Next Article in Journal
Nuclear Deformation in Response to Mechanical Confinement is Cell Type Dependent
Next Article in Special Issue
Role of the Hippo Pathway in Fibrosis and Cancer
Previous Article in Journal
Genetic and Real-World Clinical Data, Combined with Empirical Validation, Nominate Jak-Stat Signaling as a Target for Alzheimer’s Disease Therapeutic Development
Previous Article in Special Issue
The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

GPCR-Hippo Signaling in Cancer

Children’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
*
Author to whom correspondence should be addressed.
Cells 2019, 8(5), 426; https://doi.org/10.3390/cells8050426
Submission received: 29 March 2019 / Revised: 3 May 2019 / Accepted: 7 May 2019 / Published: 8 May 2019
(This article belongs to the Special Issue Disease and the Hippo Pathway: Cellular and Molecular Mechanisms)

Abstract

:
The Hippo signaling pathway is involved in tissue size regulation and tumorigenesis. Genetic deletion or aberrant expression of some Hippo pathway genes lead to enhanced cell proliferation, tumorigenesis, and cancer metastasis. Recently, multiple studies have identified a wide range of upstream regulators of the Hippo pathway, including mechanical cues and ligands of G protein-coupled receptors (GPCRs). Through the activation related G proteins and possibly rearrangements of actin cytoskeleton, GPCR signaling can potently modulate the phosphorylation states and activity of YAP and TAZ, two homologous oncogenic transcriptional co-activators, and major effectors of the Hippo pathway. Herein, we summarize the network, regulation, and functions of GPCR-Hippo signaling, and we will also discuss potential anti-cancer therapies targeting GPCR-YAP signaling.

1. The Hippo Signaling Network

The Hippo pathway is initially established in Drosophila melanogaster (fruit flies), following extensive genetic screens for tumor suppressors, and is highly conserved in mammals [1,2]. The Hippo pathway plays a crucial role in regulating cell survival, proliferation, differentiation, and organ size [1,2,3,4]. The core Hippo pathway in mammals can be represented by a kinase cascade consisting of Ste20-like kinases 1/2 (MST1/2), MAP kinase kinase kinase kinases (MAP4K1-7), Large tumor suppressor 1/2 (LATS1/2), Salvador 1 (SAV1, also known as WW45), MOB kinase activator 1A/B (MOB1A/B), Yes-association protein (YAP), and Transcriptional coactivator with PDZ-binding motif (TAZ, also known as WWTR1), TEA domain family members (TEAD1-4), and Vestigial-like family member 4 (VGLL4). Mechanistically, MST1/2 in complex with SAV1 phosphorylate and activate LATS1/2, and MAP4K proteins plays overlapping, yet non-redundant, roles in activating LATS1/2 [5]. LATS1/2 subsequently phosphorylate multiple serine residues of YAP (including S127 and S318) and TAZ (including S89 and S311). Phosphorylation of YAP/TAZ lead to 14-3-3 mediated cytoplasmic retention and ubiquitination-dependent proteasome degradation [6,7,8]. When upstream kinases are inactivated, dephosphorylated YAP/TAZ translocate into the nucleus, bind with TEAD1-4 and induce the expression of target genes such as connective tissue growth factor (CTFG) and cysteine-rich angiogenic inducer 61(CYR61) [7,9]. Without nuclear YAP/TAZ, TEAD1-4 interact with VGLL4, which may repress transcription of target genes [10,11]. The Hippo signaling output is dependent on transcriptional activity of YAP/TAZ and the latter is mainly inhibited by Hippo pathway kinases.
Several proteins may interpret and transmit physiological signals to core components of the Hippo pathway. The apical membrane-associated FERM-domain protein Neurofibromin 2 (NF2, also known as Merlin) is an activator of the Hippo pathway [12]. NF2 functions by forming a complex with Kidney and brain (KIBRA, also known as WWC1) to activate MST1/2 or recruiting LATS1/2 to plasma membrane for activation by MST1/2 [13]. KIBRA may activate LATS1/2 in a MST1/2-dependent or -independent manner [14]. AMOT family proteins (AMOTp130, AMOTL1, and AMOTL2) interact with YAP/TAZ and enhance cytoplasmic or junctional localization of YAP/TAZ, and LATS1/2 activity is also mildly induced by AMOT proteins, both lead to an inhibition of YAP/TAZ activity [15,16,17,18]. Ras association domain family (RASSF) proteins interact with MST1/2 or SAV1, and may mediate RAS signaling to the Hippo pathway [19,20,21]. Further studies are required to understand how these proteins serve as bridges linking mechanical or biochemical cues and Hippo pathway kinases.
To date, an array of environmental stimuli has been shown to regulate YAP/TAZ activity. Cell-cell contact is well-known to suppress YAP/TAZ activity by promoting LATS1/2 activation [7]. The mechanical force, such as stiffness of extracellular matrix (ECM), cell geometry and shear stress, regulates phosphorylation and subcellular localization of YAP/TAZ, and recently small GTPase RAP2 has been shown to mediate matrix stiffness signals to LATS1/2 [22,23]. Various stress signals, including oxidative stress, hypoxia, energy stress, endoplasmic reticulum (ER) stress, and osmotic stress modulate YAP/TAZ activity as well [24,25,26,27,28,29]. Moreover, G protein-coupled receptors (GPCRs) can mediate diverse diffusive signals to modulate Hippo pathway activity, the regulation of the Hippo pathway by GPCR signaling will be further discussed below [30,31,32].

2. The Hippo Pathway in Tumorigenesis

The link between the Hippo pathway and cancer development has been recently reviewed elsewhere [33,34]. Among components of the Hippo pathway, YAP and TAZ are considered as oncoproteins, whereas most upstream regulators are with tumor suppressor functions. In mouse models, transgenic expression of Yap, or genetic ablation of Nf2, Sav1, Mst1/2, Lats1/2, Mob1, Wwc1/2, and Rassf1a all lead to tumorigenesis [35,36,37,38,39,40,41,42,43,44].
As oncoproteins, YAP/TAZ are able to promote cell proliferation, cell transformation, and cancer cell stemness. YAP/TAZ can induce cell proliferation and reduce cell death, which together lead to increased cell numbers [8,45]. YAP/TAZ may also promote cell transformation, as overexpression of YAP in human non-transformed mammary epithelial cells induces epithelial-to-mesenchymal transition (EMT), and increased TAZ expression in mammary cells leads to the acquisition of a spindle-shaped morphology and increased cell migration and invasion [46,47,48]. Recently, multiple studies have shown that YAP/TAZ play a role in regulating cancer stem cells (CSCs) [49]. YAP activation leads to dedifferentiate of matured cells and expands undifferentiated liver, epidermal, neural, cardiac, muscle, and intestinal stem/progenitor cells [37,50,51,52,53,54,55,56]. In breast cancer, TAZ expression is enriched in CSCs with high self-renewal and tumor initiating capacities [48]. YAP also induces esophageal CSC properties via upregulation of SOX9 [57]. Together, enhanced YAP/TAZ activity may promote cancer development by multiple approaches, such as modulating cell proliferation, movement, and stemness.
YAP/TAZ are activated in diverse human cancers and may serve as an indicator of poor prognosis. Elevated expression of YAP/TAZ is frequently observed in human cancers, including liver, breast, prostate, colorectal, gastric, lung, and brain tumors, especially in high-grade or metastatic tumors [56,58,59,60,61,62,63,64]. The expression of YAP/TAZ also functions as a prognostic marker, for instance, YAP/TAZ expression is associated with poor prognosis in hepatocellular carcinoma (HCC), cholangiocarcinoma patients, lung, and colorectal cancers [65,66,67,68]. Moreover, high YAP/TAZ expression in cancer may also predict resistance to therapies and cancer relapse [69,70]. Taken together, these results demonstrate that Hippo pathway, especially YAP/TAZ activity, is involved in human cancer development and may function as a molecular target for cancer diagnosis and therapy.
Even though activation of YAP/TAZ occurs frequently in human cancers, the mutation rates of Hippo pathway genes are unexpectedly modest. However, one exception is NF2. Inactivating mutation of NF2 is observed in multiple cancers including meningiomas, schwannomas, and mesotheliomas [71,72]. Additional genetic alterations of Hippo pathway genes in cancer have also been reported, for instance, WWTR1-CAMTA and YAP1-TFE3 fusion are found in epithelioid hemangioma [73,74]. In addition, silencing of MST1/2, LATS1/2, or RASSF1 due to promotor hypermethylation are reported in soft tissue sarcomas, breast cancer, and lower-grade glioma [20,75,76,77,78,79]. However, these genetic or epigenetic alterations are not sufficient to explain the widespread YAP/TAZ activation in cancers, especially in cancers with high incidences, and additional molecular mechanisms may contribute to YAP/TAZ activation in cancer.

3. Regulation of Hippo Pathway by GPCRs

GPCRs represent the largest family of cell surface receptors in human genome, and they are involved in a wide range of physiological processes by transmitting diverse extracellular signals into cells. Recent studies suggest that the Hippo pathway is a downstream branch of GPCR signaling. Many GPCRs mediated signals can modulate YAP/TAZ activity, either positively or negatively, dependent on the nature of signals, receptors, and adaptor proteins [4,31].
Following the initial discovery that sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) can induce YAP/TAZ activity, diverse GPCR related signals have been shown to modulate YAP/TAZ activity [30,32] (Table 1). For instance, simple molecules such as protons, which are associated with extracellular pH, can induce YAP activity [80]. Metabolites such purines, adenosine, epinephrine, glutamate, fatty acids, and bile acids activate YAP through GPCRs stimulation [30,32,81,82,83]. Polypeptides and secreting proteins, such as thrombin, glucagon, Angiotensin II, and Endothelin, also modulate YAP/TAZ activity via GPCR signaling [32,84,85,86,87]. These signals, either locally or from a long range, represent major constitutes of cell niche or microenvironment, suggesting that the Hippo pathway is regulated collectively by signals surrounding a given cell. Adhesion GPCRs link cells to their neighbors and probably cell matrix [88], these receptors may also link physical signals to the Hippo pathway.
GPCR ligands regulate the Hippo pathway differentially (Figure 1). It has been established that the effect of GPCR ligands on YAP/TAZ activity is dependent on the type of downstream G proteins activated [32]. GPCRs coupled with Gα12/13, Gαq/11, or Gαi/o, such as LPA and thrombin receptors, will activate YAP/TAZ; on the contrary, GPCRs coupled with Gαs, such as epinephrine and glucagon receptors, will inhibit YAP/TAZ [32]. The function of GPCRs and G proteins on the Hippo signaling is most likely depended on protein kinases (such as PKA and PKC), Rho GTPases, and remodeling of the actin cytoskeleton [4]. PKA has been proposed to mediate upstream signals by repressing actin fiber formation or phosphorylating LATS1/2 directly [107,108,109]. The effect of PKC appears to be isoform-specific, for instance canonical PKC isoforms induce YAP/TAZ activity, whereas novel PKC isoforms repress YAP/TAZ activity [110]. The isoform-specific effect of PKC towards YAP/TAZ may explain cell type-dependent response to PKC activation, as the expression of PKC isoforms vary across different cell types. It seems like MST1/2 is not a direct target of GPCR signaling but the phosphorylation level of LATS1/2 is sensitive to different GPCR ligands [32]. In the absence of MST1/2, MAP4Ks may be responsible for LATS1/2 phosphorylation, as the deletion of MST1/2 and MAP4Ks together abolished the regulation of LATS1/2 phosphorylation by GPCR signaling [5]. Collectively, G proteins and related kinases relay the GPCR signaling to regulate dynamics of the actin cytoskeleton, which, in turn, can be sensed by the Hippo pathway. How different states of actin cytoskeleton sensed by Hippo pathway components remains unclear.
Some seven-(pass)-transmembrane domain receptors, such as Frizzled and smoothened (SMO), are not considered as typical GPCRs. Recent evidence suggests that these atypical GPCRs also regulate the Hippo pathway in a G protein-dependent manner. For instance, Wnt ligands and their receptors (Frizzle proteins) can repress LATS1/2 activity and lead to enhanced YAP/TAZ activity [111]. In addition, Hedgehog (Hh) ligands, via SMO -Gαs-cAMP-PKA signaling axis, lead to repression of YAP/TAZ [112]. Thus, atypical GPCRs can regulate the Hippo pathway and also contribute to the crosstalk between Hippo and other important pathways (such as Wnt and Hedgehog) in development and cancer.
The regulation of Hippo pathway by GPCR signaling can also be fine-tuned by additional signals. For instance, it has been shown that the effect of GPCR on YAP/TAZ activity is enhanced when insulin is present, and PI3K and PKD downstream of insulin receptor are involved in this regulation [113]. Moreover, MAPK signaling has also been shown to modulate the Hippo pathway [114]. Hence, the crosstalk between the GPCR-Hippo signaling axis with other pathways should be explored in the future.

4. Widespread Alternations of GPCR-YAP Signaling Axis in Cancer

Aberrant GPCR signaling is an important mechanism in cancer development [115]. Different effectors, such as MAPK signaling, mediate the aberrant GPCR signaling to promote tumorigenesis [116]. As a new downstream branch of GPCR signaling, the Hippo tumor suppressor pathway may also play a role in this process. Moreover, aberrant GPCR signaling represents a potential mechanism responsible for prevalent YAP/TAZ activation in human cancers (Table 1).
Cancer genome sequencing analyses revealed that mutations in GPCRs and G proteins are widespread and frequent in multiple tumor types [117]. It has been reported that GNAQ and GNA11 encoding the alpha subunits of Gαq and Gα11, respectively, are frequently mutated at Arg183 or Gly209 in uveal melanoma and blue nevi [118,119], the mutations at Arg183 and Gly209 result in constitutive activation of Gαq/11, and several downstream effectors including YAP/TAZ are activated, leading to tumorigenesis [120,121]. Mutations in GNAS has been discovered in human medulloblastoma [122] and it has been demonstrated in mice that GNAS loss leads to YAP activation and tumorigenesis [109,123]. Thus, YAP activation might be a common mechanism underlying cancer associated mutations on G proteins. However, mutations at Gly227 on GNAS contribute to the development of hormone-secreting pituitary tumors and thyroid adenomas [124,125], in principle this mutation will inactivate YAP/TAZ [126].
Mutations in genes encoding GPCRs are observed in approximately 20% of cancers, including mutations in TSHR in thyroid cancer, luteinizing hormone receptor (LHCGR), and follicle stimulating hormone receptor (FSHR) in breast, lung, and colon cancers [127]. Smoothened (SMO) is also frequently mutated in cancers arising at the colon, central nervous system, and many other cancers types [128]. Mutations observed in the family of GPCR adhesion receptors, the majority of which are still orphan, resulted in constitutive activation of the receptors, leading to pathological conditions [129]. Moreover, mutated glutamate receptors, such as GRM8, GRM1, and GRM3, have been implicated in squamous non-small cell lung cancer (NSCLC) and melanomas [126]. Currently, the effect of these mutations on the Hippo pathway has not been systematically examined.
Aberrant expression of GPCRs and their ligands may also contribute to tumorigenesis. Elevated PAR1 (a thrombin receptor) expression is associated with poor differentiation and metastasis of breast cancer [130]. Increased expression of G protein–coupled estrogen receptors (GPER) and TAZ activation are detected at the early stage of breast tumor development [89]. Additionally, aberrant expression of LPA receptors may elicit cancer initiation and progression in breast cancer and ovarian cancer via activation of the Rho-dependent transduction pathway [131]. Abnormal G-protein coupled hormone receptor also involved in several adrenal diseases, including tumor and hyperplasia [132]. Kaposi’s sarcoma (KS) is caused by infection of human herpesvirus 8 (HHV-8, also known as KSHV) and a viral GPCR (vGPCR) encoded in HHV-8 genome can activate TAZ, which is essential for the development of KS [133]. Recently, an orphan G protein-coupled receptor GPRC5A has been identified as a hypoxia-induced protein, which protects hypoxic tumor cells from apoptosis via the HIF-GPRC5A-RhoA-YAP axis [134]. For GPCR ligands, the levels of LPA has been considered as a marker for ovarian cancer, and high circulating angiotensin II is associated with carcinogenesis, prognosis, and drug resistance in several malignancies, such as colorectal cancer, hepatocellular carcinoma, melanoma, ovarian cancer, and breast cancer [135,136,137,138,139,140,141]. Together, abnormal expression of GPCRs and GPCR ligands are associated with the development of different cancers and YAP/TAZ activation may, at least in part, participate in the tumorigenic process.

5. Potential Cancer Therapies Targeting GPCR-Hippo Signaling Axis

Given the frequent dysregulation of GPCR signaling and Hippo pathway in cancer, the GPCR-Hippo signaling axis may serve as a therapeutic target for cancer treatment. As the Hippo pathway is a downstream branch of the GPCR signaling, cancers initiated by aberrant GPCR signaling might be treated by modulating the Hippo pathway, especially YAP/TAZ activity. Meanwhile, for cancers with a dependency on high YAP/TAZ activity, drugs targeting GPCRs and G proteins may reduce YAP/TAZ activation and slowdown cancer progression.
The Hippo pathway can be modulated at multiple levels [69]. As the function of Hippo pathway is mediated mainly by YAP/TAZ and associated transcription factors TEAD1-4, different approaches have been developed to disrupt YAP/TAZ-TEAD interaction. Liu and colleagues discovered the porphyrin family compounds, such as verteporfin (VP), can effectively block YAP-TEAD interaction [142]. A VGLL4-mimicking peptide has also been developed to displace YAP from TEAD [61]. Recently, it has been reported that the pocket in TEAD critical for YAP/TAZ binding is palmitoylated and targeting TEAD palmitoylation is a new approach to repress YAP/TAZ activity [143,144,145,146]. Both VP and VGLL4-mimicking peptides have been used in vitro and in vivo to repress YAP/TAZ activity, tissue growth, and tumorigenesis, whereas further improvement of these drugs might be required for clinical use.
GPCRs represent a major target of currently available drugs, and some GPCR-based drugs could be repositioned to block YAP/TAZ activity. For instance, Gαs-targeted molecules may repress YAP/TAZ activity in a way that is similar to epinephrine, dobutamine, and glucagon [106,147]. In contrast, antagonizing or depleting Gα12/13-, Gαq/11-, or Gαi/o-mediated signals, such as using phosphatase-resistant LPA analogues and monoclonal antibodies specific for LPA or S1P [117,148], may also limit YAP/TAZ activity. It is noteworthy that some GPCR-based drugs, like β-blockers and dopamine, will significantly affect heart and psychiatric functions, thus, side effects must be considered before using these drugs in cancer therapies [149,150].
Proteins transmitting GPCR signaling can also be targeted to manipulate the Hippo pathway. Recently, cyclic depsipeptide FR900359 has been shown to target mutant Gαq/11 and repress downstream effectors MAPK and YAP [151,152]. The activity of PKA is associated with cellular cyclic-AMP (cAMP) levels, Forskolin or phosphodiesterase inhibitors, such as Rolipram, have been shown to induce PKA activity and repress YAP/TAZ [112,148]. PKC inhibitors can also repress YAP/TAZ activity in a cell type-dependent manner [121]. Rho GTPases are central for the regulation of Hippo pathway by GPCR signaling, it has been shown that statins, inhibitors of HMG-CoA reductase (HMGCR), can indirectly inactivate Rho GTPases and reduce YAP/TAZ nuclear localization [153,154]. As GPCR-Hippo signaling is a complex signaling network, drugs targeting GPCRs, G proteins, or downstream signaling nodes may affect effectors other than YAP/TAZ, hence, the specificity towards the Hippo pathway will be compromised when using these drugs.

6. Conclusions

In the last few years, Hippo pathway has been under the spotlight due to its function in organ size control and tumorigenesis. GPCRs, the largest cell membrane receptor family, regulate an array of downstream signal pathways, including Hippo pathway effectors YAP/TAZ. Aberrant GPCR and YAP/TAZ activation have been observed in pathogenesis of several types of cancer. Although further in-depth studies are still required to address issues relevant to side effects and pharmacodynamics, it is clear that GPCR-Hippo signaling axis will be a promising target for anticancer therapy.

Funding

F.-X.Y. would like to gratefully acknowledge financial support from the National Natural Science Foundation of China (81622038, 81772965, and 31571479) and Shanghai Municipal Commission of Health and Family Planning (2017BR018).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Johnson, R.; Halder, G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 2014, 13, 63–79. [Google Scholar] [CrossRef] [PubMed]
  2. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 2010, 19, 491–505. [Google Scholar] [CrossRef] [PubMed]
  3. Harvey, K.F.; Zhang, X.; Thomas, D.M. The Hippo pathway and human cancer. Nat. Rev. Cancer 2013, 13, 246–257. [Google Scholar] [CrossRef] [PubMed]
  4. Yu, F.X.; Zhao, B.; Guan, K.L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 2015, 163, 811–828. [Google Scholar] [CrossRef]
  5. Meng, Z.; Moroishi, T.; Mottier-Pavie, V.; Plouffe, S.W.; Hansen, C.G.; Hong, A.W.; Park, H.W.; Mo, J.S.; Lu, W.; Lu, S.; et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 2015, 6, 8357. [Google Scholar] [CrossRef]
  6. Zhao, B.; Li, L.; Tumaneng, K.; Wang, C.-Y.; Guan, K.-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010, 24, 72–85. [Google Scholar] [CrossRef]
  7. Zhao, B.; Wei, X.; Li, W.; Udan, R.S.; Yang, Q.; Kim, J.; Xie, J.; Ikenoue, T.; Yu, J.; Li, L.; et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007, 21, 2747–2761. [Google Scholar] [CrossRef]
  8. Lei, Q.Y.; Zhang, H.; Zhao, B.; Zha, Z.Y.; Bai, F.; Pei, X.H.; Zhao, S.; Xiong, Y.; Guan, K.L. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 2008, 28, 2426–2436. [Google Scholar] [CrossRef]
  9. Lamar, J.M.; Stern, P.; Liu, H.; Schindler, J.W.; Jiang, Z.-G.; Hynes, R.O. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 2012, 109, E2441–E2450. [Google Scholar] [CrossRef]
  10. Zhang, W.; Gao, Y.; Li, P.; Shi, Z.; Guo, T.; Li, F.; Han, X.; Feng, Y.; Zheng, C.; Wang, Z.; et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 2014, 24, 331–343. [Google Scholar] [CrossRef]
  11. Koontz, L.M.; Liu-Chittenden, Y.; Yin, F.; Zheng, Y.G.; Yu, J.Z.; Huang, B.; Chen, Q.; Wu, S.; Pan, D.J. The Hippo Effector Yorkie Controls Normal Tissue Growth by Antagonizing Scalloped-Mediated Default Repression. Dev. Cell 2013, 25, 388–401. [Google Scholar] [CrossRef] [PubMed]
  12. Striedinger, K.; VandenBerg, S.R.; Baia, G.S.; McDermott, M.W.; Gutmann, D.H.; Lal, A. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 2008, 10, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
  13. Yin, F.; Yu, J.; Zheng, Y.; Chen, Q.; Zhang, N.; Pan, D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013, 154, 1342–1355. [Google Scholar] [CrossRef] [PubMed]
  14. Yu, J.; Zheng, Y.; Dong, J.; Klusza, S.; Deng, W.-M.; Pan, D. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell 2010, 18, 288–299. [Google Scholar] [CrossRef]
  15. Chan, S.W.; Lim, C.J.; Chong, Y.F.; Pobbati, A.V.; Huang, C.; Hong, W. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J. Biol. Chem. 2011, 286, 7018–7026. [Google Scholar] [CrossRef] [PubMed]
  16. Paramasivam, M.; Sarkeshik, A.; Yates, J.R., 3rd; Fernandes, M.J.; McCollum, D. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol. Biol. Cell 2011, 22, 3725–3733. [Google Scholar] [CrossRef] [PubMed]
  17. Wang, W.; Huang, J.; Chen, J. Angiomotin-like proteins associate with and negatively regulate YAP1. J. Biol. Chem. 2011, 286, 4364–4370. [Google Scholar] [CrossRef] [PubMed]
  18. Zhao, B.; Li, L.; Lu, Q.; Wang, L.H.; Liu, C.Y.; Lei, Q.; Guan, K.L. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011, 25, 51–63. [Google Scholar] [CrossRef]
  19. Polesello, C.; Huelsmann, S.; Brown, N.H.; Tapon, N. The Drosophila RASSF homolog antagonizes the hippo pathway. Curr. Biol. 2006, 16, 2459–2465. [Google Scholar] [CrossRef]
  20. Vlahov, N.; Scrace, S.; Soto, M.S.; Grawenda, A.M.; Bradley, L.; Pankova, D.; Papaspyropoulos, A.; Yee, K.S.; Buffa, F.; Goding, C.R.; et al. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion. Curr. Biol. 2015, 25, 3019–3034. [Google Scholar] [CrossRef]
  21. Khokhlatchev, A.; Rabizadeh, S.; Xavier, R.; Nedwidek, M.; Chen, T.; Zhang, X.F.; Seed, B.; Avruch, J. Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 2002, 12, 253–265. [Google Scholar] [CrossRef]
  22. Meng, Z.; Qiu, Y.; Lin, K.C.; Kumar, A.; Placone, J.K.; Fang, C.; Wang, K.-C.; Lu, S.; Pan, M.; Hong, A.W.; et al. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 2018, 560, 655–660. [Google Scholar] [CrossRef]
  23. Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183. [Google Scholar] [CrossRef]
  24. Shao, D.; Zhai, P.; Del Re, D.P.; Sciarretta, S.; Yabuta, N.; Nojima, H.; Lim, D.-S.; Pan, D.; Sadoshima, J. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat. Commun. 2014, 5, 3315. [Google Scholar] [CrossRef]
  25. Ma, B.; Chen, Y.; Chen, L.; Cheng, H.; Mu, C.; Li, J.; Gao, R.; Zhou, C.; Cao, L.; Liu, J.; et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 2014, 17, 95–103. [Google Scholar] [CrossRef]
  26. Ma, B.; Cheng, H.; Gao, R.; Mu, C.; Chen, L.; Wu, S.; Chen, Q.; Zhu, Y. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat. Commun. 2016, 7, 11123. [Google Scholar] [CrossRef]
  27. Lin, K.C.; Moroishi, T.; Meng, Z.; Jeong, H.-S.; Plouffe, S.W.; Sekido, Y.; Han, J.; Park, H.W.; Guan, K.-L. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 2017, 19, 996–1002. [Google Scholar] [CrossRef]
  28. Wu, H.; Wei, L.; Fan, F.; Ji, S.; Zhang, S.; Geng, J.; Hong, L.; Fan, X.; Chen, Q.; Tian, J.; et al. Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat. Commun. 2015, 6, 6239. [Google Scholar] [CrossRef]
  29. Hong, A.W.; Meng, Z.; Yuan, H.-X.; Plouffe, S.W.; Moon, S.; Kim, W.; Jho, E.-H.; Guan, K.-L. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep. 2017, 18, 72–86. [Google Scholar] [CrossRef]
  30. Miller, E.; Yang, J.; DeRan, M.; Wu, C.; Su, A.I.; Bonamy, G.M.C.; Liu, J.; Peters, E.C.; Wu, X. Identification of Serum-Derived Sphingosine-1-Phosphate as a Small Molecule Regulator of YAP. Chem. Biol. 2012, 19, 955–962. [Google Scholar] [CrossRef]
  31. Yu, F.-X.; Mo, J.-S.; Guan, K.-L. Upstream regulators of the Hippo pathway. Cell Cycle 2012, 11, 4097–4098. [Google Scholar] [CrossRef]
  32. Yu, F.-X.; Zhao, B.; Panupinthu, N.; Jewell, J.L.; Lian, I.; Wang, L.H.; Zhao, J.; Yuan, H.; Tumaneng, K.; Li, H.; et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012, 150, 780–791. [Google Scholar] [CrossRef]
  33. Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016, 29, 783–803. [Google Scholar] [CrossRef]
  34. Moroishi, T.; Hansen, C.G.; Guan, K.L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 2015, 15, 73–79. [Google Scholar] [CrossRef]
  35. Yu, F.-X.; Meng, Z.; Plouffe, S.W.; Guan, K.-L. Hippo Pathway Regulation of Gastrointestinal Tissues. Annu. Rev. Physiol. 2015, 77, 201–227. [Google Scholar] [CrossRef]
  36. Zhang, N.; Bai, H.; David, K.K.; Dong, J.; Zheng, Y.; Cai, J.; Giovannini, M.; Liu, P.; Anders, R.A.; Pan, D. The Merlin/NF2 Tumor Suppressor Functions through the YAP Oncoprotein to Regulate Tissue Homeostasis in Mammals. Dev. Cell 2010, 19, 27–38. [Google Scholar] [CrossRef]
  37. Lee, K.-P.; Lee, J.-H.; Kim, T.-S.; Kim, T.-H.; Park, H.-D.; Byun, J.-S.; Kim, M.-C.; Jeong, W.-I.; Calvisi, D.F.; Kim, J.-M.; et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 8248–8253. [Google Scholar] [CrossRef]
  38. Zhou, D.; Conrad, C.; Xia, F.; Park, J.-S.; Payer, B.; Yin, Y.; Lauwers, G.Y.; Thasler, W.; Lee, J.T.; Avruch, J.; et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009, 16, 425–438. [Google Scholar] [CrossRef] [PubMed]
  39. St John, M.A.; Tao, W.; Fei, X.; Fukumoto, R.; Carcangiu, M.L.; Brownstein, D.G.; Parlow, A.F.; McGrath, J.; Xu, T. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat.Genet. 1999, 21, 182–186. [Google Scholar] [CrossRef] [PubMed]
  40. Nishio, M.; Hamada, K.; Kawahara, K.; Sasaki, M.; Noguchi, F.; Chiba, S.; Mizuno, K.; Suzuki, S.O.; Dong, Y.; Tokuda, M.; et al. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J. Clin. Invest. 2012, 122, 4505–4518. [Google Scholar] [CrossRef]
  41. Knight, J.F.; Sung, V.Y.C.; Kuzmin, E.; Couzens, A.L.; de Verteuil, D.A.; Ratcliffe, C.D.H.; Coelho, P.P.; Johnson, R.M.; Samavarchi-Tehrani, P.; Gruosso, T.; et al. KIBRA (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-Negative Breast Cancer. Cell Rep. 2018, 22, 3191–3205. [Google Scholar] [CrossRef] [PubMed]
  42. Van der Weyden, L.; Tachibana, K.K.; Gonzalez, M.A.; Adams, D.J.; Ng, B.L.; Petty, R.; Venkitaraman, A.R.; Arends, M.J.; Bradley, A. The RASSF1A isoform of RASSF1 promotes microtubule stability and suppresses tumorigenesis. Mol. Cell. Biol. 2005, 25, 8356–8367. [Google Scholar] [CrossRef]
  43. Van der Weyden, L.; Arends, M.J.; Dovey, O.M.; Harrison, H.L.; Lefebvre, G.; Conte, N.; Gergely, F.V.; Bradley, A.; Adams, D.J. Loss of Rassf1a cooperates with Apc(Min) to accelerate intestinal tumourigenesis. Oncogene 2008, 27, 4503–4508. [Google Scholar] [CrossRef] [PubMed]
  44. Van der Weyden, L.; Papaspyropoulos, A.; Poulogiannis, G.; Rust, A.G.; Rashid, M.; Adams, D.J.; Arends, M.J.; O’Neill, E. Loss of RASSF1A synergizes with deregulated RUNX2 signaling in tumorigenesis. Cancer Res. 2012, 72, 3817–3827. [Google Scholar] [CrossRef] [PubMed]
  45. Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007, 130, 1120–1133. [Google Scholar] [CrossRef]
  46. Overholtzer, M.; Zhang, J.; Smolen, G.A.; Muir, B.; Li, W.; Sgroi, D.C.; Deng, C.-X.; Brugge, J.S.; Haber, D.A. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl. Acad. Sci. USA 2006, 103, 12405–12410. [Google Scholar] [CrossRef]
  47. Chan, S.W.; Lim, C.J.; Guo, K.; Ng, C.P.; Lee, I.; Hunziker, W.; Zeng, Q.; Hong, W. A Role for TAZ in Migration, Invasion, and Tumorigenesis of Breast Cancer Cells. Cancer Res. 2008, 68, 2592–2598. [Google Scholar] [CrossRef]
  48. Cordenonsi, M.; Zanconato, F.; Azzolin, L.; Forcato, M.; Rosato, A.; Frasson, C.; Inui, M.; Montagner, M.; Parenti, A.R.; Poletti, A.; et al. The Hippo Transducer TAZ Confers Cancer Stem Cell-Related Traits on Breast Cancer Cells. Cell 2011, 147, 759–772. [Google Scholar] [CrossRef]
  49. Dawood, S.; Austin, L.; Cristofanilli, M. Cancer stem cells: implications for cancer therapy. Oncology 2014, 28, 1101–1107, 1110. [Google Scholar]
  50. Schlegelmilch, K.; Mohseni, M.; Kirak, O.; Pruszak, J.; Rodriguez, J.R.; Zhou, D.; Kreger, B.T.; Vasioukhin, V.; Avruch, J.; Brummelkamp, T.R.; et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 2011, 144, 782–795. [Google Scholar] [CrossRef]
  51. Van Hateren, N.J.; Das, R.M.; Hautbergue, G.M.; Borycki, A.-G.; Placzek, M.; Wilson, S.A. FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development 2011, 138, 1893–1902. [Google Scholar] [CrossRef]
  52. Heallen, T.; Zhang, M.; Wang, J.; Bonilla-Claudio, M.; Klysik, E.; Johnson, R.L.; Martin, J.F. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011, 332, 458–461. [Google Scholar] [CrossRef]
  53. Judson, R.N.; Tremblay, A.M.; Knopp, P.; White, R.B.; Urcia, R.; De Bari, C.; Zammit, P.S.; Camargo, F.D.; Wackerhage, H. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J. Cell Sci. 2012, 125, 6009–6019. [Google Scholar] [CrossRef]
  54. Cai, J.; Zhang, N.; Zheng, Y.; de Wilde, R.F.; Maitra, A.; Pan, D. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 2010, 24, 2383–2388. [Google Scholar] [CrossRef]
  55. Fernandez-L, A.; Northcott, P.A.; Dalton, J.; Fraga, C.; Ellison, D.; Angers, S.; Taylor, M.D.; Kenney, A.M. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009, 23, 2729–2741. [Google Scholar] [CrossRef]
  56. Bhat, K.P.L.; Salazar, K.L.; Balasubramaniyan, V.; Wani, K.; Heathcock, L.; Hollingsworth, F.; James, J.D.; Gumin, J.; Diefes, K.L.; Kim, S.H.; et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 2011, 25, 2594–2609. [Google Scholar] [CrossRef]
  57. Song, S.; Ajani, J.A.; Honjo, S.; Maru, D.M.; Chen, Q.; Scott, A.W.; Heallen, T.R.; Xiao, L.; Hofstetter, W.L.; Weston, B.; et al. Hippo Coactivator YAP1 Upregulates SOX9 and Endows Esophageal Cancer Cells with Stem-like Properties. Cancer Res. 2014, 74, 4170–4182. [Google Scholar] [CrossRef]
  58. Li, H.; Wolfe, A.; Septer, S.; Edwards, G.; Zhong, X.; Bashar Abdulkarim, A.; Ranganathan, S.; Apte, U. Deregulation of Hippo kinase signalling in Human hepatic malignancies. Liver Int. 2012, 32, 38–47. [Google Scholar] [CrossRef]
  59. Díaz-Martín, J.; López-García, M.Á.; Romero-Pérez, L.; Atienza-Amores, M.R.; Pecero, M.L.; Castilla, M.Á.; Biscuola, M.; Santón, A.; Palacios, J. Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocr. Relat. Cancer 2015, 22, 443–454. [Google Scholar] [CrossRef]
  60. Liu, C.-Y.; Yu, T.; Huang, Y.; Cui, L.; Hong, W. ETS (E26 transformation-specific) up-regulation of the transcriptional co-activator TAZ promotes cell migration and metastasis in prostate cancer. J. Biol. Chem. 2017, 292, 9420–9430. [Google Scholar] [CrossRef]
  61. Jiao, S.; Wang, H.; Shi, Z.; Dong, A.; Zhang, W.; Song, X.; He, F.; Wang, Y.; Zhang, Z.; Wang, W.; et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014, 25, 166–180. [Google Scholar] [CrossRef]
  62. Noguchi, S.; Saito, A.; Horie, M.; Mikami, Y.; Suzuki, H.I.; Morishita, Y.; Ohshima, M.; Abiko, Y.; Mattsson, J.S.M.; Konig, H.; et al. An Integrative Analysis of the Tumorigenic Role of TAZ in Human Non-Small Cell Lung Cancer. Clin.Cancer Res. 2014, 20, 4660–4672. [Google Scholar] [CrossRef]
  63. Cheng, H.; Zhang, Z.; Rodriguez-Barrueco, R.; Borczuk, A.; Liu, H.; Yu, J.; Silva, J.M.; Cheng, S.K.; Perez-Soler, R.; Halmos, B. Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 2016, 7, 28976–28988. [Google Scholar] [CrossRef]
  64. Orr, B.A.; Bai, H.; Odia, Y.; Jain, D.; Anders, R.A.; Eberhart, C.G. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J. Neuropathol. Exp. Neurol. 2011, 70, 568–577. [Google Scholar] [CrossRef]
  65. Xu, M.Z.; Yao, T.-J.; Lee, N.P.Y.; Ng, I.O.L.; Chan, Y.-T.; Zender, L.; Lowe, S.W.; Poon, R.T.P.; Luk, J.M. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 2009, 115, 4576–4585. [Google Scholar] [CrossRef]
  66. Lee, K.; Lee, K.-B.; Jung, H.Y.; Yi, N.-J.; Lee, K.-W.; Suh, K.-S.; Jang, J.-J. The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas. BMC Cancer 2017, 17, 441. [Google Scholar] [CrossRef]
  67. Liu, X.-L.; Zuo, R.; Ou, W.-B. The hippo pathway provides novel insights into lung cancer and mesothelioma treatment. J. Cancer Res. Clin. Oncol. 2018, 144, 2097–2106. [Google Scholar] [CrossRef]
  68. Zhang, L.; Song, X.; Li, X.; Wu, C.; Jiang, J. Yes-Associated Protein 1 as a Novel Prognostic Biomarker for Gastrointestinal Cancer: A Meta-Analysis. BioMed Res. Int. 2018, 2018, 4039173. [Google Scholar] [CrossRef]
  69. Gong, R.; Yu, F.-X. Targeting the Hippo Pathway for Anti-cancer Therapies. Curr. Med. Chem. 2015, 22, 4104–4117. [Google Scholar] [CrossRef]
  70. Kim, M.H.; Kim, J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell. Mol. Life Sci. 2017, 74, 1457–1474. [Google Scholar] [CrossRef]
  71. Evans, D.G.R. Neurofibromatosis 2 [Bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II]. Genet. Med. 2009, 11, 599–610. [Google Scholar] [CrossRef] [PubMed]
  72. Thurneysen, C.; Opitz, I.; Kurtz, S.; Weder, W.; Stahel, R.A.; Felley-Bosco, E. Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer 2009, 64, 140–147. [Google Scholar] [CrossRef] [PubMed]
  73. Tanas, M.R.; Ma, S.; Jadaan, F.O.; Ng, C.K.; Weigelt, B.; Reis-Filho, J.S.; Rubin, B.P. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene 2016, 35, 929–938. [Google Scholar] [CrossRef] [PubMed]
  74. Errani, C.; Zhang, L.; Sung, Y.S.; Hajdu, M.; Singer, S.; Maki, R.G.; Healey, J.H.; Antonescu, C.R. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011, 50, 644–653. [Google Scholar] [CrossRef] [PubMed]
  75. Seidel, C.; Schagdarsurengin, U.; Blümke, K.; Würl, P.; Pfeifer, G.P.; Hauptmann, S.; Taubert, H.; Dammann, R. Frequent hypermethylation of MST1 andMST2 in soft tissue sarcoma. Mol. Carcinog. 2007, 46, 865–871. [Google Scholar] [CrossRef]
  76. Takahashi, Y.; Miyoshi, Y.; Takahata, C.; Irahara, N.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res. 2005, 11, 1380–1385. [Google Scholar] [CrossRef]
  77. Jiang, Z.; Li, X.; Hu, J.; Zhou, W.; Jiang, Y.; Li, G.; Lu, D. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci. Res. 2006, 56, 450–458. [Google Scholar] [CrossRef]
  78. Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337. [Google Scholar] [CrossRef]
  79. Grawenda, A.M.; O’Neill, E. Clinical utility of RASSF1A methylation in human malignancies. Br. J. Cancer 2015, 113, 372–381. [Google Scholar] [CrossRef]
  80. Zhu, H.; Cheng, X.; Niu, X.; Zhang, Y.; Guan, J.; Liu, X.; Tao, S.; Wang, Y.; Zhang, C. Proton-sensing GPCR-YAP Signalling Promotes Cell Proliferation and Survival. Int. J. Biol. Sci. 2015, 11, 1181–1189. [Google Scholar] [CrossRef]
  81. Anakk, S.; Bhosale, M.; Schmidt, V.A.; Johnson, R.L.; Finegold, M.J.; Moore, D.D. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep. 2013, 5, 1060–1069. [Google Scholar] [CrossRef]
  82. Thirunavukkarasan, M.; Wang, C.; Rao, A.; Hind, T.; Teo, Y.R.; Siddiquee, A.A.-M.; Goghari, M.A.I.; Kumar, A.P.; Herr, D.R. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS ONE 2017, 12, e0186334. [Google Scholar] [CrossRef]
  83. Koo, J.H.; Guan, K.-L. Interplay between YAP/TAZ and Metabolism. Cell Metab. 2018, 28, 196–206. [Google Scholar] [CrossRef]
  84. Yu, O.M.; Miyamoto, S.; Brown, J.H. Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. Mol. Cell. Biol. 2016, 36, 39–49. [Google Scholar] [CrossRef]
  85. Wennmann, D.O.; Vollenbröker, B.; Eckart, A.K.; Bonse, J.; Erdmann, F.; Wolters, D.A.; Schenk, L.K.; Schulze, U.; Kremerskothen, J.; Weide, T.; et al. The Hippo pathway is controlled by Angiotensin II signaling and its reactivation induces apoptosis in podocytes. Cell Death Dis. 2014, 5, e1519. [Google Scholar] [CrossRef]
  86. Wang, Z.; Liu, P.; Zhou, X.; Wang, T.; Feng, X.; Sun, Y.-P.; Xiong, Y.; Yuan, H.-X.; Guan, K.-L. Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Res. 2017, 77, 2413–2423. [Google Scholar] [CrossRef]
  87. Mo, J.-S.; Yu, F.-X.; Gong, R.; Brown, J.H.; Guan, K.-L. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 2012, 26, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
  88. Langenhan, T.; Aust, G.; Hamann, J. Sticky Signaling—Adhesion Class G Protein-Coupled Receptors Take the Stage. Sci. Signal. 2013, 6. [Google Scholar] [CrossRef] [PubMed]
  89. Zhou, X.; Wang, S.; Wang, Z.; Feng, X.; Liu, P.; Lv, X.-B.; Li, F.; Yu, F.-X.; Sun, Y.; Yuan, H.; et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Invest. 2015, 125, 2123–2135. [Google Scholar] [CrossRef]
  90. Cai, H.; Xu, Y. The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun. Signal. 2013, 11, 31. [Google Scholar] [CrossRef]
  91. Cheng, J.-C.; Wang, E.Y.; Yi, Y.; Thakur, A.; Tsai, S.-H.; Hoodless, P.A. S1P Stimulates Proliferation by Upregulating CTGF Expression through S1PR2-Mediated YAP Activation. Mol. Cancer Res. 2018, 16, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
  92. Zhou, P.-J.; Xue, W.; Peng, J.; Wang, Y.; Wei, L.; Yang, Z.; Zhu, H.H.; Fang, Y.-X.; Gao, W.-Q. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J. Exp. Clin. Cancer Res. 2017, 36, 139. [Google Scholar] [CrossRef] [PubMed]
  93. Nag, J.; Bar-Shavit, R. Transcriptional Landscape of PARs in Epithelial Malignancies. Int. J. Mol. Sci. 2018, 19, 3451. [Google Scholar] [CrossRef]
  94. Kim, H.-B.; Kim, M.; Park, Y.-S.; Park, I.; Kim, T.; Yang, S.-Y.; Cho, C.J.; Hwang, D.; Jung, J.-H.; Markowitz, S.D.; et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology 2017, 152, 616–630. [Google Scholar] [CrossRef] [PubMed]
  95. Xu, G.; Wang, Y.; Li, W.; Cao, Y.; Xu, J.; Hu, Z.; Hao, Y.; Hu, L.; Sun, Y. COX-2 Forms Regulatory Loop with YAP to Promote Proliferation and Tumorigenesis of Hepatocellular Carcinoma Cells. Neoplasia 2018, 20, 324–334. [Google Scholar] [CrossRef] [PubMed]
  96. Katoh, M.; Katoh, M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int. J. Mol. Med. 2017, 40, 587–606. [Google Scholar] [CrossRef] [PubMed]
  97. Zheng, C.-H.; Chen, X.-M.; Zhang, F.-B.; Zhao, C.; Tu, S.-S. Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo-YAP signaling pathway. Cell Biol. Int. 2018, 42, 1386–1394. [Google Scholar] [CrossRef]
  98. Burger, J.A.; Kipps, T.J. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006, 107, 1761–1767. [Google Scholar] [CrossRef]
  99. Almofti, A.; Uchida, D.; Begum, N.M.; Tomizuka, Y.; Iga, H.; Yoshida, H.; Sato, M. The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int. J. Oncol. 2004, 25, 65–71. [Google Scholar] [CrossRef] [PubMed]
  100. Raghuwanshi, S.K.; Su, Y.; Singh, V.; Haynes, K.; Richmond, A.; Richardson, R.M. The Chemokine Receptors CXCR1 and CXCR2 Couple to Distinct G Protein-Coupled Receptor Kinases To Mediate and Regulate Leukocyte Functions. J. Immunol. 2012, 189, 2824–2832. [Google Scholar] [CrossRef]
  101. Lee, Z.; Swaby, R.F.; Liang, Y.; Yu, S.; Liu, S.; Lu, K.H.; Bast, R.C.; Mills, G.B.; Fang, X. Lysophosphatidic Acid Is a Major Regulator of Growth-Regulated Oncogene α in Ovarian Cancer. Cancer Res. 2006, 66, 2740–2748. [Google Scholar] [CrossRef]
  102. Sharif, G.M.; Schmidt, M.O.; Yi, C.; Hu, Z.; Haddad, B.R.; Glasgow, E.; Riegel, A.T.; Wellstein, A. Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene 2015, 34, 5879–5889. [Google Scholar] [CrossRef] [PubMed]
  103. Uemura, H.; Hasumi, H.; Ishiguro, H.; Teranishi, J.-I.; Miyoshi, Y.; Kubota, Y. Renin-angiotensin system is an important factor in hormone refractory prostate cancer. Prostate 2006, 66, 822–830. [Google Scholar] [CrossRef] [PubMed]
  104. Saikawa, S.; Kaji, K.; Nishimura, N.; Seki, K.; Sato, S.; Nakanishi, K.; Kitagawa, K.; Kawaratani, H.; Kitade, M.; Moriya, K.; et al. Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of Yes-associated protein. Cancer Lett. 2018, 434, 120–129. [Google Scholar] [CrossRef] [PubMed]
  105. Wang, J.; Hong, Y.; Shao, S.; Zhang, K.; Hong, W. FFAR1-and FFAR4-dependent activation of Hippo pathway mediates DHA-induced apoptosis of androgen-independent prostate cancer cells. Biochem. Biophys. Res. Commun. 2018, 506, 590–596. [Google Scholar] [CrossRef] [PubMed]
  106. Dethlefsen, C.; Hansen, L.S.; Lillelund, C.; Andersen, C.; Gehl, J.; Christensen, J.F.; Pedersen, B.K.; Hojman, P. Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce Risks of Breast Cancer Development. Cancer Res. 2017, 77, 4894–4904. [Google Scholar] [CrossRef] [PubMed]
  107. Yu, F.-X.; Zhang, Y.; Park, H.W.; Jewell, J.L.; Chen, Q.; Deng, Y.; Pan, D.; Taylor, S.S.; Lai, Z.-C.; Guan, K.-L. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev. 2013, 27, 1223–1232. [Google Scholar] [CrossRef]
  108. Kim, M.; Kim, M.; Lee, S.; Kuninaka, S.; Saya, H.; Lee, H.; Lee, S.; Lim, D.-S. cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J. 2013, 32, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
  109. Iglesias-Bartolome, R.; Torres, D.; Marone, R.; Feng, X.; Martin, D.; Simaan, M.; Chen, M.; Weinstein, L.S.; Taylor, S.S.; Molinolo, A.A.; et al. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat. Cell Biol. 2015, 17, 793–803. [Google Scholar] [CrossRef]
  110. Gong, R.; Hong, A.W.; Plouffe, S.W.; Zhao, B.; Liu, G.; Yu, F.-X.; Xu, Y.; Guan, K.-L. Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res. 2015, 25, 985–988. [Google Scholar] [CrossRef]
  111. Park, H.W.; Kim, Y.C.; Yu, B.; Moroishi, T.; Mo, J.S.; Plouffe, S.W.; Meng, Z.; Lin, K.C.; Yu, F.X.; Alexander, C.M.; et al. Alternative Wnt Signaling Activates YAP/TAZ. Cell 2015, 162, 780–794. [Google Scholar] [CrossRef] [PubMed]
  112. Rao, R.; Salloum, R.; Xin, M.; Lu, Q.R. The G protein Gαs acts as a tumor suppressor in sonic hedgehog signaling-driven tumorigenesis. Cell Cycle 2016, 15, 1325–1330. [Google Scholar] [CrossRef]
  113. Hao, F.; Xu, Q.; Zhao, Y.; Stevens, J.V.; Young, S.H.; Sinnett-Smith, J.; Rozengurt, E. Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Mol. Cancer Res. 2017, 15, 929–941. [Google Scholar] [CrossRef] [PubMed]
  114. Feng, R.; Gong, J.; Wu, L.; Wang, L.; Zhang, B.; Liang, G.; Zheng, H.; Xiao, H. MAPK and Hippo signaling pathways crosstalk via the RAF-1/MST-2 interaction in malignant melanoma. Oncol. Rep. 2017, 38, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
  115. Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer 2007, 7, 79–94. [Google Scholar] [CrossRef] [PubMed]
  116. Gutkind, J.S. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 1998, 273, 1839–1842. [Google Scholar] [CrossRef]
  117. Nieto Gutierrez, A.; McDonald, P.H. GPCRs: Emerging anti-cancer drug targets. Cell. Signal. 2018, 41, 65–74. [Google Scholar] [CrossRef]
  118. Van Raamsdonk, C.D.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009, 457, 599–602. [Google Scholar] [CrossRef]
  119. Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; et al. Mutations in GNA11 in Uveal Melanoma. N. Eng. J. Med. 2010, 363, 2191–2199. [Google Scholar] [CrossRef]
  120. Yu, F.X.; Luo, J.; Mo, J.S.; Liu, G.; Kim, Y.C.; Meng, Z.; Zhao, L.; Peyman, G.; Ouyang, H.; Jiang, W.; et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014, 25. [Google Scholar] [CrossRef]
  121. Chen, X.; Wu, Q.; Depeille, P.; Chen, P.; Thornton, S.; Kalirai, H.; Coupland, S.E.; Roose, J.P.; Bastian, B.C. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell 2017, 31, 685–696. [Google Scholar] [CrossRef] [PubMed]
  122. Huh, J.Y.; Kwon, M.J.; Seo, K.Y.; Kim, M.K.; Chae, K.Y.; Kim, S.H.; Ki, C.S.; Yoon, M.S.; Kim, D.H. Novel nonsense GNAS mutation in a 14-month-old boy with plate-like osteoma cutis and medulloblastoma. J. Dermatol. 2014, 41, 319–321. [Google Scholar] [CrossRef]
  123. Deng, Y.; Wu, L.M.N.; Bai, S.; Zhao, C.; Wang, H.; Wang, J.; Xu, L.; Sakabe, M.; Zhou, W.; Xin, M.; et al. A reciprocal regulatory loop between TAZ/YAP and G-protein Gαs regulates Schwann cell proliferation and myelination. Nat. Commun. 2017, 8, 15161. [Google Scholar] [CrossRef] [PubMed]
  124. Landis, C.A.; Masters, S.B.; Spada, A.; Pace, A.M.; Bourne, H.R.; Vallar, L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989, 340, 692–696. [Google Scholar] [CrossRef]
  125. Weinstein, L.S.; Shenker, A.; Gejman, P.V.; Merino, M.J.; Friedman, E.; Spiegel, A.M. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Eng. J. Med. 1991, 325, 1688–1695. [Google Scholar] [CrossRef]
  126. O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 2014, 27, 126–135. [Google Scholar] [CrossRef] [PubMed]
  127. O’Hayre, M.; Vázquez-Prado, J.; Kufareva, I.; Stawiski, E.W.; Handel, T.M.; Seshagiri, S.; Gutkind, J.S. The Emerging Mutational Landscape of G-proteins and G-protein Coupled Receptors in Cancer. Nat. Rev. Cancer 2013, 13, 412–424. [Google Scholar] [CrossRef]
  128. Scales, S.J.; de Sauvage, F.J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 2009, 30, 303–312. [Google Scholar] [CrossRef]
  129. Araç, D.; Boucard, A.A.; Bolliger, M.F.; Nguyen, J.; Soltis, S.M.; Südhof, T.C.; Brunger, A.T. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 2012, 31, 1364–1378. [Google Scholar] [CrossRef]
  130. Hernández, N.A.; Correa, E.; Avila, E.P.; Vela, T.A.; Pérez, V.M. PAR1 is selectively over expressed in high grade breast cancer patients: A cohort study. J. Transl. Med. 2009, 7, 47. [Google Scholar] [CrossRef]
  131. Bar-Shavit, R.; Maoz, M.; Kancharla, A.; Nag, J.K.; Agranovich, D.; Grisaru-Granovsky, S.; Uziely, B. G Protein-Coupled Receptors in Cancer. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef]
  132. St-Jean, M.; Ghorayeb, N.E.; Bourdeau, I.; Lacroix, A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 165–187. [Google Scholar] [CrossRef]
  133. Liu, G.; Yu, F.-X.; Kim, Y.C.; Meng, Z.; Naipauer, J.; Looney, D.J.; Liu, X.; Gutkind, J.S.; Mesri, E.A.; Guan, K.-L. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 2015, 34, 3536–3546. [Google Scholar] [CrossRef]
  134. Greenhough, A.; Bagley, C.; Heesom, K.J.; Gurevich, D.B.; Gay, D.; Bond, M.; Collard, T.J.; Paraskeva, C.; Martin, P.; Sansom, O.J.; et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol. Med. 2018, 10. [Google Scholar] [CrossRef]
  135. Wang, Y.; Pei, H.; Jia, Y.; Liu, J.; Li, Z.; Ai, K.; Lu, Z.; Lu, L. Synergistic Tailoring of Electrostatic and Hydrophobic Interactions for Rapid and Specific Recognition of Lysophosphatidic Acid, an Early-Stage Ovarian Cancer Biomarker. J. Am. Chem. Soc. 2017, 139, 11616–11621. [Google Scholar] [CrossRef] [PubMed]
  136. Yu, D.; Cai, Y.; Zhou, W.; Sheng, J.; Xu, Z. The Potential of Angiogenin as a Serum Biomarker for Diseases: Systematic Review and Meta-Analysis. Dis. Markers 2018, 2018, 1984718. [Google Scholar] [CrossRef] [PubMed]
  137. Ramcharan, S.K.; Lip, G.Y.; Stonelake, P.S.; Blann, A.D. Angiogenin outperforms VEGF, EPCs and CECs in predicting Dukes’ and AJCC stage in colorectal cancer. Eur. J. Clin. Invest. 2013, 43, 801–808. [Google Scholar] [CrossRef]
  138. Hisai, H.; Kato, J.; Kobune, M.; Murakami, T.; Miyanishi, K.; Takahashi, M.; Yoshizaki, N.; Takimoto, R.; Terui, T.; Niitsu, Y. Increased expression of angiogenin in hepatocellular carcinoma in correlation with tumor vascularity. Clin. Cancer Res. 2003, 9, 4852–4859. [Google Scholar]
  139. Tas, F.; Duranyildiz, D.; Oguz, H.; Camlica, H.; Yasasever, V.; Topuz, E. Circulating serum levels of angiogenic factors and vascular endothelial growth factor receptors 1 and 2 in melanoma patients. Melanoma Res. 2006, 16, 405–411. [Google Scholar] [CrossRef]
  140. Rykala, J.; Przybylowska, K.; Majsterek, I.; Pasz-Walczak, G.; Sygut, A.; Dziki, A.; Kruk-Jeromin, J. Angiogenesis markers quantification in breast cancer and their correlation with clinicopathological prognostic variables. Pathol. Oncol. Res. 2011, 17, 809–817. [Google Scholar] [CrossRef] [PubMed]
  141. Barton, D.P.; Cai, A.; Wendt, K.; Young, M.; Gamero, A.; De Cesare, S. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin. Cancer Res. 1997, 3, 1579–1586. [Google Scholar] [PubMed]
  142. Liu-Chittenden, Y.; Huang, B.; Shim, J.S.; Chen, Q.; Lee, S.-J.; Anders, R.A.; Liu, J.O.; Pan, D. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012, 26, 1300–1305. [Google Scholar] [CrossRef]
  143. Noland, C.L.; Gierke, S.; Schnier, P.D.; Murray, J.; Sandoval, W.N.; Sagolla, M.; Dey, A.; Hannoush, R.N.; Fairbrother, W.J.; Cunningham, C.N. Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling. Structure 2016, 24, 179–186. [Google Scholar] [CrossRef] [PubMed]
  144. Chan, P.; Han, X.; Zheng, B.; DeRan, M.; Yu, J.; Jarugumilli, G.K.; Deng, H.; Pan, D.; Luo, X.; Wu, X. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 2016, 12, 282–289. [Google Scholar] [CrossRef] [PubMed]
  145. Li, Y.; Liu, S.; Ng, E.Y.; Li, R.; Poulsen, A.; Hill, J.; Pobbati, A.V.; Hung, A.W.; Hong, W.; Keller, T.H.; et al. Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochem. J. 2018, 475, 2043–2055. [Google Scholar] [CrossRef] [PubMed]
  146. Bum-Erdene, K.; Zhou, D.; Gonzalez-Gutierrez, G.; Ghozayel, M.K.; Si, Y.; Xu, D.; Shannon, H.E.; Bailey, B.J.; Corson, T.W.; Pollok, K.E.; et al. Small-Molecule Covalent Modification of Conserved Cysteine Leads to Allosteric Inhibition of the TEADYap Protein-Protein Interaction. Cell Chem. Biol. 2019, 26, 378–389. [Google Scholar] [CrossRef] [PubMed]
  147. Bao, Y.; Nakagawa, K.; Yang, Z.; Ikeda, M.; Withanage, K.; Ishigami-Yuasa, M.; Okuno, Y.; Hata, S.; Nishina, H.; Hata, Y. A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J. Biochem. 2011, 150, 199–208. [Google Scholar] [CrossRef]
  148. Park, H.W.; Guan, K.-L. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol. Sci. 2013, 34, 581–589. [Google Scholar] [CrossRef] [PubMed]
  149. Borcherding, D.C.; Tong, W.; Hugo, E.R.; Barnard, D.F.; Fox, S.; LaSance, K.; Shaughnessy, E.; Ben-Jonathan, N. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2016, 35, 3103–3113. [Google Scholar] [CrossRef]
  150. Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef]
  151. Onken, M.D.; Makepeace, C.M.; Kaltenbronn, K.M.; Kanai, S.M.; Todd, T.D.; Wang, S.; Broekelmann, T.J.; Rao, P.K.; Cooper, J.A.; Blumer, K.J. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci. Signal. 2018, 11, eaao6852. [Google Scholar] [CrossRef] [PubMed]
  152. Annala, S.; Feng, X.; Shridhar, N.; Eryilmaz, F.; Patt, J.; Yang, J.; Pfeil, E.M.; Cervantes-Villagrana, R.D.; Inoue, A.; Häberlein, F.; et al. Direct targeting of Gαq and Gα11 oncoproteins in cancer cells. Sci. Signal. 2019, 12, eaau5948. [Google Scholar] [CrossRef] [PubMed]
  153. Sorrentino, G.; Ruggeri, N.; Specchia, V.; Cordenonsi, M.; Mano, M.; Dupont, S.; Manfrin, A.; Ingallina, E.; Sommaggio, R.; Piazza, S.; et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 2014, 16, 357–366. [Google Scholar] [CrossRef] [PubMed]
  154. Oku, Y.; Nishiya, N.; Shito, T.; Yamamoto, R.; Yamamoto, Y.; Oyama, C.; Uehara, Y. Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio 2015, 5, 542–549. [Google Scholar] [CrossRef] [PubMed]
Figure 1. GPCRs modulate Hippo-YAP signaling via GPCRs–G-protein–cytoskeleton axis. The molecular scheme of GPCR-Hippo signaling is shown, including activating and inhibitory regulation of YAP/TAZ. GPCRs and G proteins activating YAP/TAZ are marked with red and those inhibiting YAP/TAZ are in blue.
Figure 1. GPCRs modulate Hippo-YAP signaling via GPCRs–G-protein–cytoskeleton axis. The molecular scheme of GPCR-Hippo signaling is shown, including activating and inhibitory regulation of YAP/TAZ. GPCRs and G proteins activating YAP/TAZ are marked with red and those inhibiting YAP/TAZ are in blue.
Cells 08 00426 g001
Table 1. The regulation of YAP/TAZ activity by various G-protein coupled receptors in human cancers. Representative GPCRs that are most frequently implicated in human cancer are shown and their regulation on YAP/TAZ activation are listed in the following table.
Table 1. The regulation of YAP/TAZ activity by various G-protein coupled receptors in human cancers. Representative GPCRs that are most frequently implicated in human cancer are shown and their regulation on YAP/TAZ activation are listed in the following table.
GPCRsLigandCoupling
Protein
YAP/TAZ ActivationAssociated Cancer TypeReferences
GPEREstrogenGαq/11Breast cancer[89]
LPA receptorsLPAGα12/13, Gαq/11Colon cancer
Ovarian cancer
Prostate cancer
Breast caner
[32,90]
S1P receptorsS1PGα12/13Hepatocellular carcinoma[91]
Protease-activated receptors (PARs)ThrombinGαq, Gα12/13, GαiMelanoma
Colon cancer
Breast cancer
Lung cancer
Pancreatic cancer
Prostate cancer
Squamous cell carcinoma of the head and neck
[87,92,93]
ETAREndothelin-1Gαq/11Colorectal cancer[86]
EP2, EP4PGE2Gαq/11Colon caner
Hepatocellular Carcinoma
Head and neck cancer
Non-small-cell lung cancer
[94,95]
Frizzleds
(FZD)
WntsGα12/13Colorectal cancer
Prostate cancer
Hepatocellular carcinoma
[96]
Chemokine (C-X-C motif) receptor 4SDF1/CXCL12 Gα12/13, Gαq/11, Gαi/oBreast cancer
Non-small cell and small cell lung cancer
Oral squamous carcinoma
Chronic Myelogenous Leukemia
[97,98,99]
Chemokine (C-X-C motif) receptor 2IL8, CXCL5GαiHead and neck squamous cell carcinoma
Non-small cell lung cancer (NSCLC)
Ovarian cancer
[100,101,102]
Angiotensin II receptor AT1Angiotensin IIGαq/11Prostate cancer
Cholangiocarcinoma
[103,104]
Free Fatty Acid receptor 1(FFAR1)Fatty acidsGαq/11,
Gαi/o
Prostate cancer[105]
β1- and β2-adrenergic receptorsCatecholamines
(e.g., dobutamine)
GαsBreast cancer[106]

Share and Cite

MDPI and ACS Style

Luo, J.; Yu, F.-X. GPCR-Hippo Signaling in Cancer. Cells 2019, 8, 426. https://doi.org/10.3390/cells8050426

AMA Style

Luo J, Yu F-X. GPCR-Hippo Signaling in Cancer. Cells. 2019; 8(5):426. https://doi.org/10.3390/cells8050426

Chicago/Turabian Style

Luo, Jiaqian, and Fa-Xing Yu. 2019. "GPCR-Hippo Signaling in Cancer" Cells 8, no. 5: 426. https://doi.org/10.3390/cells8050426

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop