Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Chemicals and Reagents
2.3. Chemosensitivity Examination
2.3.1. Single-Agent Examination and Stratification
2.3.2. Analysis of the Efficacy of GC Using the Bliss Additivism Model
2.3.3. Analysis of the Efficacy of GEM–CDDP at a Molar Ratio of 7:1
Combination Study
Statistical Analysis
2.4. Ethics
3. Results
3.1. Evaluation of GEM and CDDP Single-Agent Administration
3.2. Evaluation of GC Combination Using the Bliss Additivism Model
3.3. Synergy or Additivism for GEM:CDDP Combination at a Molar Ratio of 7:1
3.4. The True Pharmacotherapeutic Effect of GC Compared with That of GEM Single Administration
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, M.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Totoki, Y.; Hosoda, F.; Shirota, T.; Hama, N.; Nakamura, H.; Ojima, H.; Furuta, K.; Shimada, K.; Okusaka, T.; et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014, 59, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Faiz, G.M.; Neeraja, N.; Yuhree, K.; Qingfeng, Z.; Lan, L.; Feriyl, B.; Robert, A.A.; Timothy, M.P. Program Death 1 immune checkpoint and tumor microenvironment: Implications for patients with intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 2016, 23, 2610–2617. [Google Scholar]
- Liau, J.Y.; Tsai, J.H.; Yuan, R.H.; Chang, C.N.; Lee, H.J.; Jeng, Y.M. Morphological subclassification of intrahepatic cholangiocarcinoma: Etiological, clinicopathological, and molecular features. Mod. Pathol. 2014, 27, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Huang, Z.; Teng, F.; Xing, L.; Yu, J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat. Rev. 2015, 41, 868–876. [Google Scholar] [CrossRef]
- Ruzzennente, A.; Fassan, M.; Conci, S.; Simbolo, M.; Lawlor, R.T.; Pedrazzani, C.; Capelli, P.; D’Onofrio, M.; Iacono, C.; Scarpa, A.; et al. Cholangiocarcinoma heterogeneity revealed by multigene mutational profiling: Clinical and prognostic relevance in surgically resected patients. Ann. Surg. Oncol. 2016, 23, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Bergman, A.M.; van Haperen, R.V.W.; Veerman, G.; Kuiper, C.M.; Peters, G.J. Synergistic interaction between cisplatin and gemcitabine in vitro. Clin. Cancer. Res. 1996, 2, 521–530. [Google Scholar]
- Van Moorsel, C.J.; Pinedo, H.M.; Veerman, G.; Bergman, A.M.; Kuiper, C.M.; Vermorken, J.B.; van der Vijgh, W.J.F.; Peters, A.G. Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. Br. J. Cancer 1999, 80, 981–990. [Google Scholar] [CrossRef]
- Mazin, A.; Moufarij, D.R.P.; Cullinane, C. Gemcitabine potentiates cisplatin cytotoxicity and inhibits repair of cisplatin-DNA damage in ovarian cancer cell lines. Mol. Pharmacol. 2003, 63, 862–869. [Google Scholar]
- Braakhuis, B.J.; van Haperen, R.V.W.; Welters, M.J.; Peters, G.J. Schedule-dependent therapeutic efficacy of the combination of gemcitabine and cisplatin in head and neck cancer xenografts. Eur. J. Cancer 1995, 31A, 2335–2340. [Google Scholar] [CrossRef]
- Kanzawa, F.; Akiyama, Y.; Saijo, N.; Nishio, K. In vitro effects of combinations of cis-amminedichloro (2-methylpyridine) platinum (II) (ZD0473) with other novel anticancer drugs on the growth of SBC-3, a human small cell lung cancer cell line. Lung Cancer 2003, 40, 325–332. [Google Scholar] [CrossRef]
- Besancon, O.G.; Tytgat, G.A.M.; Meinsma, R.; Leen, R.; Hoebink, J.; Kalayda, G.V.; Jaehde, U.; Caron, H.N.; van Kuilenburg, A.B.P. Synergistic interaction between cisplatin and gemcitabine in neuroblastoma cell lines and multicellular tumor spheroids. Cancer Lett. 2012, 319, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.N.; de Camargo, E.A.; Savio, A.L.; Salvadori, D.M. MRE11A and SKP2 genes are associated with the increased cytotoxicity induced by the synergistic effects of cisplatin and gemcitabine in bladder cancer cells. Mol Biol Rep. 2014, 41, 4613–4621. [Google Scholar] [CrossRef] [PubMed]
- Ojima, H.; Yamagishi, S.; Shimada, K.; Shibata, T. Establishment of various biliary tract carcinoma cell lines and xenograft models for appropriate preclinical studies. World J. Gastroenterol. 2016, 22, 9035–9038. [Google Scholar] [CrossRef] [PubMed]
- Ojima, H.; Yoshikawa, D.; Ino, Y.; Shimizu, H.; Miyamoto, M.; Kokubu, A.; Hiraoka, N.; Morofuji, N.; Kondo, T.; Onaya, H.; et al. Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment. Cancer Sci. 2010, 101, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Barry, M.A.; Behnke, C.A.; Eastman, A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol. 1990, 40, 2353–2362. [Google Scholar] [CrossRef]
- Borisy, A.A.; Elliott, P.J.; Hurst, N.W.; Lee, M.S.; Lehar, J.; Price, E.R.; Serbedzija, G.; Zimmermann, G.R.; Foley, M.A.; Stockwell, B.R.; et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 2003, 100, 7977–7982. [Google Scholar] [CrossRef]
- Zhao, W.; Sachsenmeier, K.; Zhang, L.; Sult, E.; Hollingsworth, R.E.; Yang, H. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. 2014, 19, 817–821. [Google Scholar] [CrossRef]
- Okabe, T.; Okamoto, I.; Tsukioka, S.; Uchida, J.; Iwasa, T.; Yoshida, T.; Hatashita, E.; Yamada, Y.; Satoh, T.; Tamura, K.; et al. Synergistic antitumor effect of S-1 and the epidermal growth factor receptor inhibitor gefitinib in non-small cell lung cancer cell lines: role of gefitinib-induced down-regulation of thymidylate synthase. Mol. Cancer Ther. 2008, 7, 599–606. [Google Scholar] [CrossRef]
- Wong, M.; Tan, N.; Zha, J.; Peale, F.V.; Yue, P.; Fairbrother, W.J.; Belmont, L.D. Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models. Mol. Cancer Ther. 2012, 11, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Bristol-Myers Squibb Company. PLATINOL®CISplatin for Injection, USP, Bristol-Myers Squibb Company: Princeton, NJ, USA, 2010.
- Eli Lilly Japan K.K. IYAKUHIN Interview form Gemzar® Injection, Japanese; Eli Lilly Japan K.K.: Kobe, Japan, 2019.
- Lilly USA. HIGHLIGHTS of PRESCRIBING INFORMATION GEMZAR (Gemcitabine) for Injection, for Intravenous Use Initial U.S. Lilly USA: Indianapolis, IN, USA, 1996.
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Gozgit, J.M.; Squillace, R.M.; Wongchenko, M.J.; Miller, D.; Wardwell, S.; Mohemmad, Q.; Narasimhan, N.I.; Wang, F.; Clackson, T.; Rivera, V.M. Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemother Pharmacol. 2013, 71, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Bepler, G.; Kusmartseva, I.; Sharma, S.; Gautam, A.; Cantor, A.; Sharma, A.; Simon, G. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4731–4737. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, W.; Jesnowski, R.; Lohr, J.M. Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia 2010, 12, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.J.; Berman, A.M.; Ruiz van Haperen, V.W.; Veerman, G.; Kuiper, C.M.; Braakhuis, B.J. Interaction between cisplatin and gemcitabine in vitro and in vivo. Semin Oncol. 1995, 22, 72–79. [Google Scholar]
- Sakai, D.; Kanai, M.; Kobayashi, S.; Eguchi, H.; Baba, H.; Seo, S.; Taketomi, A.; Takayama, T.; Yamaue, H.; Ishioka, C.; et al. Randomized phase III study of gemcitabine, cisplatin plus S-1 (GCS) versus gemcitabine, cisplatin (GC) for advanced biliary tract cancer (KHBO1401-MITSUBA). In Proceedings of the ESMO 2018 Congress, Munich, Germany, 19–23 October 2018. [Google Scholar]
- Borbath, I.; Verbrugghe, L.; Lai, R.; Gigot, J.F.; Humblet, Y.; Piessevaux, H.; Sempoux, C. Human equilibrative nucleoside transporter 1 (hENT1) expression is a potential predictive tool for response to gemcitabine in patients with advanced cholangiocarcinoma. Eur. J. Cancer. 2012, 48, 990–996. [Google Scholar] [CrossRef]
- Ohtaka, K.; Kohya, N.; Sato, K.; Kitajima, Y.; Ide, T.; Mitsuno, M.; Miyazaki, K. Ribonucleotide reductase subunit M1 is a possible chemoresistance marker to gemcitabine in biliary tract carcinoma. Oncol. Rep. 2008, 20, 279–286. [Google Scholar]
Cell Line | Pathological Diagnosis of Original Tumor | Location of Original Tumor | Histologic Type of Original Tumor | GEM Sensitivity | IC50 (µM) | IC60 (µM) | IC70 (µM) | IC80 (µM) |
---|---|---|---|---|---|---|---|---|
NCC-BD1 * | EHCC | Distal BD | Adeno, mod † | Int | 7.66 | 58.00 | N/A | N/A |
NCC-BD2 * | EHCC | Distal BD | Adeno, mod | Res | N/A | N/A | N/A | N/A |
NCC-BD3 * | EHCC | Distal BD | Adeno, mod | Res | N/A | N/A | N/A | N/A |
NCC-BD4-1 * | EHCC | Hilar BD | Adeno, mod | Eff | 0.04 | 0.06 | 0.09 | 2.93 |
NCC-BD4-2 * | EHCC | Hilar BD | Adeno, mod | Eff | 0.06 | 0.07 | 0.19 | 5.37 |
NCC-CC1 * | IHCC | Intrahepatic | Adeno, mod | Int | 86.78 | N/A | N/A | N/A |
NCC-CC3-1 * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.04 | 1.82 | 9.31 | 85.21 |
NCC-CC3-2 * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.10 | 1.92 | 43.83 | N/A |
NCC-CC4-1 * | IHCC | Intrahepatic | Adeno, mod | Int | 0.05 | 4.08 | N/A | N/A |
NCC-CC4-2 * | IHCC | Intrahepatic | Adeno, mod | Int | 0.03 | 11.53 | N/A | N/A |
NCC-CC4-3 (NCC-CC5) * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.06 | 4.92 | 95.10 | N/A |
NCC-CC6-1 * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.01 | 0.02 | 0.06 | 3.76 |
NCC-CC6-2 * | IHCC | Intrahepatic | Adeno, mod | Int | 10.98 | 35.67 | N/A | N/A |
HuCCT1 | EHCC | N/A | N/A | Eff | 0.09 | 0.25 | 2.16 | 8.13 |
OZ | EHCC | N/A | N/A | Res | N/A | N/A | N/A | N/A |
TKKK | IHCC | Intrahepatic | N/A | Res | N/A | N/A | N/A | N/A |
TGBC24TKB | GB Ca | GB | N/A | Eff | 0.05 | 0.07 | 1.23 | N/A |
Cell Line | GEM Sensitivity | GEM Single | CDDP Single | GEM:CDDP Combination | ||||
---|---|---|---|---|---|---|---|---|
GEM:CDDP; 7:1 molar ratio | Bliss additivism model | |||||||
IC50 (µM) | IC50 (µM) | IC50 (µM) | CI value | Decision | BM | Decision | ||
NCC-BD1 | Int | 18.62 | 19.94 | 1.53 | 1.03 | +/− | 59.17 | + |
NCC-BD2 | Res | N/A | 3.49 | 8.97 | 0.24 | 2+ | 34.40 | + |
NCC-BD3 | Res | N/A | 14.78 | 5.53 | 0.13 | 2+ | 136.18 | + |
NCC-BD4-2 | Eff | 0.04 | 18.39 | 0.05 | 0.38 | + | 11.85 | + |
NCC-CC1 | Int | 2.38 | 15.41 | 1.04 | 0.58 | + | 13.80 | + |
NCC-CC4-1 | Int | 0.02 | 6.58 | 0.04 | 0.46 | + | 27.23 | + |
NCC-CC6-1 | Eff | 0.01 | 11.07 | 0.01 | 0.71 | +/− | 12.42 | + |
HuCCT1 | Eff | 0.11 | 19.68 | 0.09 | 0.48 | + | 93.17 | + |
OZ | Res | N/A | 35.94 | 7.21 | 0.20 | 2+ | 36.27 | + |
TKKK | Res | N/A | 35.34 | 84.66 | 0.09 | 2+ | 64.60 | + |
TGBC24TKB | Eff | 0.08 | N/A | 0.14 | 0.70 | + | 8.40 | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, Y.; Yamagishi, S.; Okusaka, T.; Ojima, H. Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines. Cells 2019, 8, 1026. https://doi.org/10.3390/cells8091026
Sakamoto Y, Yamagishi S, Okusaka T, Ojima H. Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines. Cells. 2019; 8(9):1026. https://doi.org/10.3390/cells8091026
Chicago/Turabian StyleSakamoto, Yasunari, Seri Yamagishi, Takuji Okusaka, and Hidenori Ojima. 2019. "Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines" Cells 8, no. 9: 1026. https://doi.org/10.3390/cells8091026
APA StyleSakamoto, Y., Yamagishi, S., Okusaka, T., & Ojima, H. (2019). Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines. Cells, 8(9), 1026. https://doi.org/10.3390/cells8091026