B.; Wiedemann, N.; van der Laan, M.; Wagner, R.; et al. The Channel-Forming Sym1 Protein Is Transported by the TIM23 Complex in a Presequence-Independent Manner. Mol. Cell. Biol. 2012, 32, 5009–5021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonenkov, V.D.; Isomursu, A.; Mennerich, D.; Vapola, M.H.; Weiher, H.; Kietzmann, T.; Hiltunen, J.K. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-Selective Channel That Modulates Membrane Potential. J. Biol. Chem. 2015, 290, 13840–13861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, C.J.; Weiher, H.; Exner, M.; Kerjaschki, D. Glomerular Overproduction of Oxygen Radicals in Mpv17 Gene-Inactivated Mice Causes Podocyte Foot Process Flattening and Proteinuria: A Model of Steroid-Resistant Nephrosis Sensitive to Radical Scavenger Therapy. Am. J. Pathol. 1999, 154, 1067–1075. [Google Scholar] [CrossRef]
- Löllgen, S.; Weiher, H. The Role of the Mpv17 Protein Mutations of Which Cause Mitochondrial DNA Depletion Syndrome (MDDS): Lessons from Homologs in Different Species. Biol. Chem. 2015, 396, 13–25. [Google Scholar] [CrossRef]
- Dalla Rosa, I.; Cámara, Y.; Durigon, R.; Moss, C.F.; Vidoni, S.; Akman, G.; Hunt, L.; Johnson, M.A.; Grocott, S.; Wang, L.; et al. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet. 2016, 12, e1005779. [Google Scholar] [CrossRef]
- Krauss, J.; Astrinidis, P.; Frohnhöfer, H.G.; Walderich, B.; Nüsslein-Volhard, C. Erratum: Transparent, a Gene Affecting Stripe Formation in Zebrafish, Encodes the Mitochondrial Protein Mpv17 That Is Required for Iridophore Survival. Biol. Open 2013, 2, 979. [Google Scholar] [CrossRef] [Green Version]
- White, Y.A.R.; Woods, D.C.; Wood, A.W. A Transgenic Zebrafish Model of Targeted Oocyte Ablation and de Novo Oogenesis. Dev. Dyn. 2011, 240, 1929–1937. [Google Scholar] [CrossRef]
- Alonzo, J.R.; Venkataraman, C.; Field, M.S.; Stover, P.J. The Mitochondrial Inner Membrane Protein MPV17 Prevents Uracil Accumulation in Mitochondrial DNA. J. Biol. Chem. 2018, 293, 20285–20294. [Google Scholar] [CrossRef] [Green Version]
- Blount, B.C.; Mack, M.M.; Wehr, C.M.; MacGregor, J.T.; Hiatt, R.A.; Wang, G.; Wickramasinghe, S.N.; Everson, R.B.; Ames, B.N. Folate Deficiency Causes Uracil Misincorporation into Human DNA and Chromosome Breakage: Implications for Cancer and Neuronal Damage. Proc. Natl. Acad. Sci. USA 1997, 94, 3290–3295. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-W.; Okot-Kotber, C.; LaComb, J.F.; Bogenhagen, D.F. Mitochondrial Ribosomal RNA (RRNA) Methyltransferase Family Members Are Positioned to Modify Nascent RRNA in Foci near the Mitochondrial DNA Nucleoid. J. Biol. Chem. 2013, 288, 31386–31399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-W.; Bogenhagen, D.F. Assignment of 2′-O-Methyltransferases to Modification Sites on the Mammalian Mitochondrial Large Subunit 16 S Ribosomal RNA (RRNA). J. Biol. Chem. 2014, 289, 24936–24942. [Google Scholar] [CrossRef] [Green Version]
- Rorbach, J.; Boesch, P.; Gammage, P.A.; Nicholls, T.J.J.; Pearce, S.F.; Patel, D.; Hauser, A.; Perocchi, F.; Minczuk, M. MRM2 and MRM3 Are Involved in Biogenesis of the Large Subunit of the Mitochondrial Ribosome. Mol. Biol. Cell 2014, 25, 2542–2555. [Google Scholar] [CrossRef] [PubMed]
- Cipullo, M.; Gesé, G.V.; Khawaja, A.; Hällberg, B.M.; Rorbach, J. Structural Basis for Late Maturation Steps of the Human Mitoribosomal Large Subunit. Nat. Commun. 2021, 12, 3673. [Google Scholar] [CrossRef] [PubMed]
- Widerak, M.; Kern, R.; Malki, A.; Richarme, G. U2552 Methylation at the Ribosomal A-Site Is a Negative Modulator of Translational Accuracy. Gene 2005, 347, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Pintard, L.; Bujnicki, J.M.; Lapeyre, B.; Bonnerot, C. MRM2 Encodes a Novel Yeast Mitochondrial 21S RRNA Methyltransferase. EMBO J. 2002, 21, 1139–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amati-Bonneau, P.; Valentino, M.L.; Reynier, P.; Gallardo, M.E.; Bornstein, B.; Boissière, A.; Campos, Y.; Rivera, H.; de la Aleja, J.G.; Carroccia, R.; et al. OPA1 Mutations Induce Mitochondrial DNA Instability and Optic Atrophy “plus” Phenotypes. Brain 2008, 131, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Hudson, G.; Amati-Bonneau, P.; Blakely, E.L.; Stewart, J.D.; He, L.; Schaefer, A.M.; Griffiths, P.G.; Ahlqvist, K.; Suomalainen, A.; Reynier, P.; et al. Mutation of OPA1 Causes Dominant Optic Atrophy with External Ophthalmoplegia, Ataxia, Deafness and Multiple Mitochondrial DNA Deletions: A Novel Disorder of MtDNA Maintenance. Brain 2008, 131, 329–337. [Google Scholar] [CrossRef]
- Elachouri, G.; Vidoni, S.; Zanna, C.; Pattyn, A.; Boukhaddaoui, H.; Gaget, K.; Yu-Wai-Man, P.; Gasparre, G.; Sarzi, E.; Delettre, C.; et al. OPA1 Links Human Mitochondrial Genome Maintenance to MtDNA Replication and Distribution. Genome Res. 2011, 21, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, R.; Saada, A.; Flannery, P.J.; Burté, F.; Soiferman, D.; Khayat, M.; Eisner, V.; Vladovski, E.; Taylor, R.W.; Bindoff, L.A.; et al. Fatal Infantile Mitochondrial Encephalomyopathy, Hypertrophic Cardiomyopathy and Optic Atrophy Associated with a Homozygous OPA1 Mutation. J. Med. Genet. 2016, 53, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Olichon, A.; Baricault, L.; Gas, N.; Guillou, E.; Valette, A.; Belenguer, P.; Lenaers, G. Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis. J. Biol. Chem. 2003, 278, 7743–7746. [Google Scholar] [CrossRef] [Green Version]
- Frezza, C.; Cipolat, S.; Martins de Brito, O.; Micaroni, M.; Beznoussenko, G.V.; Rudka, T.; Bartoli, D.; Polishuck, R.S.; Danial, N.N.; De Strooper, B.; et al. OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell 2006, 126, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Carelli, V.; Musumeci, O.; Caporali, L.; Zanna, C.; La Morgia, C.; Del Dotto, V.; Porcelli, A.M.; Rugolo, M.; Valentino, M.L.; Iommarini, L.; et al. Syndromic Parkinsonism and Dementia Associated with OPA1 Missense Mutations. Ann. Neurol. 2015, 78, 21–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Ashley, N.; Diot, A.; Morten, K.; Phadwal, K.; Williams, A.; Fearnley, I.; Rosser, L.; Lowndes, J.; Fratter, C.; et al. Dysregulated Mitophagy and Mitochondrial Organization in Optic Atrophy Due to OPA1 Mutations. Neurology 2017, 88, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.C. Mitochondrial Dynamics and Its Involvement in Disease. Annu. Rev. Pathol. 2020, 15, 235–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The Cell Biology of Mitochondrial Membrane Dynamics. Nat. Rev. Mol. Cell. Biol. 2020, 21, 204–224. [Google Scholar] [CrossRef] [PubMed]
- Del Dotto, V.; Mishra, P.; Vidoni, S.; Fogazza, M.; Maresca, A.; Caporali, L.; McCaffery, J.M.; Cappelletti, M.; Baruffini, E.; Lenaers, G.; et al. OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. Cell Rep. 2017, 19, 2557–2571. [Google Scholar] [CrossRef] [Green Version]
- Olichon, A.; Elachouri, G.; Baricault, L.; Delettre, C.; Belenguer, P.; Lenaers, G. OPA1 Alternate Splicing Uncouples an Evolutionary Conserved Function in Mitochondrial Fusion from a Vertebrate Restricted Function in Apoptosis. Cell Death Differ. 2007, 14, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, N.; Fujita, Y.; Oka, T.; Mihara, K. Regulation of Mitochondrial Morphology through Proteolytic Cleavage of OPA1. EMBO J. 2006, 25, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The I-AAA Protease YME1L and OMA1 Cleave OPA1 to Balance Mitochondrial Fusion and Fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef]
- MacVicar, T.; Langer, T. OPA1 Processing in Cell Death and Disease—The Long and Short of It. J. Cell Sci. 2016, 129, 2297–2306. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Wu, Z.; Huang, L.; Wang, Y.; Xue, J.; Chen, S.; Deng, Z.; Wang, L.; Song, Z.; Chen, S. Mitofilin and CHCHD6 Physically Interact with Sam50 to Sustain Cristae Structure. Sci. Rep. 2015, 5, 16064. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Votruba, M.; Pesch, U.E.; Thiselton, D.L.; Mayer, S.; Moore, A.; Rodriguez, M.; Kellner, U.; Leo-Kottler, B.; Auburger, G.; et al. OPA1, Encoding a Dynamin-Related GTPase, Is Mutated in Autosomal Dominant Optic Atrophy Linked to Chromosome 3q28. Nat. Genet. 2000, 26, 211–215. [Google Scholar] [CrossRef]
- Delettre, C.; Lenaers, G.; Griffoin, J.M.; Gigarel, N.; Lorenzo, C.; Belenguer, P.; Pelloquin, L.; Grosgeorge, J.; Turc-Carel, C.; Perret, E.; et al. Nuclear Gene OPA1, Encoding a Mitochondrial Dynamin-Related Protein, Is Mutated in Dominant Optic Atrophy. Nat. Genet. 2000, 26, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Lenaers, G.; Hamel, C.; Delettre, C.; Amati-Bonneau, P.; Procaccio, V.; Bonneau, D.; Reynier, P.; Milea, D. Dominant Optic Atrophy. Orphanet J. Rare Dis. 2012, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Olichon, A.; Guillou, E.; Delettre, C.; Landes, T.; Arnauné-Pelloquin, L.; Emorine, L.J.; Mils, V.; Daloyau, M.; Hamel, C.; Amati-Bonneau, P.; et al. Mitochondrial Dynamics and Disease, OPA1. Biochim. Biophys. Acta 2006, 1763, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Ferré, M.; Bonneau, D.; Milea, D.; Chevrollier, A.; Verny, C.; Dollfus, H.; Ayuso, C.; Defoort, S.; Vignal, C.; Zanlonghi, X.; et al. Molecular Screening of 980 Cases of Suspected Hereditary Optic Neuropathy with a Report on 77 Novel OPA1 Mutations. Hum. Mutat. 2009, 30, E692–E705. [Google Scholar] [CrossRef]
- Jones, B.A.; Fangman, W.L. Mitochondrial DNA Maintenance in Yeast Requires a Protein Containing a Region Related to the GTP-Binding Domain of Dynamin. Genes Dev. 1992, 6, 380–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeusen, S.; DeVay, R.; Block, J.; Cassidy-Stone, A.; Wayson, S.; McCaffery, J.M.; Nunnari, J. Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1. Cell 2006, 127, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Herlan, M.; Vogel, F.; Bornhovd, C.; Neupert, W.; Reichert, A.S. Processing of Mgm1 by the Rhomboid-Type Protease Pcp1 Is Required for Maintenance of Mitochondrial Morphology and of Mitochondrial DNA. J. Biol. Chem. 2003, 278, 27781–27788. [Google Scholar] [CrossRef] [Green Version]
- Zick, M.; Duvezin-Caubet, S.; Schäfer, A.; Vogel, F.; Neupert, W.; Reichert, A.S. Distinct Roles of the Two Isoforms of the Dynamin-like GTPase Mgm1 in Mitochondrial Fusion. FEBS Lett. 2009, 583, 2237–2243. [Google Scholar] [CrossRef] [Green Version]
- Del Dotto, V.; Carelli, V. Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis. Front. Neurol. 2021, 12, 681326. [Google Scholar] [CrossRef]
- Schaaf, C.P.; Blazo, M.; Lewis, R.A.; Tonini, R.E.; Takei, H.; Wang, J.; Wong, L.-J.; Scaglia, F. Early-Onset Severe Neuromuscular Phenotype Associated with Compound Heterozygosity for OPA1 Mutations. Mol. Genet. Metab. 2011, 103, 383–387. [Google Scholar] [CrossRef]
- Bonifert, T.; Karle, K.N.; Tonagel, F.; Batra, M.; Wilhelm, C.; Theurer, Y.; Schoenfeld, C.; Kluba, T.; Kamenisch, Y.; Carelli, V.; et al. Pure and Syndromic Optic Atrophy Explained by Deep Intronic OPA1 Mutations and an Intralocus Modifier. Brain 2014, 137, 2164–2177. [Google Scholar] [CrossRef] [Green Version]
- Carelli, V.; Sabatelli, M.; Carrozzo, R.; Rizza, T.; Schimpf, S.; Wissinger, B.; Zanna, C.; Rugolo, M.; La Morgia, C.; Caporali, L.; et al. “Behr Syndrome” with OPA1 Compound Heterozygote Mutations. Brain 2015, 138, e321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amati-Bonneau, P.; Odent, S.; Derrien, C.; Pasquier, L.; Malthiéry, Y.; Reynier, P.; Bonneau, D. The Association of Autosomal Dominant Optic Atrophy and Moderate Deafness May Be Due to the R445H Mutation in the OPA1 Gene. Am. J. Ophthalmol. 2003, 136, 1170–1171. [Google Scholar] [CrossRef]
- Pesch, U.E.; Leo-Kottler, B.; Mayer, S.; Jurklies, B.; Kellner, U.; Apfelstedt-Sylla, E.; Zrenner, E.; Alexander, C.; Wissinger, B. OPA1 Mutations in Patients with Autosomal Dominant Optic Atrophy and Evidence for Semi-Dominant Inheritance. Hum. Mol. Genet. 2001, 10, 1359–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolden, A.; Noy, G.P.; Weissbach, A. DNA Polymerase of Mitochondria Is a Gamma-Polymerase. J. Biol. Chem. 1977, 252, 3351–3356. [Google Scholar] [CrossRef]
- Kaguni, L.S. DNA Polymerase Gamma, the Mitochondrial Replicase. Annu. Rev. Biochem. 2004, 73, 293–320. [Google Scholar] [CrossRef]
- Loeb, L.A.; Liu, P.K.; Fry, M. DNA Polymerase-Alpha: Enzymology, Function, Fidelity, and Mutagenesis. Prog. Nucleic Acid Res. Mol. Biol. 1986, 33, 57–110. [Google Scholar] [CrossRef] [PubMed]
- Kornberg, A.; Baker, T.A. DNA Replication; University Science Books: Melville, NY, USA, 2005; ISBN 978-1-891389-44-3. [Google Scholar]
- Ropp, P.A.; Copeland, W.C. Cloning and Characterization of the Human Mitochondrial DNA Polymerase, DNA Polymerase Gamma. Genomics 1996, 36, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Pinz, K.G.; Bogenhagen, D.F. Efficient Repair of Abasic Sites in DNA by Mitochondrial Enzymes. Mol. Cell. Biol. 1998, 18, 1257–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinz, K.G.; Bogenhagen, D.F. Characterization of a Catalytically Slow AP Lyase Activity in DNA Polymerase Gamma and Other Family A DNA Polymerases. J. Biol. Chem. 2000, 275, 12509–12514. [Google Scholar] [CrossRef] [Green Version]
- Pinz, K.G.; Bogenhagen, D.F. The Influence of the DNA Polymerase Gamma Accessory Subunit on Base Excision Repair by the Catalytic Subunit. DNA Rep. 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Longley, M.J.; Prasad, R.; Srivastava, D.K.; Wilson, S.H.; Copeland, W.C. Identification of 5′-Deoxyribose Phosphate Lyase Activity in Human DNA Polymerase Gamma and Its Role in Mitochondrial Base Excision Repair in Vitro. Proc. Natl. Acad. Sci. USA 1998, 95, 12244–12248. [Google Scholar] [CrossRef] [Green Version]
- Yakubovskaya, E.; Chen, Z.; Carrodeguas, J.A.; Kisker, C.; Bogenhagen, D.F. Functional Human Mitochondrial DNA Polymerase Gamma Forms a Heterotrimer. J. Biol. Chem. 2006, 281, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, T.A.; Soni, A. Exonucleolytic Proofreading Enhances the Fidelity of DNA Synthesis by Chick Embryo DNA Polymerase-Gamma. J. Biol. Chem. 1988, 263, 4450–4459. [Google Scholar] [CrossRef]
- Kunkel, T.A.; Mosbaugh, D.W. Exonucleolytic Proofreading by a Mammalian DNA Polymerase. Biochemistry 1989, 28, 988–995. [Google Scholar] [CrossRef]
- Ito, J.; Braithwaite, D.K. Yeast Mitochondrial DNA Polymerase Is Related to the Family A DNA Polymerases. Nucleic Acids Res. 1990, 18, 6716. [Google Scholar] [CrossRef] [Green Version]
- Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA Polymerase Gamma in Mitochondrial DNA Replication and Repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef]
- Fan, L.; Sanschagrin, P.C.; Kaguni, L.S.; Kuhn, L.A. The Accessory Subunit of MtDNA Polymerase Shares Structural Homology with Aminoacyl-TRNA Synthetases: Implications for a Dual Role as a Primer Recognition Factor and Processivity Clamp. Proc. Natl. Acad. Sci. USA 1999, 96, 9527–9532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Kaguni, L.S. Multiple Regions of Subunit Interaction in Drosophila Mitochondrial DNA Polymerase: Three Functional Domains in the Accessory Subunit. Biochemistry 2001, 40, 4780–4791. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Kennedy, W.D.; Yin, Y.W. Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations. Cell 2009, 139, 312–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.; Copeland, W.C. POLG-Related Disorders and Their Neurological Manifestations. Nat. Rev. Neurol. 2019, 15, 40–52. [Google Scholar] [CrossRef]
- Hikmat, O.; Tzoulis, C.; Chong, W.K.; Chentouf, L.; Klingenberg, C.; Fratter, C.; Carr, L.J.; Prabhakar, P.; Kumaraguru, N.; Gissen, P.; et al. The Clinical Spectrum and Natural History of Early-Onset Diseases Due to DNA Polymerase Gamma Mutations. Genet. Med. 2017, 19, 1217–1225. [Google Scholar] [CrossRef]
- Harding, B.N. Progressive Neuronal Degeneration of Childhood with Liver Disease (Alpers-Huttenlocher Syndrome): A Personal Review. J. Child. Neurol. 1990, 5, 273–287. [Google Scholar] [CrossRef]
- Tang, S.; Dimberg, E.L.; Milone, M.; Wong, L.-J.C. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)-like Phenotype: An Expanded Clinical Spectrum of POLG1 Mutations. J. Neurol. 2012, 259, 862–868. [Google Scholar] [CrossRef]
- Van Goethem, G.; Mercelis, R.; Löfgren, A.; Seneca, S.; Ceuterick, C.; Martin, J.J.; Van Broeckhoven, C. Patient Homozygous for a Recessive POLG Mutation Presents with Features of MERRF. Neurology 2003, 61, 1811–1813. [Google Scholar] [CrossRef]
- Deschauer, M.; Tennant, S.; Rokicka, A.; He, L.; Kraya, T.; Turnbull, D.M.; Zierz, S.; Taylor, R.W. MELAS Associated with Mutations in the POLG1 Gene. Neurology 2007, 68, 1741–1742. [Google Scholar] [CrossRef]
- Anagnostou, M.-E.; Ng, Y.S.; Taylor, R.W.; McFarland, R. Epilepsy Due to Mutations in the Mitochondrial Polymerase Gamma (POLG) Gene: A Clinical and Molecular Genetic Review. Epilepsia 2016, 57, 1531–1545. [Google Scholar] [CrossRef]
- Hanisch, F.; Kornhuber, M.; Alston, C.L.; Taylor, R.W.; Deschauer, M.; Zierz, S. SANDO Syndrome in a Cohort of 107 Patients with CPEO and Mitochondrial DNA Deletions. J. Neurol. Neurosurg. Psychiatry 2015, 86, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.H.; Chinnery, P.F.; Copeland, W.C. POLG-Related Disorders. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Mirzaa, G., Amemiya, A., Eds.; University of Washington Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Lodi, T.; Dallabona, C.; Nolli, C.; Goffrini, P.; Donnini, C.; Baruffini, E. DNA Polymerase γ and Disease: What We Have Learned from Yeast. Front. Genet. 2015, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Young, M.J.; Theriault, S.S.; Li, M.; Court, D.A. The Carboxyl-Terminal Extension on Fungal Mitochondrial DNA Polymerases: Identification of a Critical Region of the Enzyme from Saccharomyces cerevisiae. Yeast 2006, 23, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Viikov, K.; Jasnovidova, O.; Tamm, T.; Sedman, J. C-Terminal Extension of the Yeast Mitochondrial DNA Polymerase Determines the Balance between Synthesis and Degradation. PLoS ONE 2012, 7, e33482. [Google Scholar] [CrossRef] [Green Version]
- Trasviña-Arenas, C.H.; Hoyos-Gonzalez, N.; Castro-Lara, A.Y.; Rodriguez-Hernandez, A.; Sanchez-Sandoval, M.E.; Jimenez-Sandoval, P.; Ayala-García, V.M.; Díaz-Quezada, C.; Lodi, T.; Baruffini, E.; et al. Amino and Carboxy-Terminal Extensions of Yeast Mitochondrial DNA Polymerase Assemble Both the Polymerization and Exonuclease Active Sites. Mitochondrion 2019, 49, 166–177. [Google Scholar] [CrossRef]
- Lecrenier, N.; Foury, F. Overexpression of the RNR1 Gene Rescues Saccharomyces cerevisiae Mutants in the Mitochondrial DNA Polymerase-Encoding MIP1 Gene. Mol. Gen. Genet. 1995, 249, 1–7. [Google Scholar] [CrossRef]
- Bulst, S.; Holinski-Feder, E.; Payne, B.; Abicht, A.; Krause, S.; Lochmüller, H.; Chinnery, P.F.; Walter, M.C.; Horvath, R. In Vitro Supplementation with Deoxynucleoside Monophosphates Rescues Mitochondrial DNA Depletion. Mol. Genet. Metab. 2012, 107, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Chatterjee, A.; Singh, K.K. Saccharomyces cerevisiae Polymerase Zeta Functions in Mitochondria. Genetics 2006, 172, 2683–2688. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Li, X.; Owens, K.M.; Vanniarajan, A.; Liang, P.; Singh, K.K. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome. PLoS ONE 2015, 10, e0140409. [Google Scholar] [CrossRef] [Green Version]
- Pontarin, G.; Ferraro, P.; Bee, L.; Reichard, P.; Bianchi, V. Mammalian Ribonucleotide Reductase Subunit P53R2 Is Required for Mitochondrial DNA Replication and DNA Repair in Quiescent Cells. Proc. Natl. Acad. Sci. USA 2012, 109, 13302–13307. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Zarrouk-Mahjoub, S. Phenotypic and Genotypic Heterogeneity of RRM2B Variants. Neuropediatrics 2018, 49, 231–237. [Google Scholar] [CrossRef]
- Bornstein, B.; Area, E.; Flanigan, K.M.; Ganesh, J.; Jayakar, P.; Swoboda, K.J.; Coku, J.; Naini, A.; Shanske, S.; Tanji, K.; et al. Mitochondrial DNA Depletion Syndrome Due to Mutations in the RRM2B Gene. Neuromuscul. Disord. 2008, 18, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Kollberg, G.; Darin, N.; Benan, K.; Moslemi, A.-R.; Lindal, S.; Tulinius, M.; Oldfors, A.; Holme, E. A Novel Homozygous RRM2B Missense Mutation in Association with Severe MtDNA Depletion. Neuromuscul. Disord. 2009, 19, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Acham-Roschitz, B.; Plecko, B.; Lindbichler, F.; Bittner, R.; Mache, C.J.; Sperl, W.; Mayr, J.A. A Novel Mutation of the RRM2B Gene in an Infant with Early Fatal Encephalomyopathy, Central Hypomyelination, and Tubulopathy. Mol. Genet. Metab. 2009, 98, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, V.; Mayr, J.A.; Sperl, W.; Barišić, N.; Doronjski, A.; Milak, G. Infantile Peripheral Neuropathy, Deafness, and Proximal Tubulopathy Associated with a Novel Mutation of the RRM2B Gene: Case Study. Croat. Med. J. 2013, 54, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kropach, N.; Shkalim-Zemer, V.; Orenstein, N.; Scheuerman, O.; Straussberg, R. Novel RRM2B Mutation and Severe Mitochondrial DNA Depletion: Report of 2 Cases and Review of the Literature. Neuropediatrics 2017, 48, 456–462. [Google Scholar] [CrossRef]
- Pitceathly, R.D.S.; Smith, C.; Fratter, C.; Alston, C.L.; He, L.; Craig, K.; Blakely, E.L.; Evans, J.C.; Taylor, J.; Shabbir, Z.; et al. Adults with RRM2B-Related Mitochondrial Disease Have Distinct Clinical and Molecular Characteristics. Brain 2012, 135, 3392–3403. [Google Scholar] [CrossRef]
- Lim, A.Z.; McFarland, R.; Taylor, R.W.; Gorman, G.S. RRM2B Mitochondrial DNA Maintenance Defects. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Mirzaa, G., Amemiya, A., Eds.; University of Washington Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Bourdon, A.; Minai, L.; Serre, V.; Jais, J.-P.; Sarzi, E.; Aubert, S.; Chrétien, D.; de Lonlay, P.; Paquis-Flucklinger, V.; Arakawa, H.; et al. Mutation of RRM2B, Encoding P53-Controlled Ribonucleotide Reductase (P53R2), Causes Severe Mitochondrial DNA Depletion. Nat. Genet. 2007, 39, 776–780. [Google Scholar] [CrossRef]
- Pitceathly, R.D.S.; Fassone, E.; Taanman, J.-W.; Sadowski, M.; Fratter, C.; Mudanohwo, E.E.; Woodward, C.E.; Sweeney, M.G.; Holton, J.L.; Hanna, M.G.; et al. Kearns-Sayre Syndrome Caused by Defective R1/P53R2 Assembly. J. Med. Genet. 2011, 48, 610–617. [Google Scholar] [CrossRef]
- Elledge, S.J.; Davis, R.W. Identification of the DNA Damage-Responsive Element of RNR2 and Evidence That Four Distinct Cellular Factors Bind It. Mol. Cell. Biol. 1989, 9, 5373–5386. [Google Scholar] [CrossRef]
- Elledge, S.J.; Davis, R.W. DNA Damage Induction of Ribonucleotide Reductase. Mol. Cell. Biol. 1989, 9, 4932–4940. [Google Scholar] [CrossRef] [PubMed]
- Elledge, S.J.; Davis, R.W. Two Genes Differentially Regulated in the Cell Cycle and by DNA-Damaging Agents Encode Alternative Regulatory Subunits of Ribonucleotide Reductase. Genes Dev. 1990, 4, 740–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Zhou, Z.; Elledge, S.J. The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor. Cell 1998, 94, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.J.; Chabes, A.; Casagrande, R.; Tian, X.C.; Thelander, L.; Huffaker, T.C. Rnr4p, a Novel Ribonucleotide Reductase Small-Subunit Protein. Mol. Cell. Biol. 1997, 17, 6114–6121. [Google Scholar] [CrossRef] [Green Version]
- Sanvisens, N.; de Llanos, R.; Puig, S. Function and Regulation of Yeast Ribonucleotide Reductase: Cell Cycle, Genotoxic Stress, and Iron Bioavailability. Biomed. J. 2013, 36, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Muller, E.G.; Rothstein, R. A Suppressor of Two Essential Checkpoint Genes Identifies a Novel Protein That Negatively Affects DNTP Pools. Mol. Cell 1998, 2, 329–340. [Google Scholar] [CrossRef]
- Chabes, A.; Domkin, V.; Thelander, L. Yeast Sml1, a Protein Inhibitor of Ribonucleotide Reductase. J. Biol. Chem. 1999, 274, 36679–36683. [Google Scholar] [CrossRef] [Green Version]
- Chabes, A.; Domkin, V.; Larsson, G.; Liu, A.; Graslund, A.; Wijmenga, S.; Thelander, L. Yeast Ribonucleotide Reductase Has a Heterodimeric Iron-Radical-Containing Subunit. Proc. Natl. Acad. Sci. USA 2000, 97, 2474–2479. [Google Scholar] [CrossRef] [Green Version]
- Sommerhalter, M.; Voegtli, W.C.; Perlstein, D.L.; Ge, J.; Stubbe, J.; Rosenzweig, A.C. Structures of the Yeast Ribonucleotide Reductase Rnr2 and Rnr4 Homodimers. Biochemistry 2004, 43, 7736–7742. [Google Scholar] [CrossRef]
- Yao, R.; Zhang, Z.; An, X.; Bucci, B.; Perlstein, D.L.; Stubbe, J.; Huang, M. Subcellular Localization of Yeast Ribonucleotide Reductase Regulated by the DNA Replication and Damage Checkpoint Pathways. Proc. Natl. Acad. Sci. USA 2003, 100, 6628–6633. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Zhang, Z.; Yang, K.; Huang, M. Cotransport of the Heterodimeric Small Subunit of the Saccharomyces cerevisiae Ribonucleotide Reductase between the Nucleus and the Cytoplasm. Genetics 2006, 173, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerner, A.; Pauschinger, M.; Badorff, A.; Noutsias, M.; Giessen, S.; Schulze, K.; Bilger, J.; Rauch, U.; Schultheiss, H.P. Tissue-Specific Transcription Pattern of the Adenine Nucleotide Translocase Isoforms in Humans. FEBS Lett. 1997, 414, 258–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolce, V.; Scarcia, P.; Iacopetta, D.; Palmieri, F. A Fourth ADP/ATP Carrier Isoform in Man: Identification, Bacterial Expression, Functional Characterization and Tissue Distribution. FEBS Lett. 2005, 579, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Stepien, G.; Torroni, A.; Chung, A.B.; Hodge, J.A.; Wallace, D.C. Differential Expression of Adenine Nucleotide Translocator Isoforms in Mammalian Tissues and during Muscle Cell Differentiation. J. Biol. Chem. 1992, 267, 14592–14597. [Google Scholar] [CrossRef]
- Chevrollier, A.; Loiseau, D.; Reynier, P.; Stepien, G. Adenine Nucleotide Translocase 2 Is a Key Mitochondrial Protein in Cancer Metabolism. Biochim. Biophys. Acta 2011, 1807, 562–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, F. The Mitochondrial Transporter Family (SLC25): Physiological and Pathological Implications. Pflugers Arch. 2004, 447, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, F. Mitochondrial Transporters of the SLC25 Family and Associated Diseases: A Review. J. Inherit. Metab. Dis. 2014, 37, 565–575. [Google Scholar] [CrossRef]
- Pebay-Peyroula, E.; Dahout-Gonzalez, C.; Kahn, R.; Trézéguet, V.; Lauquin, G.J.-M.; Brandolin, G. Structure of Mitochondrial ADP/ATP Carrier in Complex with Carboxyatractyloside. Nature 2003, 426, 39–44. [Google Scholar] [CrossRef]
- Riccio, P.; Aquila, H.; Klingenberg, M. Purification of the Carboxy-Atractylate Binding Protein from Mitochondria. FEBS Lett. 1975, 56, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Hackenberg, H.; Klingenberg, M. Molecular Weight and Hydrodynamic Parameters of the Adenosine 5′-Diphosphate--Adenosine 5′-Triphosphate Carrier in Triton X-100. Biochemistry 1980, 19, 548–555. [Google Scholar] [CrossRef]
- Block, M.R.; Zaccaï, G.; Lauquin, G.J.; Vignais, P.V. Small Angle Neutron Scattering of the Mitochondrial ADP/ATP Carrier Protein in Detergent. Biochem. Biophys. Res. Commun. 1982, 109, 471–477. [Google Scholar] [CrossRef]
- Bamber, L.; Harding, M.; Butler, P.J.G.; Kunji, E.R.S. Yeast Mitochondrial ADP/ATP Carriers Are Monomeric in Detergents. Proc. Natl. Acad. Sci. USA 2006, 103, 16224–16229. [Google Scholar] [CrossRef] [Green Version]
- Bamber, L.; Harding, M.; Monné, M.; Slotboom, D.-J.; Kunji, E.R.S. The Yeast Mitochondrial ADP/ATP Carrier Functions as a Monomer in Mitochondrial Membranes. Proc. Natl. Acad. Sci. USA 2007, 104, 10830–10834. [Google Scholar] [CrossRef] [Green Version]
- Bamber, L.; Slotboom, D.-J.; Kunji, E.R.S. Yeast Mitochondrial ADP/ATP Carriers Are Monomeric in Detergents as Demonstrated by Differential Affinity Purification. J. Mol. Biol. 2007, 371, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krämer, R.; Klingenberg, M. Enhancement of Reconstituted ADP, ATP Exchange Activity by Phosphatidylethanolamine and by Anionic Phospholipids. FEBS Lett. 1980, 119, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Zoratti, M.; Szabò, I. The Mitochondrial Permeability Transition. Biochim. Biophys. Acta 1995, 1241, 139–176. [Google Scholar] [CrossRef]
- Kokoszka, J.E.; Waymire, K.G.; Levy, S.E.; Sligh, J.E.; Cai, J.; Jones, D.P.; MacGregor, G.R.; Wallace, D.C. The ADP/ATP Translocator Is Not Essential for the Mitochondrial Permeability Transition Pore. Nature 2004, 427, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Marzo, I.; Brenner, C.; Kroemer, G. The Central Role of the Mitochondrial Megachannel in Apoptosis: Evidence Obtained with Intact Cells, Isolated Mitochondria, and Purified Protein Complexes. Biomed. Pharmacother. 1998, 52, 248–251. [Google Scholar] [CrossRef]
- Hoshino, A.; Wang, W.-J.; Wada, S.; McDermott-Roe, C.; Evans, C.S.; Gosis, B.; Morley, M.P.; Rathi, K.S.; Li, J.; Li, K.; et al. The ADP/ATP Translocase Drives Mitophagy Independent of Nucleotide Exchange. Nature 2019, 575, 375–379. [Google Scholar] [CrossRef]
- Brand, M.D.; Esteves, T.C. Physiological Functions of the Mitochondrial Uncoupling Proteins UCP2 and UCP3. Cell Metab. 2005, 2, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Napoli, L.; Bordoni, A.; Zeviani, M.; Hadjigeorgiou, G.M.; Sciacco, M.; Tiranti, V.; Terentiou, A.; Moggio, M.; Papadimitriou, A.; Scarlato, G.; et al. A Novel Missense Adenine Nucleotide Translocator-1 Gene Mutation in a Greek AdPEO Family. Neurology 2001, 57, 2295–2298. [Google Scholar] [CrossRef]
- Komaki, H.; Goto, Y. ANT1, twinkle, POLG mutation. Nihon Rinsho 2002, 60, 353–356. [Google Scholar]
- Siciliano, G.; Tessa, A.; Petrini, S.; Mancuso, M.; Bruno, C.; Grieco, G.S.; Malandrini, A.; DeFlorio, L.; Martini, B.; Federico, A.; et al. Autosomal Dominant External Ophthalmoplegia and Bipolar Affective Disorder Associated with a Mutation in the ANT1 Gene. Neuromuscul. Disord. 2003, 13, 162–165. [Google Scholar] [CrossRef]
- Deschauer, M.; Hudson, G.; Müller, T.; Taylor, R.W.; Chinnery, P.F.; Zierz, S. A Novel ANT1 Gene Mutation with Probable Germline Mosaicism in Autosomal Dominant Progressive External Ophthalmoplegia. Neuromuscul. Disord. 2005, 15, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Körver-Keularts, I.M.L.W.; de Visser, M.; Bakker, H.D.; Wanders, R.J.A.; Vansenne, F.; Scholte, H.R.; Dorland, L.; Nicolaes, G.A.F.; Spaapen, L.M.J.; Smeets, H.J.M.; et al. Two Novel Mutations in the SLC25A4 Gene in a Patient with Mitochondrial Myopathy. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2015; Volume 22, pp. 39–45. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.K.; Schubert, A.; Rocks, O.; Grimm, S. Adenine Nucleotide Translocase-1, a Component of the Permeability Transition Pore, Can Dominantly Induce Apoptosis. J. Cell Biol. 1999, 147, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, H.; Tiranti, V.; Magrané, J.; Chinopoulos, C.; Manfredi, G. AdPEO Mutations in ANT1 Impair ADP-ATP Translocation in Muscle Mitochondria. Hum. Mol. Genet. 2011, 20, 2964–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrian, G.S.; McCammon, M.T.; Montgomery, D.L.; Douglas, M.G. Sequences Required for Delivery and Localization of the ADP/ATP Translocator to the Mitochondrial Inner Membrane. Mol. Cell. Biol. 1986, 6, 626–634. [Google Scholar] [CrossRef]
- Lawson, J.E.; Douglas, M.G. Separate Genes Encode Functionally Equivalent ADP/ATP Carrier Proteins in Saccharomyces cerevisiae. Isolation and Analysis of AAC2. J. Biol. Chem. 1988, 263, 14812–14818. [Google Scholar] [CrossRef]
- Kolarov, J.; Kolarova, N.; Nelson, N. A Third ADP/ATP Translocator Gene in Yeast. J. Biol. Chem. 1990, 265, 12711–12716. [Google Scholar] [CrossRef]
- Drgon, T.; Sabová, L.; Gavurniková, G.; Kolarov, J. Yeast ADP/ATP Carrier (AAC) Proteins Exhibit Similar Enzymatic Properties but Their Deletion Produces Different Phenotypes. FEBS Lett. 1992, 304, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Kovácová, V.; Irmlerová, J.; Kovác, L. Oxidative Phosphorylatiion in Yeast. IV. Combination of a Nuclear Mutation Affecting Oxidative Phosphorylation with Cytoplasmic Mutation to Respiratory Deficiency. Biochim. Biophys. Acta 1968, 162, 157–163. [Google Scholar] [CrossRef]
- Appleby, R.D.; Porteous, W.K.; Hughes, G.; James, A.M.; Shannon, D.; Wei, Y.H.; Murphy, M.P. Quantitation and Origin of the Mitochondrial Membrane Potential in Human Cells Lacking Mitochondrial DNA. Eur. J. Biochem. 1999, 262, 108–116. [Google Scholar] [CrossRef]
- Dupont, C.H.; Mazat, J.P.; Guerin, B. The Role of Adenine Nucleotide Translocation in the Energization of the Inner Membrane of Mitochondria Isolated from Rho + and Rho Degree Strains of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1985, 132, 1116–1123. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.J. Adenine Nucleotide Translocase, Mitochondrial Stress, and Degenerative Cell Death. Oxid. Med. Cell. Longev. 2013, 2013, 146860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, L.P.; Chen, X.J. Consequences of Inner Mitochondrial Membrane Protein Misfolding. Mitochondrion 2019, 49, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Viscomi, C.; Zeviani, M. Strategies for Fighting Mitochondrial Diseases. J. Intern. Med. 2020, 287, 665–684. [Google Scholar] [CrossRef]
- Couplan, E.; Aiyar, R.S.; Kucharczyk, R.; Kabala, A.; Ezkurdia, N.; Gagneur, J.; St Onge, R.P.; Salin, B.; Soubigou, F.; Le Cann, M.; et al. A Yeast-Based Assay Identifies Drugs Active against Human Mitochondrial Disorders. Proc. Natl. Acad. Sci. USA 2011, 108, 11989–11994. [Google Scholar] [CrossRef] [Green Version]
- Talevi, A.; Bellera, C.L. Challenges and Opportunities with Drug Repurposing: Finding Strategies to Find Alternative Uses of Therapeutics. Expert Opin. Drug Discov. 2020, 15, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Pitayu, L.; Baruffini, E.; Rodier, C.; Rötig, A.; Lodi, T.; Delahodde, A. Combined Use of Saccharomyces cerevisiae, Caenorhabditis Elegans and Patient Fibroblasts Leads to the Identification of Clofilium Tosylate as a Potential Therapeutic Chemical against POLG-Related Diseases. Hum. Mol. Genet. 2016, 25, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Facchinello, N.; Laquatra, C.; Locatello, L.; Beffagna, G.; Brañas Casas, R.; Fornetto, C.; Dinarello, A.; Martorano, L.; Vettori, A.; Risato, G.; et al. Efficient Clofilium Tosylate-Mediated Rescue of POLG-Related Disease Phenotypes in Zebrafish. Cell Death Dis. 2021, 12, 100. [Google Scholar] [CrossRef]
- Aleo, S.J.; Del Dotto, V.; Fogazza, M.; Maresca, A.; Lodi, T.; Goffrini, P.; Ghelli, A.; Rugolo, M.; Carelli, V.; Baruffini, E.; et al. Drug Repositioning as a Therapeutic Strategy for Neurodegenerations Associated with OPA1 Mutations. Hum. Mol. Genet. 2021, 29, 3631–3645. [Google Scholar] [CrossRef] [PubMed]
- Di Punzio, G.; Di Noia, M.A.; Delahodde, A.; Sellem, C.; Donnini, C.; Palmieri, L.; Lodi, T.; Dallabona, C. A Yeast-Based Screening Unravels Potential Therapeutic Molecules for Mitochondrial Diseases Associated with Dominant ANT1 Mutations. Int. J. Mol. Sci. 2021, 22, 4461. [Google Scholar] [CrossRef] [PubMed]
- Baile, M.G.; Claypool, S.M. The Power of Yeast to Model Diseases of the Powerhouse of the Cell. Front. Biosci. 2013, 18, 241–278. [Google Scholar] [CrossRef] [Green Version]
- Taanman, J.-W.; Muddle, J.R.; Muntau, A.C. Mitochondrial DNA Depletion Can Be Prevented by DGMP and DAMP Supplementation in a Resting Culture of Deoxyguanosine Kinase-Deficient Fibroblasts. Hum. Mol. Genet. 2003, 12, 1839–1845. [Google Scholar] [CrossRef] [Green Version]
- Rampazzo, C.; Miazzi, C.; Franzolin, E.; Pontarin, G.; Ferraro, P.; Frangini, M.; Reichard, P.; Bianchi, V. Regulation by Degradation, a Cellular Defense against Deoxyribonucleotide Pool Imbalances. Mutat. Res. 2010, 703, 2–10. [Google Scholar] [CrossRef]
- Garone, C.; Garcia-Diaz, B.; Emmanuele, V.; Lopez, L.C.; Tadesse, S.; Akman, H.O.; Tanji, K.; Quinzii, C.M.; Hirano, M. Deoxypyrimidine Monophosphate Bypass Therapy for Thymidine Kinase 2 Deficiency. EMBO Mol. Med. 2014, 6, 1016–1027. [Google Scholar] [CrossRef]
- Lopez-Gomez, C.; Levy, R.J.; Sanchez-Quintero, M.J.; Juanola-Falgarona, M.; Barca, E.; Garcia-Diaz, B.; Tadesse, S.; Garone, C.; Hirano, M. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency. Ann. Neurol. 2017, 81, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Bulst, S.; Abicht, A.; Holinski-Feder, E.; Müller-Ziermann, S.; Koehler, U.; Thirion, C.; Walter, M.C.; Stewart, J.D.; Chinnery, P.F.; Lochmüller, H.; et al. In Vitro Supplementation with DAMP/DGMP Leads to Partial Restoration of MtDNA Levels in Mitochondrial Depletion Syndromes. Hum. Mol. Genet. 2009, 18, 1590–1599. [Google Scholar] [CrossRef] [Green Version]
- Munro, B.; Horvath, R.; Müller, J.S. Nucleoside Supplementation Modulates Mitochondrial DNA Copy Number in the Dguok-/- Zebrafish. Hum. Mol. Genet. 2019, 28, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-González, C.; Madruga-Garrido, M.; Mavillard, F.; Garone, C.; Aguirre-Rodríguez, F.J.; Donati, M.A.; Kleinsteuber, K.; Martí, I.; Martín-Hernández, E.; Morealejo-Aycinena, J.P.; et al. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann. Neurol. 2019, 86, 293–303. [Google Scholar] [CrossRef] [PubMed]
Human Gene | Protein Function | Disease | OMIM Number | Onset | Inheritance | mtDNA Alteration | Main Phenotype | Yeast Gene | Study in Yeast |
---|---|---|---|---|---|---|---|---|---|
ABAT | 4-aminobutyrate aminotransferase | GABA-transaminase deficiency | 613163 | Infancy | AR | Multiple deletions | Encephalopathy, myopathy, and elevated GABA | UGA1 | / |
AGK | Acylglycerol kinase | MDDS 10, Sengers syndrome | 212350 | Neonatal | AR | Depletion | Cardiac and skeletal myopathy and cataract | NP | / |
DGUOK | Mitochondrial deoxyguanosine kinase | MDDS 3 | 251880 | Neonatal period, infancy, or childhood | AR | Depletion | Hepatopathy and encephalopathy | NP | / |
PEO, autosomal recessive 4 | 617070 | Early or mid-adulthood | AR | Multiple deletions | Myopathy and ophthalmoplegia | ||||
DNA2 | DNA replication helicase/nuclease 2 | PEO, autosomal dominant 6 | 615156 | Childhood or early adulthood | AD | Multiple deletions | Myopathy and ophthalmoplegia | DNA2 | / |
FBXL4 | F-box and leucine-rich repeat protein 4 | MDDS 13 | 615471 | Neonatal period or infancy | AR | Depletion | Encephalopathy and myopathy | NP | / |
LIG3 | Ligase III | Neurogastrointestinal encephalomyopathy | Infancy to adolescence | AR | Depletion | Gut dysmotility, encephalopathy, and myopathy | NP | / | |
MFN2 | Mitofusin 2 | Hereditary motor and sensory neuropathy VIA; DOA | 601152 | Early childhood | AD | Multiple deletions | Optic atrophy and neuropathy | FZO1 | / |
MGME1 | Mitochondrial exonuclease 1 | MDDS 11 | 615084 | Childhood or early adulthood | AR | Depletion and multiple deletions | Myopathy | NP | / |
MPV17 | IMM protein | PEO, autosomal recessive | Adulthood | AR | Multiple deletions | Ophthalmoplegia leukoencephalopathy and/or parkinsonism | SYM1 | [16,17] | |
Neuromyopathic MDMD | Adulthood | AR | Multiple deletions | Neuropathy and myopathy | |||||
MDDS 6 | 256810 | Neonatal period, infancy, or early childhood | AR | Depletion | Neuropathy, hepatopathy and/or encephalopathy | ||||
MRM2 | Mitochondrial ribosomal RNA methyltransferase 2 | MDDS 17 | 618567 | Infancy | AR | Depletion | MELAS-like with encephalopathy, lactic acidosis and stroke-like episodes | MRM2 | [18] |
OPA1 | Mitochondrial dynamin-like GTPase | MDDS 14 | 616896 | Neonatal or infancy | AR | Depletion | Cardiomyopathy, encephalopathy | MGM1 | [19,20,21] |
DOA | 165500 | Childhood or early adulthood | AD | (Multiple deletions) | Optic atrophy | ||||
DOA plus | 125250 | Childhood or early adulthood | AD | Multiple deletions | Optic atrophy with deafness, ophthalmoplegia, myopathy, ataxia, and/or neuropathy | ||||
POLG | DNA polymerase γ | Childhood myocerebrohepatopathy spectrum disorders | Infancy | AR | Depletion | Hypotonia, hepatopathy, developmental delay | MIP1 | [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39] | |
MDDS 4A | 203700 | Early childhood | AR | Depletion | Alpers–Huttenlocher syndrome with encephalopathy, neuropathy, and hepatopathy | ||||
MDDS 4B | 613662 | Childhood to adulthood | AR | Depletion and multiple deletions | MNGIE with gastrointestinal dysmotility, myopathy, and neuropathy | ||||
Mitochondrial recessive ataxia syndrome | 607459 | Adolescence, early adulthood | AR | Multiple deletions | SANDO/SCAE, ANS, MEMSA with ataxia, neuropathy, encephalopathy, epilepsy and/or myopathy | ||||
PEO, autosomal dominant 1 | 157640 | Adulthood | AD | Multiple deletions | Ophthalmoplegia and myopathy | ||||
PEO, autosomal recessive | 258450 | Adolescence, adulthood | AR | Multiple deletions | Ophthalmoplegia | ||||
POLG2 | DNA polymerase γ accessory subunit | MDDS 16 (hepatic type) | 618528 | Infancy | AR | Depletion | Hepatophty | NP | / |
MDDS 16B | 619425 | Childood | AR | Depletion | Neuroophthalmic type | ||||
PEO, autosomal dominant 4 | 610131 | Infancy to adulthood | AD | Multiple deletions | Myopathy and ophthalmoplegia | ||||
RNASEH1 | Ribonuclease H1 | PEO, autosomal recessive 2 | 616479 | Adulthood | AR | Multiple deletions | Ophthalmoplegia | RNH1 | / |
RRM2B | Ribonucleotide reductase, M2 B | MDDS 8A and 8B | 612075 | Infancy | AR | Depletion | Myopathy, encephalopathy and tubulopathy or MNGIE | RNR2 | [40] |
PEO, autosomal recessive | Childhood | AR | Multiple deletions | Ophthalmoplegia and myopathy | |||||
PEO, autosomal dominant 5 | 613077 | Adulthood | AD | Multiple deletions | Ophthalmoplegia and myopathy | ||||
SLC25A21 | Mitochondrial oxodicarboxylate carrier | MDDS 18 | 618811 | Early childhood | AR | Depletion | Muscular atrophy and myopathy | ODC1/ ODC2 | / |
SLC25A4 (ANT1) | Mitochondrial ADP/ATP translocator | MDDS 12A (cardiomyopathic type) | 617184 | Neonatal | AD | Depletion | Myopathy and cardiomyopathy | AAC2 (AAC1, AAC3) | [41,42,43,44,45,46,47,48,49] |
MDDS 12B (cardiomyopathic type) | 615418 | Childhood | AR | Depletion and multiple deletions | Myopathy and cardiomyopathy | ||||
PEO, autosomal dominant 2 | 609283 | Adulthood | AD | Multiple deletions | Ophthalmoplegia and myopathy | ||||
SLC25A10 (DIC) | Mitochondrial dicarboxylate carrier | MDDS 19 | 618972 | Infancy | AR | Depletion | Encephalopathy an hypotonia | DIC1 | / |
SSBP1 | Single-stranded DNA-binding protein 1 | Optic atrophy 13 | 165510 | Infancy to early adulthood | AD | Depletion | Optic atrophy | RIM1 | / |
SUCLA2 | Succinyl-CoA ligase, β subunit | MDDS 5 | 612073 | Infancy or early childhood | AR | Depletion | Encephalopathy and myopathy with or without methylmalonic aciduria | LSC2 | / |
SUCLG1 | Succinyl-CoA ligase, α subunit | MDDS 9 | 245400 | Neonatal period or infancy | AR | Depletion | Encephalopathy and myopathy with methylmalonic aciduria | LSC1 | / |
TFAM | Mitochondrial transcription factor 1 | MDDS 15 | 617156 | Neonatal | AR | Depletion | Hepatocerebral syndrome | ABF2 | / |
TOP3A | DNA topoisomerase III | PEO, autosomal recessive 5 | 618098 | Adulthood | AR | Multiple deletions | Ophthalmoplegia and ataxia | TOP3 | / |
TK2 | Mitochondrial thymidine kinase | PEO, autosomal recessive 3 | 617069 | Mid-Adulthood | AR | Multiple deletions | Ophthalmoplegia and myopathy | NP | / |
MDDS 2 | 609560 | Infancy or childhood | AR | Depletion | Myopathy, | ||||
TWNK | Twinkle mtDNA helicase | MDDS 7 (hepatocerebral type), IOSCA | 271245 | Infancy | AR | Depletion | Ataxia, encephalopathy, and neuropathy | NP | / |
PEO, autosomal dominant 3 | 609286 | Early adulthood | AD | Multiple deletions | Ophthalmoplegia and myopathy | ||||
Hepatocerebral MDMD | Neonatal or early infancy | AR | Depletion | Alpers-like with encephalopathy and hepatopathy | |||||
TYMP | Thymidine phosphorylase | MDDS 1 | 603041 | Adolescence to adulthood | AR | Depletion and multiple deletions | MNGIE with gastrointestinal dysmotility, myopathy, and neuropathy | NP | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilea, A.I.; Ceccatelli Berti, C.; Magistrati, M.; di Punzio, G.; Goffrini, P.; Baruffini, E.; Dallabona, C. Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes 2021, 12, 1866. https://doi.org/10.3390/genes12121866
Gilea AI, Ceccatelli Berti C, Magistrati M, di Punzio G, Goffrini P, Baruffini E, Dallabona C. Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes. 2021; 12(12):1866. https://doi.org/10.3390/genes12121866
Chicago/Turabian StyleGilea, Alexandru Ionut, Camilla Ceccatelli Berti, Martina Magistrati, Giulia di Punzio, Paola Goffrini, Enrico Baruffini, and Cristina Dallabona. 2021. "Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability" Genes 12, no. 12: 1866. https://doi.org/10.3390/genes12121866
APA StyleGilea, A. I., Ceccatelli Berti, C., Magistrati, M., di Punzio, G., Goffrini, P., Baruffini, E., & Dallabona, C. (2021). Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes, 12(12), 1866. https://doi.org/10.3390/genes12121866