Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = mtDNA depletion syndromes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2161 KiB  
Article
Persistent Monocytic Bioenergetic Impairment and Mitochondrial DNA Damage in PASC Patients with Cardiovascular Complications
by Dilvin Semo, Zornitsa Shomanova, Jürgen Sindermann, Michael Mohr, Georg Evers, Lukas J. Motloch, Holger Reinecke, Rinesh Godfrey and Rudin Pistulli
Int. J. Mol. Sci. 2025, 26(10), 4562; https://doi.org/10.3390/ijms26104562 - 9 May 2025
Cited by 1 | Viewed by 3085
Abstract
Cardiovascular complications are a hallmark of Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC), yet the mechanisms driving persistent cardiac dysfunction remain poorly understood. Emerging evidence implicates mitochondrial dysfunction in immune cells as a key contributor. This study investigated [...] Read more.
Cardiovascular complications are a hallmark of Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC), yet the mechanisms driving persistent cardiac dysfunction remain poorly understood. Emerging evidence implicates mitochondrial dysfunction in immune cells as a key contributor. This study investigated whether CD14++ monocytes from long COVID patients exhibit bioenergetic impairment, mitochondrial DNA (mtDNA) damage, and defective oxidative stress adaptation, which may underlie cardiovascular symptoms in PASC. CD14++ monocytes were isolated from 14 long COVID patients with cardiovascular symptoms (e.g., dyspnea, angina) and 10 age-matched controls with similar cardiovascular risk profiles. Mitochondrial function was assessed using a Seahorse Agilent Analyzer under basal conditions and after oxidative stress induction with buthionine sulfoximine (BSO). Mitochondrial membrane potential was measured via Tetramethylrhodamine Ethyl Ester (TMRE) assay, mtDNA integrity via qPCR, and reactive oxygen species (ROS) dynamics via Fluorescence-Activated Cell Sorting (FACS). Parallel experiments exposed healthy monocytes to SARS-CoV-2 spike protein to evaluate direct viral effects. CD14++ monocytes from long COVID patients with cardiovascular symptoms (n = 14) exhibited profound mitochondrial dysfunction compared to age-matched controls (n = 10). Under oxidative stress induced by buthionine sulfoximine (BSO), long COVID monocytes failed to upregulate basal respiration (9.5 vs. 30.4 pmol/min in controls, p = 0.0043), showed a 65% reduction in maximal respiration (p = 0.4035, ns) and demonstrated a 70% loss of spare respiratory capacity (p = 0.4143, ns) with significantly impaired adaptation to BSO challenge (long COVID + BSO: 9.9 vs. control + BSO: 54 pmol/min, p = 0.0091). Proton leak, a protective mechanism against ROS overproduction, was blunted in long COVID monocytes (3-fold vs. 13-fold elevation in controls, p = 0.0294). Paradoxically, long COVID monocytes showed reduced ROS accumulation after BSO treatment (6% decrease vs. 1.2-fold increase in controls, p = 0.0015) and elevated mitochondrial membrane potential (157 vs. 113.7 TMRE fluorescence, p = 0.0179), which remained stable under oxidative stress. mtDNA analysis revealed severe depletion (80% reduction, p < 0.001) and region-specific damage, with 75% and 70% reductions in amplification efficiency for regions C and D (p < 0.05), respectively. In contrast, exposure of healthy monocytes to SARS-CoV-2 spike protein did not recapitulate these defects, with preserved basal respiration, ATP production, and spare respiratory capacity, though coupling efficiency under oxidative stress was reduced (p < 0.05). These findings suggest that mitochondrial dysfunction in long COVID syndrome arises from maladaptive host responses rather than direct viral toxicity, characterized by bioenergetic failure, impaired stress adaptation, and mitochondrial genomic instability. This study identifies persistent mitochondrial dysfunction in long COVID monocytes as a critical driver of cardiovascular complications in PASC. Key defects—bioenergetic failure, impaired stress adaptation and mtDNA damage—correlate with clinical symptoms like heart failure and exercise intolerance. The stable elevation of mitochondrial membrane potential and resistance to ROS induction suggest maladaptive remodeling of mitochondrial physiology. These findings position mitochondrial resilience as a therapeutic target, with potential strategies including antioxidants, mtDNA repair agents or metabolic modulators. The dissociation between spike protein exposure and mitochondrial dysfunction highlights the need to explore host-directed mechanisms in PASC pathophysiology. This work advances our understanding of long COVID cardiovascular sequelae and provides a foundation for biomarker development and targeted interventions to mitigate long-term morbidity. Full article
Show Figures

Graphical abstract

13 pages, 1346 KiB  
Article
The POLG Variant c.678G>C; p.(Gln226His) Is Associated with Mitochondrial Abnormalities in Fibroblasts Derived from a Patient Compared to a First-Degree Relative
by Imra Mantey, Felix Langerscheidt, Çağla Çakmak Durmaz, Naomi Baba, Katharina Burghardt, Mert Karakaya and Hans Zempel
Genes 2025, 16(2), 198; https://doi.org/10.3390/genes16020198 - 5 Feb 2025
Cited by 1 | Viewed by 1222
Abstract
Background: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the [...] Read more.
Background: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the catalytic subunit of Pol-γ, can significantly impair Pol-γ enzyme function. Pol-γ-associated disorders are referred to as POLG-spectrum disorders (POLG-SDs) and are mainly autosomal-recessively inherited. Clinical manifestations include muscle weakness and fatigue, and severe forms of the disease can lead to premature death in infancy, childhood, and early adulthood, often associated with seizures, liver failure, or intractable epilepsy. Here, we analyzed fibroblasts from a compound heterozygous patient with the established pathogenic variant c.2419C>T; p.(Arg807Cys) and a previously undescribed variant c.678G>C; p.(Gln226His) with a clinical manifestation compatible with POLG-SDs, sensory ataxic neuropathy, and infantile muscular atrophy. We conducted a battery of functional studies for Pol-γ and mitochondrial dysfunction on the patient’s fibroblasts, to test whether the novel variant c.678G>C; p.(Gln226His) may be causative in human disease. Aims/Methods: We analyzed skin-derived fibroblasts in comparison to a first-degree relative (the mother of the patient), an asymptomatic carrier harboring only the established c.2419C>T; p.(Arg807Cys) mutation. Assessments of mitochondrial function included measurements of mtDNA content, mRNA levels of mitochondrial genes, mitochondrial mass, and mitochondrial morphology. Case Presentation and Results: A 13-year-old male presented with symptoms starting at three years of age, including muscle weakness and atrophy in the lower extremities and facial muscles, which later extended to the upper limbs, voice, and back muscles, without further progression. The patient also reported fatigue and muscle pain after physical activity, with no sensory deficits. Extensive diagnostic tests such as electromyography, nerve conduction studies, muscle biopsy, and MRI were unremarkable. Exome sequencing revealed that he carried the compound heterozygous variants in POLG c.678G>C; p.(Gln226His) and c.2419C>T; p.(Arg807Cys), but no other potential genetic pathogenic causes. In comparison to a first-degree relative (his mother) who only carried the c.2419C>T; p.(Arg807Cys) pathogenic mutation, in vitro analyses revealed a significant reduction in mtDNA content (~50%) and mRNA levels of mtDNA-encoded proteins. Mitochondrial mass was reduced by approximately 20%, and mitochondrial interconnectivity within cells was impaired, as determined by fluorescence microscopy and mitochondrial staining. Conclusions: Our findings suggest that the c.678G>C; p.(Gln226His) variant, in conjunction with the c.2419C>T; p.(Arg807Cys) mutation, may compromise mtDNA replication and mitochondrial function and could result in clinically significant mitochondriopathy. As this study is based on one patient compared to a first-degree relative (but with an identical mitochondrial genome), the pathogenicity of c.678G>C; p.(Gln226His) of POLG should be confirmed in future studies, in particular, in conjunction with other POLG-variants. Full article
Show Figures

Figure 1

27 pages, 2131 KiB  
Review
Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy
by Teresa Campbell, Jesse Slone and Taosheng Huang
Cells 2022, 11(18), 2835; https://doi.org/10.3390/cells11182835 - 11 Sep 2022
Cited by 14 | Viewed by 4709
Abstract
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the [...] Read more.
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the nuclear genome (nDNA), dictate mitochondrial structure and function. Not surprisingly, pathogenic variants in the mtDNA or nDNA can result in mitochondrial disease. Mitochondrial disease primarily impacts tissues with high energy demands, including the heart. Mitochondrial cardiomyopathy is characterized by the abnormal structure or function of the myocardium secondary to genetic defects in either the nDNA or mtDNA. Mitochondrial cardiomyopathy can be isolated or part of a syndromic mitochondrial disease. Common manifestations of mitochondrial cardiomyopathy are a phenocopy of hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac conduction defects. The underlying pathophysiology of mitochondrial cardiomyopathy is complex and likely involves multiple abnormal processes in the cell, stemming from deficient oxidative phosphorylation and ATP depletion. Possible pathophysiology includes the activation of alternative metabolic pathways, the accumulation of reactive oxygen species, dysfunctional mitochondrial dynamics, abnormal calcium homeostasis, and mitochondrial iron overload. Here, we highlight the clinical assessment of mtDNA-related mitochondrial cardiomyopathy and offer a novel hypothesis of a possible integrated, multivariable pathophysiology of disease. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Cardiovascular Disease)
Show Figures

Figure 1

34 pages, 510 KiB  
Review
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability
by Alexandru Ionut Gilea, Camilla Ceccatelli Berti, Martina Magistrati, Giulia di Punzio, Paola Goffrini, Enrico Baruffini and Cristina Dallabona
Genes 2021, 12(12), 1866; https://doi.org/10.3390/genes12121866 - 24 Nov 2021
Cited by 13 | Viewed by 4849
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as [...] Read more.
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability. Full article
(This article belongs to the Special Issue The Stability and Evolution of Genes and Genomes)
20 pages, 3804 KiB  
Article
A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool
by Giulia di Punzio, Micol Gilberti, Enrico Baruffini, Tiziana Lodi, Claudia Donnini and Cristina Dallabona
Int. J. Mol. Sci. 2021, 22(22), 12223; https://doi.org/10.3390/ijms222212223 - 12 Nov 2021
Cited by 7 | Viewed by 3048
Abstract
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for [...] Read more.
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients. Full article
(This article belongs to the Special Issue Yeast Research in the Post-genomic Era)
Show Figures

Figure 1

35 pages, 973 KiB  
Review
Therapy Prospects for Mitochondrial DNA Maintenance Disorders
by Javier Ramón, Ferran Vila-Julià, David Molina-Granada, Miguel Molina-Berenguer, Maria Jesús Melià, Elena García-Arumí, Javier Torres-Torronteras, Yolanda Cámara and Ramon Martí
Int. J. Mol. Sci. 2021, 22(12), 6447; https://doi.org/10.3390/ijms22126447 - 16 Jun 2021
Cited by 21 | Viewed by 6417
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited [...] Read more.
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited. Full article
(This article belongs to the Special Issue Molecular Research on Mitochondrial Dysfunction)
Show Figures

Figure 1

9 pages, 956 KiB  
Review
Biochemical Assessment of Coenzyme Q10 Deficiency
by Juan Carlos Rodríguez-Aguilera, Ana Belén Cortés, Daniel J. M. Fernández-Ayala and Plácido Navas
J. Clin. Med. 2017, 6(3), 27; https://doi.org/10.3390/jcm6030027 - 5 Mar 2017
Cited by 45 | Viewed by 9199
Abstract
Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for [...] Read more.
Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors. Full article
Show Figures

Figure 1

3 pages, 631 KiB  
Case Report
Adult Mitochondrial DNA Depletion Syndrome with Mild Manifestations
by Josef Finsterer, Gabor G. Kovacs and Uwe Ahting
Neurol. Int. 2013, 5(2), e9; https://doi.org/10.4081/ni.2013.e9 - 25 Jun 2013
Cited by 6 | Viewed by 1
Abstract
Mitochondrial DNA depletion syndrome (MDS) is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with [...] Read more.
Mitochondrial DNA depletion syndrome (MDS) is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with short stature and a history of migraine, endometriosis, Crohn’s disease, C-cell carcinoma of the thyroid gland, and a family history positive for mitochondrial disorder (2 sisters, aunt, niece), developed day-time sleepiness, exercise intolerance, and myalgias in the lower-limb muscles since age 46y. She slept 9-10 hours during the night and 2 hours after lunch daily. Clinical exam revealed sore neck muscles, bilateral ptosis, and reduced Achilles tendon reflexes exclusively. Blood tests revealed hyperlipidemia exclusively. Nerve conduction studies, needle electromyography, and cerebral and spinal magnetic resonance imaging were non-informative. Muscle biopsy revealed detached lobulated fibers with subsarcolemmal accentuation of the NADH and SDH staining. Real-time polymerase chain reaction revealed depletion of the mtDNA down to 9% of normal. MDS may be associated with a mild phenotype in adults and may not significantly progress during the first year after onset. In an adult with hypersomnia, severe tiredness, exercise intolerance, and a family history positive for mitochondrial disorder, a MDS should be considered. Full article
Back to TopTop