Integrated Stress Response (ISR) Modulators in Vascular Diseases
Highlights
- The integrated stress response (ISR) has emerged as an important regulator of vascular homeostasis and pathology, orchestrating endothelial adaptation to metabolic, oxidative, and inflammatory stress through coordinated translational and transcriptional control.
- PERK and PKR signaling pathways promote maladaptive vascular remodeling under chronic stress, driving endothelial apoptosis, inflammation, and pathological neovascularization, whereas GCN2 exerts protective effects, particularly in the pulmonary circulation.
- Selective pharmacological targeting of ISR components offers therapeutic promise, with both inhibitors (e.g., GSK2606414, 2-aminopurine, C16) and activators (e.g., salubrinal, halofuginone) demonstrating efficacy in preclinical models of atherosclerosis, restenosis, thrombosis, and pulmonary hypertension.
- The dual and context-dependent roles of ISR signaling underscore the need for precision-targeted modulation, with therapeutic outcomes varying by disease state, cellular context, and the specific ISR kinase engaged.
- Translational progress is currently limited by gaps in pharmacokinetics, selectivity, and long-term safety profiles of ISR modulators, highlighting the necessity for mechanistic dissection and in vivo validation to support clinical application.
Abstract
1. Introduction
2. The Molecular Mechanisms of the Integrated Stress Response (ISR)
3. ISR Signaling and Its Modulators in Vascular Normal and Pathological Physiology
3.1. PERK
3.1.1. PERK Kinase as a Therapeutic Target in Atherosclerosis
CNPY2
LOX-1/NOX4
(cGAS)-STING Pathway
3.1.2. Role of PERK Kinase Signaling in Restenosis and Thrombosis
3.2. GCN2
3.2.1. Metabolic Roles of GCN2
3.2.2. Halofuginone
3.3. PKR
3.3.1. PKR as Regulator of Cellular Senescence and Proliferation
3.3.2. Role of PKR in Vascular Disorders
3.3.3. PKR and Inflammasome Response
3.4. HRI
| ISR Component | Modulator | Effect on ISR Pathway | Side Effects | Off Targets | Pathology | Pharmacological Effect |
|---|---|---|---|---|---|---|
| PERK | GSK2606414 | Inhibition | Pancreas toxicity [176,177,178,179] Body weight loss [180,181,182] Hyperglycemia [181] | At a concentration of less than 1 μM: RIPK1 [182] c-kit [183,184] Aurora B kinase [184] BRK [184] MLK2/MAP3K10 [184] c-MER [184] DDR2 [184] MLCK2/MYLK2 [184] IKKe/IKBKE [184] Concentration of 1 μM: IKKe/IKBKE [184] TRKC [184] MLK3/MAP3K11 [184] RET [184] LCK [184] NEK4 [184] KHS/MAP4K5 [184] MLK1/MAP3K9 [184] TRKA [184] AXL [184] TRKB [184] YES/YES1 [184] WNK2 [184] | Atherosclerosis | Beneficial [69,73] |
| Hypertension | Beneficial [74] | |||||
| Restenosis | Beneficial [82,83] | |||||
| Inflammation | Beneficial [83] | |||||
| Tumor growth | Beneficial [63,64] | |||||
| Thrombosis | Beneficial [82] | |||||
| GSK2656157 | Inhibition | No toxic effects on heart, liver, kidney and lung tissues [185] | RIPK1 [182] HRI [186] PKR [186] GCN2 [186,187] | Diabetic cardiomyopathy | Detrimental [62] | |
| Tumor growth | Beneficial [66] | |||||
| CCT020312 | Activation | No toxic effects on liver and kidney [188] | no data | Hypertension | Detrimental [74] | |
| Tumor growth | Detrimental [63,64] | |||||
| GCN2 | Halofuginone | Activation | Skin and eyes irritation, acute toxicity at high doses [189] | TGF-β1/Smad 3 signaling [127,190,191,192,193] | Inflammation | Beneficial [124,125,127] |
| PH | Beneficial [126,127] | |||||
| Restenosis | Beneficial [128] | |||||
| Tumor growth | Beneficial [129] | |||||
| PKR | C16 | Inhibition | no data | CDK2/CDK5 [194] | Hypertension | Beneficial [142] |
| Inflammation | Beneficial [142,143,148,151] | |||||
| PVOD | Beneficial [145,146] | |||||
| Atherosclerosis | Beneficial [152] | |||||
| 2-aminopurine | Inhibition | Mutagenic effects, irritation to eyes, skin, and respiratory tract [195] | p53 signaling [196] DNA synthesis [197] | Senescence | Beneficial [133] | |
| Inflammation | Beneficial [147,150] | |||||
| PH | Beneficial [150] | |||||
| Phosphorylation of eIF2α | ISRIB | Inhibition | No overt signs of toxicity [176,198] | no data | PVOD | Beneficial [145,146] |
| Salubrinal | Activation | No overt signs of toxicity [199,200,201] | Bcl-2 [202] | Atherosclerosis | Beneficial [71,75,84] | |
| PVOD | Beneficial [90] |
4. Conclusions
5. Future Directions
- Precision Therapeutics and Targeted Delivery
- Overcoming these limitations will require two complementary strategies. First, the rational design of next-generation ISR modulators—including improved ISRIB analogues and novel allosteric compounds—should prioritize enhanced selectivity for specific ISR branches (e.g., PERK- vs. GCN2-specific) and optimized pharmacokinetic and safety profiles. Second, advances in delivery technologies, such as lipid nanoparticles, liposomes, and other nanocarriers, offer promising platforms for transient, non-genomic, and cell-specific modulation of ISR pathways. These clinically validated systems—already applied in mRNA vaccines and siRNA therapies—can be adapted to deliver ISR modulators (e.g., mRNA-encoded dominant-negative constructs or siRNAs targeting ISR effectors) to vascular smooth muscle cells, endothelial cells, or lesion macrophages, thereby minimizing systemic exposure and reducing off-target effects.
- Deciphering Cell Type-Specific ISR Dynamics In Vivo. The functional outcome of ISR activation is highly context-dependent, varying by cell type (endothelial cells, VSMCs, macrophages), disease stage, and metabolic milieu. Leveraging single-cell RNA seq and other multi-omics technologies (transcriptomics, proteomics) on human vascular tissues and advanced animal models will be essential to map these heterogeneous responses and identify the most therapeutically vulnerable cellular targets.
- Elucidating the Switch from an Adaptive to Maladaptive ISR. A fundamental unanswered question is what molecular mechanisms determine whether ISR signaling promotes cell survival or initiates apoptosis in vascular cells. Systematic studies combining genetic screening with temporal phospho-proteomics and metabolomics are needed to identify the critical checkpoints that dictate this decision. A paramount challenge is to map the “therapeutic windows” for ISR modulation across different vascular diseases. Computational modeling of ISR network dynamics in specific vascular cell types could further predict the tipping point between adaptive and maladaptive outcomes, guiding the timing and choice of intervention.
- Bridging the Translational Gap. Despite promising preclinical findings, in vivo data on the pharmacokinetics, long-term safety, and therapeutic efficacy of ISR modulators in chronic vascular disease contexts remain limited. Moving beyond proof-of-concept will require robust, investigational new drug (IND)-enabling studies, including dose–response modeling, toxicological profiling, and biomarker-guided efficacy assessment. Expanding ISR modulation to conditions such as age-related vascular dysfunction is especially compelling, given the well-established links between ISR, senescence, and vascular aging.
- Integrating the ISR with Vascular Immunology. The crosstalk between the ISR and inflammasome activation, particularly via PKR, in endothelial cells and macrophages is a potent driver of pathology. A more integrated understanding of this axis could reveal novel combinatorial strategies to simultaneously dampen inflammatory and proteotoxic stress in diseases like atherosclerosis and pulmonary hypertension.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derisbourg, M.J.; Hartman, M.D.; Denzel, M.S. Modulating the integrated stress response to slow aging and ameliorate age-related pathology. Nat. Aging 2021, 1, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Shu, B.; Zhang, Y.; Wang, M. Endothelial Response to Pathophysiological Stress. Arter. Thromb. Vasc. Biol. 2019, 39, e233–e243. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Druey, K.M.; Arnaud, L.; Parikh, S.M. Systemic capillary leak syndrome. Nat. Rev. Dis. Prim. 2024, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Gül, A.; Aksentijevich, I.; Brogan, P.; Gattorno, M.; Grayson, P.C.; Ozen, S. The pathogenesis, clinical presentations and treatment of monogenic systemic vasculitis. Nat. Rev. Rheumatol. 2025, 21, 414–425. [Google Scholar] [CrossRef]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef]
- Kolls, B.J.; Sapp, S.; Rockhold, F.W.; Jordan, J.D.; Dombrowski, K.E.; Fowkes, F.G.R.; Mahaffey, K.W.; Berger, J.S.; Katona, B.G.; Blomster, J.I.; et al. Stroke in Patients with Peripheral Artery Disease. Stroke 2019, 50, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Hooi, H.E.S.J.D. Risk factors and cardiovascular diseases associated with asymptomatic peripheral arterial occlusive disease: The Limburg PAOD Study. Scand. J. Prim. Health Care 1998, 16, 177–182. [Google Scholar] [CrossRef]
- Athavale, A.; Fukaya, E.; Leeper, N.J. Peripheral Artery Disease: Molecular Mechanisms and Novel Therapies. Arter. Thromb. Vasc. Biol. 2024, 44, 1165–1170. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Porsch, F.; Binder, C.J. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2024, 21, 780–807. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Björkegren, J.L.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef]
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Asada, Y. Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis. Pathol. Int. 2023, 73, 65–80. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Bell, E.J.; Gornik, H.; Cushman, M.; Heckbert, S.R.; Rosamond, W.D.; Folsom, A.R.; Wattanakit, K. Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. Thromb. Haemost. 2012, 108, 508–515. [Google Scholar] [CrossRef]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 Guidelines for Management of Venous Thromboembolism: Treatment of Deep Vein Thrombosis and Pulmonary Embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef]
- Kearon, C.; Akl, E.A.; Ornelas, J.; Blaivas, A.; Jimenez, D.; Bounameaux, H.; Huisman, M.; King, C.S.; Morris, T.A.; Sood, N.; et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 315–352. [Google Scholar] [CrossRef]
- Boucly, A.; Gerges, C.; Savale, L.; Jaïs, X.; Jevnikar, M.; Montani, D.; Sitbon, O.; Humbert, M. Pulmonary arterial hypertension. Presse Med. 2023, 52, 104168. [Google Scholar] [CrossRef]
- Balko, R.; Edriss, H.; Nugent, K.; Test, V. Pulmonary veno-occlusive disease: An important consideration in patients with pulmonary hypertension. Respir. Med. 2017, 132, 203–209. [Google Scholar] [CrossRef]
- Dorweiler, B.; Grechowa, I.; Wallrath, A.; Vahl, C.; Horke, S. Activation of the Proapoptotic Unfolded Protein Response in Plaques of the Human Carotid Artery. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 248–257. [Google Scholar] [CrossRef]
- Zhou, J.; Lhoták, S.; Hilditch, B.A.; Austin, R.C. Activation of the Unfolded Protein Response Occurs at All Stages of Atherosclerotic Lesion Development in Apolipoprotein E–Deficient Mice. Circulation 2005, 111, 1814–1821. [Google Scholar] [CrossRef]
- Thorp, E.; Li, G.; Seimon, T.A.; Kuriakose, G.; Ron, D.; Tabas, I. Reduced Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoe−/− and Ldlr−/− Mice Lacking CHOP. Cell Metab. 2009, 9, 474–481. [Google Scholar] [CrossRef]
- Onat, U.I.; Yildirim, A.D.; Tufanli, Ö.; Çimen, I.; Kocatürk, B.; Veli, Z.; Hamid, S.M.; Shimada, K.; Chen, S.; Sin, J.; et al. Intercepting the Lipid-Induced Integrated Stress Response Reduces Atherosclerosis. JACC Am. Coll. Cardiol. 2019, 73, 1149–1169. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Li, C.; Li, Q.; An, Y.A.; Luo, X.; Deng, Y.; Gillette, T.G.; Scherer, P.E.; Wang, Z.V. Integrated Stress Response Couples Mitochondrial Protein Translation with Oxidative Stress Control. Circulation 2021, 144, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- A Silva, R.; Sarigol, F.; Karagöz, G.E.; Osmanagic-Myers, S.; Foisner, R. The unfolded protein response in progeria arteries originates from non-endothelial cell types. Life Sci. Alliance 2025, 9, e202503485. [Google Scholar] [CrossRef] [PubMed]
- Hamczyk, M.R.; Villa-Bellosta, R.; Quesada, V.; Gonzalo, P.; Vidak, S.; Nevado, R.M.; Andrés-Manzano, M.J.; Misteli, T.; López-Otín, C.; Andrés, V. Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells. EMBO Mol. Med. 2019, 11, e9736. [Google Scholar] [CrossRef] [PubMed]
- Rothenburg, S.; Georgiadis, M.M.; Wek, R.C. Evolution of eIF2α Kinases: Adapting Translational Control to Diverse Stresses. In Evolution of the Protein Synthesis Machinery and Its Regulation; Springer International Publishing: Cham, Switzerland, 2016; pp. 235–260. [Google Scholar]
- Taniuchi, S.; Miyake, M.; Tsugawa, K.; Oyadomari, M.; Oyadomari, S. Integrated stress response of vertebrates is regulated by four eIF2α kinases. Sci. Rep. 2016, 6, 32886. [Google Scholar] [CrossRef]
- Hinnebusch, A.G. Translational regulation OFGCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 2005, 59, 407–450. [Google Scholar] [CrossRef]
- Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The integrated stress response. EMBO Rep. 2016, 17, 1374–1395. [Google Scholar] [CrossRef]
- Han, A.; Yu, C.; Lu, L.; Fujiwara, Y.; Browne, C.; Chin, G.; Fleming, M.; Leboulch, P.; Orkin, S.H.; Chen, J. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 2001, 20, 6909–6918. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y.; Hu, C. PKZ, a Fish-Unique eIF2α Kinase Involved in Innate Immune Response. Front. Immunol. 2020, 11, 585. [Google Scholar] [CrossRef]
- Lavoie, H.; Li, J.J.; Thevakumaran, N.; Therrien, M.; Sicheri, F. Dimerization-induced allostery in protein kinase regulation. Trends Biochem. Sci. 2014, 39, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-N.; Kavianpour, S.; Zhang, T.; Zhang, X.; Nguyen, D.; Thombre, R.; He, L.; Wang, J. MARK2 phosphorylates eIF2α in response to proteotoxic stress. PLoS Biol. 2021, 19, e3001096. [Google Scholar] [CrossRef]
- Wu, Z.; Mei, F.; Gan, Y.; Liu, A.; Hu, J.; Jin, Y.; Yin, Y. FAM69C functions as a kinase for eIF2α and promotes stress granule assembly. Embo Rep. 2023, 24, e55641. [Google Scholar] [CrossRef]
- Melber, A.; Haynes, C.M. UPRmt regulation and output: A stress response mediated by mitochondrial-nuclear communication. Cell Res. 2018, 28, 281–295. [Google Scholar] [CrossRef]
- Hewes, R.S.; Schaefer, A.M.; Taghert, P.H. The cryptocephal Gene (ATF4) Encodes Multiple Basic-Leucine Zipper Proteins Controlling Molting and Metamorphosis in Drosophila. Genetics 2000, 155, 1711–1723. [Google Scholar] [CrossRef]
- Brown, B.; Mitra, S.; Roach, F.D.; Vasudevan, D.; Ryoo, H.D. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila. eLife 2021, 10, e74047. [Google Scholar] [CrossRef] [PubMed]
- Quirós, P.M.; Prado, M.A.; Zamboni, N.; D’amico, D.; Williams, R.W.; Finley, D.; Gygi, S.P.; Auwerx, J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 2017, 216, 2027–2045. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.C.; Van Aken, O. Mitochondrial unfolded protein-related responses across kingdoms: Similar problems, different regulators. Mitochondrion 2020, 53, 166–177. [Google Scholar] [CrossRef]
- Steinberger, J.; Chu, J.; Maïga, R.I.; Sleiman, K.; Pelletier, J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell. Mol. Life Sci. 2017, 74, 1681–1692. [Google Scholar] [CrossRef]
- Jennings, M.D.; Pavitt, G.D. eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature 2010, 465, 378–381. [Google Scholar] [CrossRef]
- Sidrauski, C.; Tsai, J.C.; Kampmann, M.; Hearn, B.R.; Vedantham, P.; Jaishankar, P.; Sokabe, M.; Mendez, A.S.; Newton, B.W.; Tang, E.L.; et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 2015, 4, e07314. [Google Scholar] [CrossRef] [PubMed]
- Wek, R.C.; Anthony, T.G.; Staschke, K.A. Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response. Antioxid. Redox Signal. 2023, 39, 351–373. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Kumanova, M.; Hart, L.S.; Sloane, K.; Zhang, H.; De Panis, D.N.; Bobrovnikova-Marjon, E.; Diehl, J.A.; Ron, D.; Koumenis, C. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010, 29, 2082–2096. [Google Scholar] [CrossRef] [PubMed]
- Jousse, C.; Oyadomari, S.; Novoa, I.; Lu, P.; Zhang, Y.; Harding, H.P.; Ron, D. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 2003, 163, 767–775. [Google Scholar] [CrossRef]
- Skabkin, M.A.; Skabkina, O.V.; Dhote, V.; Komar, A.A.; Hellen, C.U.; Pestova, T.V. Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev. 2010, 24, 1787–1801. [Google Scholar] [CrossRef]
- Vasudevan, D.; Neuman, S.D.; Yang, A.; Lough, L.; Brown, B.; Bashirullah, A.; Cardozo, T.; Ryoo, H.D. Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat. Commun. 2020, 11, 4677. [Google Scholar] [CrossRef]
- Bohlen, J.; Harbrecht, L.; Blanco, S.; von Hohenberg, K.C.; Fenzl, K.; Kramer, G.; Bukau, B.; Teleman, A.A. DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nat. Commun. 2020, 11, 4676. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Amodeo, M.E.; Lee, A.S. eIF3d controls the persistent integrated stress response. Mol. Cell 2023, 83, 3303–3313.e6. [Google Scholar] [CrossRef]
- Davies, P.F.; Civelek, M.; Fang, Y.; Fleming, I. The atherosusceptible endothelium: Endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 2013, 99, 315–327. [Google Scholar] [CrossRef]
- Milusev, A.; Rieben, R.; Sorvillo, N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 897087. [Google Scholar] [CrossRef]
- Shih, Y.-T.; Wei, S.-Y.; Chen, J.-H.; Wang, W.-L.; Wu, H.-Y.; Wang, M.-C.; Lin, C.-Y.; Lee, P.-L.; Lin, C.-Y.; Chiang, H.-C.; et al. Vinculin phosphorylation impairs vascular endothelial junctions promoting atherosclerosis. Eur. Hear. J. 2023, 44, 304–318. [Google Scholar] [CrossRef]
- Hu, X.-Q.; Zhang, L. Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov. Today 2021, 26, 2754–2773. [Google Scholar] [CrossRef]
- Lenna, S.; Han, R.; Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 2014, 66, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lv, Y.; Zhao, N.; Guan, G.; Wang, J. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis. 2015, 6, e1822. [Google Scholar] [CrossRef] [PubMed]
- Julier, C.; Nicolino, M. Wolcott-Rallison syndrome. Orphanet J. Rare Dis. 2010, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Maruyama, K.; Kawamura, T.; Urade, Y.; Wada, Y. PERK participates in cardiac valve development via fatty acid oxidation and endocardial-mesenchymal transformation. Sci. Rep. 2020, 10, 20094. [Google Scholar] [CrossRef]
- Karali, E.; Bellou, S.; Stellas, D.; Klinakis, A.; Murphy, C.; Fotsis, T. VEGF Signals through ATF6 and PERK to Promote Endothelial Cell Survival and Angiogenesis in the Absence of ER Stress. Mol. Cell 2014, 54, 559–572. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; He, J.; Mu, R.; Di, Y.; Shen, N.; Liu, X.; Gao, X.; Wang, J.; Chen, T.; et al. Liraglutide Increases VEGF Expression via CNPY2-PERK Pathway Induced by Hypoxia/Reoxygenation Injury. Front. Pharmacol. 2019, 10, 789. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, W.; Duan, X.; Zhang, Q.; Cao, L.; Liu, C.; Li, G.; Wang, Z.; Zhang, J.; Li, J.; et al. Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway. Cardiovasc. Diabetol. 2024, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Sun, X.; Jin, F.; Xiao, D.; Li, H.; Sun, H.; Wang, Y.; Lu, Y.; Liu, J.; Huang, C.; et al. PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer. Cancer Lett. 2021, 515, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Soni, H.; Bode, J.; Nguyen, C.D.L.; Puccio, L.; Neßling, M.; Piro, R.M.; Bub, J.; Phillips, E.; Ahrends, R.; Eipper, B.A.; et al. PERK-mediated expression of peptidylglycine α-amidating monooxygenase supports angiogenesis in glioblastoma. Oncogenesis 2020, 9, 18. [Google Scholar] [CrossRef]
- Luxmi, R.; Mains, R.E.; King, S.M.; Eipper, B.A. Amino Acids | Peptidylglycine α-Amidating Monooxygenase (PAM). In Encyclopedia of Biological Chemistry III; Elsevier: Amsterdam, The Netherlands, 2021; pp. 88–104. [Google Scholar]
- Atkins, C.; Liu, Q.; Minthorn, E.; Zhang, S.-Y.; Figueroa, D.J.; Moss, K.; Stanley, T.B.; Sanders, B.; Goetz, A.; Gaul, N.; et al. Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity. Cancer Res. 2013, 73, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- Blais, J.D.; Addison, C.L.; Edge, R.; Falls, T.; Zhao, H.; Wary, K.; Koumenis, C.; Harding, H.P.; Ron, D.; Holcik, M.; et al. Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress. Mol. Cell. Biol. 2006, 26, 9517–9532. [Google Scholar] [CrossRef]
- Verginadis, I.I.; Avgousti, H.; Monslow, J.; Skoufos, G.; Chinga, F.; Kim, K.; Leli, N.M.; Karagounis, I.V.; Bell, B.I.; Velalopoulou, A.; et al. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat. Cell Biol. 2022, 24, 940–953. [Google Scholar] [CrossRef]
- Bingyu, W.; Jun, Q.; Bingyang, L.; Xi, Y.; Jianqing, Z.; Jiangfang, L. Trimethylamine N-oxide promotes PERK-mediated endothelial-mesenchymal transition and apoptosis thereby aggravates atherosclerosis. Int. Immunopharmacol. 2024, 142, 113209. [Google Scholar] [CrossRef]
- Saaoud, F.; Liu, L.; Xu, K.; Cueto, R.; Shao, Y.; Lu, Y.; Sun, Y.; Snyder, N.W.; Wu, S.; Yang, L.; et al. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. J. Clin. Investig. Insight 2023, 8, e158183. [Google Scholar] [CrossRef]
- Tao, Y.K.; Yu, P.L.; Bai, Y.P.; Yan, S.T.; Zhao, S.P.; Zhang, G.Q. Role of PERK/eIF2α/CHOP Endoplasmic Reticulum Stress Pathway in Oxidized Low-density Lipoprotein Mediated Induction of Endothelial Apoptosis. Biomed. Environ. Sci. 2016, 29, 868–876. [Google Scholar]
- Hong, D.; Tang, W.; Li, F.; Liu, Y.; Fu, X.; Xu, Q. The short-chain fatty acid propionate prevents ox-LDL-induced coronary microvascular dysfunction by alleviating endoplasmic reticulum stress in HCMECs. PLoS ONE 2024, 19, e0304551. [Google Scholar] [CrossRef]
- Huang, H.; Tang, N.; Li, Y.; Huo, Q.; Chen, Q.; Meng, Q. The role of CNPY2 in endothelial injury and inflammation during the progress of atherosclerosis. J. Mol. Histol. 2023, 54, 195–205. [Google Scholar] [CrossRef]
- Guo, C.-L.; Liu, H.-M.; Li, B.; Lu, Z.-Y. Angiotensin-(1–9) prevents angiotensin II-induced endothelial apoptosis through CNPY2/PERK pathway. Apoptosis 2022, 28, 379–396. [Google Scholar] [CrossRef]
- Hong, D.; Bai, Y.-P.; Gao, H.-C.; Wang, X.; Li, L.-F.; Zhang, G.-G.; Hu, C.-P. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 2014, 235, 310–317. [Google Scholar] [CrossRef]
- Rousset, F.; Zhang, L.; Lardy, B.; Morel, F.; Nguyen, M.V.C. Transmembrane Nox4 topology revealed by topological determination by Ubiquitin Fusion Assay, a novel method to uncover membrane protein topology. Biochem. Biophys. Res. Commun. 2020, 521, 383–388. [Google Scholar] [CrossRef]
- Hu, H.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Liu, X.; Sun, H. Catalpol Inhibits Homocysteine-induced Oxidation and Inflammation via Inhibiting Nox4/NF-κB and GRP78/PERK Pathways in Human Aorta Endothelial Cells. Inflammation 2019, 42, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, S.; Wu, H.; Hu, P.; Chen, L.; Zeng, C.; Tong, X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free. Radic. Biol. Med. 2021, 164, 44–57. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Zheng, L.; Chen, M.; Zhang, Y.; Zhu, R.; Chen, J.; Gu, J.; Yin, Q.; Jiang, H.; et al. Non-canonical STING–PERK pathway dependent epigenetic regulation of vascular endothelial dysfunction via integrating IRF3 and NF-κB in inflammatory response. Acta Pharm. Sin. B 2023, 13, 4765–4784. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xie, C.; Zhong, J.; Guo, Z.; Guo, K.; Tu, Q. Melatonin Attenuates ox-LDL-Induced Endothelial Dysfunction by Reducing ER Stress and Inhibiting JNK/Mff Signaling. Oxid. Med. Cell. Longev. 2021, 2021, 5589612. [Google Scholar] [CrossRef] [PubMed]
- Galán, M.; Kassan, M.; Kadowitz, P.J.; Trebak, M.; Belmadani, S.; Matrougui, K. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 1063–1075. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Urabe, G.; Huang, Y.; Chen, G.; Wheeler, D.; Dornbos, D.J.; Huttinger, A.; Nimjee, S.M.; Gong, S.; et al. PERK Inhibition Mitigates Restenosis and Thrombosis. JACC Basic Transl. Sci. 2020, 5, 245–263. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Urabe, G.; Shirasu, T.; Guo, L.-W.; Kent, K.C. PERK Inhibition Promotes Post-angioplasty Re-endothelialization via Modulating SMC Phenotype Changes. J. Surg. Res. 2021, 257, 294–305. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Z.; Zhou, J.-P.; Luo, Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Mol. Cell. Biochem. 2017, 431, 67–74. [Google Scholar] [CrossRef]
- Misra, J.; Carlson, K.R.; Spandau, D.F.; Wek, R.C. Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions. Nucleic Acids Res. 2024, 52, 1830–1846. [Google Scholar] [CrossRef] [PubMed]
- Castilho, B.A.; Shanmugam, R.; Silva, R.C.; Ramesh, R.; Himme, B.M.; Sattlegger, E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 1948–1968. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Li, T.; Li, W.; Yang, H.; Zeng, Q.; Pan, Z.; Wang, K.; Chen, Q.; Xiong, C.; Zhou, Z. Patient-specific and gene-corrected induced pluripotent stem cell-derived endothelial cells elucidate single-cell phenotype of pulmonary veno-occlusive disease. Stem Cell Rep. 2022, 17, 2674–2689. [Google Scholar] [CrossRef]
- Nossent, E.J.; Antigny, F.; Montani, D.; Bogaard, H.J.; Ghigna, M.R.; Lambert, M.; de Montpréville, V.T.; Girerd, B.; Jaïs, X.; Savale, L.; et al. Pulmonary vascular remodeling patterns and expression of general control nonderepressible 2 (GCN2) in pulmonary veno-occlusive disease. J. Hear. Lung Transplant. 2018, 37, 647–655. [Google Scholar] [CrossRef]
- Manaud, G.; Nossent, E.J.; Lambert, M.; Ghigna, M.-R.; Boët, A.; Vinhas, M.-C.; Ranchoux, B.; Dumas, S.J.; Courboulin, A.; Girerd, B.; et al. Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. Am. J. Respir. Cell Mol. Biol. 2020, 63, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, J.; Wei, D.; Chen, J.; Yang, J. GCN2 Regulates ATF3-p38 MAPK Signaling Transduction in Pulmonary Veno-Occlusive Disease. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 677–689. [Google Scholar] [CrossRef]
- DuBrock, H.M.; Kradin, R.L.; Rodriguez-Lopez, J.M.; Channick, R.N. Pulmonary Capillary Hemangiomatosis: The Role of Invasive Cardiopulmonary Exercise Testing. Pulm. Circ. 2015, 5, 580–586. [Google Scholar] [CrossRef]
- Best, D.H.; Sumner, K.L.; Austin, E.D.; Chung, W.K.; Brown, L.M.; Borczuk, A.C.; Rosenzweig, E.B.; Bayrak-Toydemir, P.; Mao, R.; Cahill, B.C.; et al. EIF2AK4 Mutations in Pulmonary Capillary Hemangiomatosis. Chest 2014, 145, 231–236. [Google Scholar] [CrossRef]
- Longchamp, A.; Mirabella, T.; Arduini, A.; MacArthur, M.R.; Das, A.; Treviño-Villarreal, J.H.; Hine, C.; Ben-Sahra, I.; Knudsen, N.H.; Brace, L.E.; et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell 2018, 173, 117–129.e14. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Tsogka, K.; Pissas, G.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I. Activation of general control nonderepressible 2 kinase protects human glomerular endothelial cells from harmful high-glucose-induced molecular pathways. Int. Urol. Nephrol. 2016, 48, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ning, Y.; Alam, G.N.; Jankowski, B.M.; Dong, Z.; E Nör, J.; Polverini, P.J. Amino Acid Deprivation Promotes Tumor Angiogenesis through the GCN2/ATF4 Pathway. Neoplasia 2013, 15, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wek, S.A.; Wek, R.C. Glucose Limitation Induces GCN4 Translation by Activation of Gcn2 Protein Kinase. Mol. Cell. Biol. 2000, 20, 2706–2717. [Google Scholar] [CrossRef]
- Rolfes, R.J.; Hinnebusch, A.G. Translation of the Yeast Transcriptional Activator GCN4 Is Stimulated by Purine Limitation: Implications for Activation of the Protein Kinase GCN2. Mol. Cell. Biol. 1993, 13, 5099–5111. [Google Scholar] [CrossRef]
- Deng, J.; Harding, H.P.; Raught, B.; Gingras, A.-C.; Berlanga, J.J.; Scheuner, D.; Kaufman, R.J.; Ron, D.; Sonenberg, N. Activation of GCN2 in UV-Irradiated Cells Inhibits Translation. Curr. Biol. 2002, 12, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Zhan, K.; Narasimhan, J.; Wek, R.C. Differential Activation of eIF2 Kinases in Response to Cellular Stresses in Schizosaccharomyces pombe. Genetics 2004, 168, 1867–1875. [Google Scholar] [CrossRef]
- Liu, Y.; László, C.; Liu, Y.; Liu, W.; Chen, X.; Evans, S.C.; Wu, S. Regulation of G1 Arrest and Apoptosis in Hypoxia by PERK and GCN2-Mediated eIF2α Phosphorylation. Neoplasia 2010, 12, 61–68. [Google Scholar] [CrossRef]
- Jiménez-Díaz, A.; Remacha, M.; Ballesta, J.P.G.; Berlanga, J.J. Phosphorylation of Initiation Factor eIF2 in Response to Stress Conditions Is Mediated by Acidic Ribosomal P1/P2 Proteins in Saccharomyces cerevisiae. PLoS ONE 2013, 8, e84219. [Google Scholar] [CrossRef]
- Piecyk, M.; Ferraro-Peyret, C.; Laville, D.; Perros, F.; Chaveroux, C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J. 2024, 291, 4867–4889. [Google Scholar] [CrossRef]
- Missiaen, R.; Anderson, N.M.; Kim, L.C.; Nance, B.; Burrows, M.; Skuli, N.; Carens, M.; Riscal, R.; Steensels, A.; Li, F.; et al. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab. 2022, 34, 1151–1167.e7. [Google Scholar] [CrossRef] [PubMed]
- A Cordova, R.; Misra, J.; Amin, P.H.; Klunk, A.J.; Damayanti, N.P.; Carlson, K.R.; Elmendorf, A.J.; Kim, H.-G.; Mirek, E.T.; Elzey, B.D.; et al. GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis. eLife 2022, 11, 1–31. [Google Scholar] [CrossRef]
- Bröer, A.; Rahimi, F.; Bröer, S. Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells. J. Biol. Chem. 2016, 291, 13194–13205. [Google Scholar] [CrossRef]
- Fiore, A.; Zeitler, L.; Russier, M.; Groß, A.; Hiller, M.-K.; Parker, J.L.; Stier, L.; Köcher, T.; Newstead, S.; Murray, P.J. Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Mol. Cell 2022, 82, 920–932.e7. [Google Scholar] [CrossRef]
- Sannino, S.; E Yates, M.; E Schurdak, M.; Oesterreich, S.; Lee, A.V.; Wipf, P.; Brodsky, J.L. Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. eLife 2021, 10, e64977. [Google Scholar] [CrossRef]
- Parzych, K.; Saavedra-García, P.; Valbuena, G.N.; Al-Sadah, H.A.; Robinson, M.E.; Penfold, L.; Kuzeva, D.M.; Ruiz-Tellez, A.; Loaiza, S.; Holzmann, V.; et al. The coordinated action of VCP/p97 and GCN2 regulates cancer cell metabolism and proteostasis during nutrient limitation. Oncogene 2019, 38, 3216–3231. [Google Scholar] [CrossRef]
- Ge, M.-K.; Zhang, C.; Zhang, N.; He, P.; Cai, H.-Y.; Li, S.; Wu, S.; Chu, X.-L.; Zhang, Y.-X.; Ma, H.-M.; et al. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab. 2023, 35, 2216–2230.e8. [Google Scholar] [CrossRef]
- Ye, J.; Palm, W.; Peng, M.; King, B.; Lindsten, T.; Li, M.O.; Koumenis, C.; Thompson, C.B. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015, 29, 2331–2336. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Gesualdi, N.M.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar] [CrossRef]
- Matassa, D.S.; Amoroso, M.R.; Agliarulo, I.; Maddalena, F.; Sisinni, L.; Paladino, S.; Romano, S.; Romano, M.F.; Sagar, V.; Loreni, F.; et al. Translational control in the stress adaptive response of cancer cells: A novel role for the heat shock protein TRAP1. Cell Death Dis. 2013, 4, e851. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Y.; Qian, S. Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl. Oncol. 2024, 49, 102096. [Google Scholar] [CrossRef]
- Stonyte, V.; Mastrangelopoulou, M.; Timmer, R.; Lindbergsengen, L.; Vietri, M.; Campsteijn, C.; Grallert, B. The GCN2 / eIF2αK stress kinase regulates PP1 to ensure mitotic fidelity. Embo Rep. 2023, 24, e56100. [Google Scholar] [CrossRef]
- Jung, J.G.; Yi, S.-A.; Choi, S.-E.; Kang, Y.; Kim, T.H.; Jeon, J.Y.; Bae, M.A.; Ahn, J.H.; Jeong, H.; Hwang, E.S.; et al. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways. Mol. Cells 2015, 38, 1037–1043. [Google Scholar] [CrossRef]
- Santos-Ribeiro, D.; Lecocq, M.; de Beukelaer, M.; Verleden, S.; Bouzin, C.; Ambroise, J.; Dorfmuller, P.; Yakoub, Y.; Huaux, F.; Quarck, R.; et al. Disruption of GCN2 Pathway Aggravates Vascular and Parenchymal Remodeling during Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2023, 68, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.M.; Dai, J.; Dai, Z.; Peng, Y.; Zhao, Y.-Y. GCN2 kinase activation mediates pulmonary vascular remodeling and pulmonary arterial hypertension. J. Clin. Investig. Insight 2024, 9, e177926. [Google Scholar] [CrossRef] [PubMed]
- Giaid, A.; Yanagisawa, M.; Langleben, D.; Michel, R.P.; Levy, R.; Shennib, H.; Kimura, S.; Masaki, T.; Duguid, W.P.; Stewart, D.J. Expression of Endothelin-1 in the Lungs of Patients with Pulmonary Hypertension. N. Engl. J. Med. 1993, 328, 1732–1739. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Pissas, G.; Crespo, M.; Filippidis, G.; Antoniadis, N.; Liakopoulos, V.; Stefanidis, I. The effect of anti-HLA class I antibodies on the immunological properties of human glomerular endothelial cells and their modification by mTOR inhibition or GCN2 kinase activation. Mol. Med. Rep. 2021, 23, 355. [Google Scholar] [CrossRef] [PubMed]
- Dushpanova, A.; Agostini, S.; Ciofini, E.; Cabiati, M.; Casieri, V.; Matteucci, M.; Del Ry, S.; Clerico, A.; Berti, S.; Lionetti, V. Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells. Sci. Rep. 2016, 6, 30048. [Google Scholar] [CrossRef]
- Rai, S.; Szaruga, M.; Pitera, A.P.; Bertolotti, A. Integrated stress response activator halofuginone protects mice from diabetes-like phenotypes. J. Cell Biol. 2024, 223, e202405175. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, X.; Shi, X.; Zheng, C. Halofuginone inhibits LPS-induced attachment of monocytes to HUVECs. Int. Immunopharmacol. 2020, 87, 106753. [Google Scholar] [CrossRef]
- He, B.; Fu, G.-H.; Du, X.-F.; Chu, H.-M. Halofuginone protects HUVECs from H2O2-induced injury by modulating VEGF/JNK signaling pathway. J. Chin. Med. Assoc. 2019, 82, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.P.; Zhao, T.; Xiong, M.; Song, S.; Lai, N.; Zheng, Q.; Chen, J.; Carr, S.G.; Babicheva, A.; Izadi, A.; et al. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br. J. Pharmacol. 2021, 178, 3373–3394. [Google Scholar] [CrossRef]
- Wang, J.; Guan, L.; Yu, J.; Ma, B.; Shen, H.; Xing, G.; Xu, Y.; Li, Q.; Liu, J.; Xu, Q.; et al. Halofuginone prevents inflammation and proliferation of high-altitude pulmonary hypertension by inhibiting the TGF-β1/Smad signaling pathway. Sci. Rep. 2025, 15, 3619. [Google Scholar] [CrossRef]
- Guo, L.-W.; Wang, B.; Goel, S.A.; Little, C.; Takayama, T.; Shi, X.D.; Roenneburg, D.; DiRenzo, D.; Kent, K.C. Halofuginone Stimulates Adaptive Remodeling and Preserves Re-Endothelialization in Balloon-Injured Rat Carotid Arteries. Circ. Cardiovasc. Interv. 2014, 7, 594–601. [Google Scholar] [CrossRef]
- Mi, L.; Zhang, Y.; Su, A.; Tang, M.; Xing, Z.; He, T.; Wu, W.; Li, Z. Halofuginone for cancer treatment: A systematic review of efficacy and molecular mechanisms. J. Funct. Foods 2022, 98, 105237. [Google Scholar] [CrossRef]
- Abramovitch, R.; Itzik, A.; Harel, H.; Nagler, A.; Vlodavsky, I.; Siegal, T. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study. Neoplasia 2004, 6, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Gal-Ben-Ari, S.; Barrera, I.; Ehrlich, M.; Rosenblum, K. PKR: A Kinase to Remember. Front. Mol. Neurosci. 2019, 11, 480. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Wang, H.; Zhao, H.; Yin, R.; Zhang, M.; Pan, X.; Zhu, X. Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype. Neural Regen. Res. 2024, 19, 2488–2498. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, Z.; Wang, C.; Li, L.; Leng, Y.; Chen, R.; Yuan, H.; Zhou, S.; Zhang, Z.; Chen, A.F.; et al. Novel role of PKR in palmitate-induced Sirt1 inactivation and endothelial cell senescence. Am. J. Physiol. Circ. Physiol. 2018, 315, H571–H580. [Google Scholar] [CrossRef]
- Fasciano, S.; Hutchins, B.; Handy, I.; Patel, R.C. Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J. 2005, 272, 1425–1439. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhong, H.; Zhou, Q.; Hu, X.; Chen, D.; Wang, J.; Wu, J.; Cai, J.; Zhou, S.; Chen, A.F. Inhibition of PKR impairs angiogenesis through a VEGF pathway. Am. J. Physiol. Metab. 2015, 308, E518–E524. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, X.; Wang, S.; Miao, J.; Wu, L.; Yang, X.; Wang, Y.; Kang, L.; Li, W.; Cui, C.; et al. PKR promotes choroidal neovascularization via upregulating the PI3K/Akt signaling pathway in VEGF expression. Mol. Vis. 2016, 22, 1361–1374. [Google Scholar]
- Kalinin, A.; Zubkova, E.; Menshikov, M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int. J. Mol. Sci. 2023, 24, 17423. [Google Scholar] [CrossRef]
- Peng, Z.; Tan, X.; Xie, L.; Li, Z.; Zhou, S.; Li, Y. PKR deficiency delays vascular aging via inhibiting GSDMD-mediated endothelial cell hyperactivation. iScience 2023, 26, 105909. [Google Scholar] [CrossRef]
- Fasciano, S.; Patel, R.C.; Handy, I.; Patel, C.V. Regulation of Vascular Smooth Muscle Proliferation by Heparin. J. Biol. Chem. 2005, 280, 15682–15689. [Google Scholar] [CrossRef]
- Handy, I.; Patel, R.C. STAT1 requirement for PKR-induced cell cycle arrest in vascular smooth muscle cells in response to heparin. Gene 2013, 524, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.C.; Handy, I.; Patel, C.V. Contribution of Double-Stranded RNA-Activated Protein Kinase Toward Antiproliferative Actions of Heparin on Vascular Smooth Muscle Cells. Arter. Thromb. Vasc. Biol. 2002, 22, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Kalra, J.; Dasari, D.; Bhat, A.; Mangali, S.; Goyal, S.G.; Jadhav, K.B.; Dhar, A. PKR inhibitor imoxin prevents hypertension, endothelial dysfunction and cardiac and vascular remodelling in L-NAME-treated rats. Life Sci. 2020, 262, 118436. [Google Scholar] [CrossRef] [PubMed]
- Kalra, J.; Mangali, S.; Bhat, A.; Jadhav, K.; Dhar, A. Selective inhibition of PKR improves vascular inflammation and remodelling in high fructose treated primary vascular smooth muscle cells. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165606. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Fassett, J.; Kwak, D.; Liu, X.; Hu, X.; Falls, T.J.; Bell, J.C.; Li, H.; Bitterman, P.; et al. Double-Stranded RNA–Dependent Protein Kinase Deficiency Protects the Heart from Systolic Overload-Induced Congestive Heart Failure. Circulation 2014, 129, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, A.; Kumar, R.; Wadhwa, M.; Ghatpande, P.; Zhang, J.; Zhao, Z.; Lizama, C.O.; Kharbikar, B.N.; Gräf, S.; Treacy, C.M.; et al. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. Nat. Cardiovasc. Res. 2024, 3, 799–818. [Google Scholar] [CrossRef]
- Prabhakar, A.; Wadhwa, M.; Kumar, R.; Ghatpande, P.; Gandjeva, A.; Tuder, R.M.; Graham, B.B.; Lagna, G.; Hata, A. Mechanisms underlying age-associated exacerbation of pulmonary veno-occlusive disease. J. Clin. Investig. Insight 2024, 9, e181877. [Google Scholar] [CrossRef]
- Lu, B.; Nakamura, T.; Inouye, K.; Li, J.; Tang, Y.; Lundbäck, P.; Valdes-Ferrer, S.I.; Olofsson, P.S.; Kalb, T.; Roth, J.; et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 2012, 488, 670–674. [Google Scholar] [CrossRef]
- Karnam, K.; Sedmaki, K.; Sharma, P.; Venuganti, V.V.K.; Kulkarni, O.P. Selective inhibition of PKR by C16 accelerates diabetic wound healing by inhibiting NALP3 expression in mice. Inflamm. Res. 2023, 72, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Liu, L.; Wei, D.; Lv, Y.; Wang, G.; Xiong, W.; Wang, X.; Altaf, A.; Wang, L.; He, D.; et al. P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation. Int. J. Mol. Med. 2015, 35, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Li, L.; Yin, M.; Wang, J.; Li, X.H. PKR deficiency alleviates pulmonary hypertension via inducing inflammasome adaptor ASC inactivation. Pulm. Circ. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Jiang, Y.; Steinle, J.J. Epac1 inhibits PKR to reduce NLRP3 inflammasome proteins in retinal endothelial cells. J. Inflamm. Res. 2019, 12, 153–159. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, H.; Le, Y.; Guo, J.; Liu, Z.; Dou, X.; Lu, D. Salvianolic acid A regulates pyroptosis of endothelial cells via directly targeting PKM2 and ameliorates diabetic atherosclerosis. Front. Pharmacol. 2022, 13, 1009229. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Sheu, W.H.; Chiang, A. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol. Nutr. Food Res. 2015, 59, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Koromilas, A.E.; Cantin, C.; Craig, A.W.B.; Jagus, R.; Hiscott, J.; Sonenberg, N. The Interferon-inducible Protein Kinase PKR Modulates the Transcriptional Activation of Immunoglobulin κ Gene. J. Biol. Chem. 1995, 270, 25426–25434. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, M.C.; Weil, R.; Dam, E.; Hovanessian, A.G.; Meurs, E.F. PKR Stimulates NF-κB Irrespective of Its Kinase Function by Interacting with the IκB Kinase Complex. Mol. Cell. Biol. 2000, 20, 4532–4542. [Google Scholar] [CrossRef]
- Demarchi, F.; Gutierrez, M.I.; Giacca, M. Human Immunodeficiency Virus Type 1 Tat Protein Activates Transcription Factor NF-κB through the Cellular Interferon-Inducible, Double-Stranded RNA-Dependent Protein Kinase, PKR. J. Virol. 1999, 73, 7080–7086. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, Y.; Zhao, X.; Wang, J.; Zhang, Y.; Wang, Q.; Yu, H.; Zhang, Y.; You, Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol. Immunol. 2021, 132, 132–141. [Google Scholar] [CrossRef]
- Jammi, N.V.; Whitby, L.R.; Beal, P.A. Small molecule inhibitors of the RNA-dependent protein kinase. Biochem. Biophys. Res. Commun. 2003, 308, 50–57. [Google Scholar] [CrossRef]
- Hu, W.; Hofstetter, W.; Wei, X.; Guo, W.; Zhou, Y.; Pataer, A.; Li, H.; Fang, B.; Swisher, S.G. Double-Stranded RNA-Dependent Protein Kinase-Dependent Apoptosis Induction by a Novel Small Compound. J. Pharmacol. Exp. Ther. 2009, 328, 866–872. [Google Scholar] [CrossRef]
- Hu, Y.; Conway, T.W. 2-Aminopurine Inhibits the Double-Stranded RNA-Dependent Protein Kinase BothIn VitroandIn Vivo. J. Interf. Res. 1993, 13, 323–328. [Google Scholar] [CrossRef]
- Papadakis, A.I.; Paraskeva, E.; Peidis, P.; Muaddi, H.; Li, S.; Raptis, L.; Pantopoulos, K.; Simos, G.; Koromilas, A.E. eIF2α Kinase PKR Modulates the Hypoxic Response by Stat3-Dependent Transcriptional Suppression of HIF-1α. Cancer Res. 2010, 70, 7820–7829. [Google Scholar] [CrossRef]
- Watanabe, T.; Ninomiya, H.; Saitou, T.; Takanezawa, S.; Yamamoto, S.; Imai, Y.; Yoshida, O.; Kawakami, R.; Hirooka, M.; Abe, M.; et al. Therapeutic effects of the PKR inhibitor C16 suppressing tumor proliferation and angiogenesis in hepatocellular carcinoma in vitro and in vivo. Sci. Rep. 2020, 10, 5133. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J. HRI protein kinase in cytoplasmic heme sensing and mitochondrial stress response: Relevance to hematological and mitochondrial diseases. J. Biol. Chem. 2025, 301, 108494. [Google Scholar] [CrossRef]
- Girardin, S.E.; Cuziol, C.; Philpott, D.J.; Arnoult, D. The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J. 2021, 288, 3094–3107. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Houston, R.; Eckl, E.-M.; Fessler, E.; Narendra, D.P.; Jae, L.T.; Sekine, S. A mitochondrial iron-responsive pathway regulated by DELE1. Mol. Cell 2023, 83, 2059–2076.e6. [Google Scholar] [CrossRef]
- Chakrabarty, Y.; Yang, Z.; Chen, H.; Chan, D.C. The HRI branch of the integrated stress response selectively triggers mitophagy. Mol. Cell 2024, 84, 1090–1100.e6. [Google Scholar] [CrossRef]
- Fu, Y.; Sacco, O.; DeBitetto, E.; Kanshin, E.; Ueberheide, B.; Sfeir, A. Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis. Mol. Cell 2023, 83, 3740–3753.e9. [Google Scholar] [CrossRef]
- Koncha, R.R.; Ramachandran, G.; Sepuri, N.B.V.; Ramaiah, K.V.A. CCCP-induced mitochondrial dysfunction–characterization and analysis of integrated stress response to cellular signaling and homeostasis. FEBS J. 2021, 288, 5737–5754. [Google Scholar] [CrossRef] [PubMed]
- Perea, V.; Baron, K.R.; Dolina, V.; Aviles, G.; Kim, G.; Rosarda, J.D.; Guo, X.; Kampmann, M.; Wiseman, R.L. Pharmacologic activation of a compensatory integrated stress response kinase promotes mitochondrial remodeling in PERK-deficient cells. Cell Chem. Biol. 2023, 30, 1571–1584.e5. [Google Scholar] [CrossRef]
- Guo, X.; Aviles, G.; Liu, Y.; Tian, R.; Unger, B.A.; Lin, Y.-H.T.; Wiita, A.P.; Xu, K.; Correia, M.A.; Kampmann, M. Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway. Nature 2020, 579, 427–432. [Google Scholar] [CrossRef]
- Baron, K.R.; Oviedo, S.; Krasny, S.; Zaman, M.; Aldakhlallah, R.; Bora, P.; Wiseman, R.L. Pharmacologic Activation of Integrated Stress Response Kinases Inhibits Pathologic Mitochondrial Fragmentation. eLife 2025, 13, RP100541. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.; Zaman, M.; Oviedo, S.; Kutseikin, S.; Madrazo, N.; Mathur, P.; Pannikkat, M.; Krasny, S.; Aldakhlallah, R.; Chu, A.; et al. Drug repurposing screen identifies an HRI activating compound that promotes adaptive mitochondrial remodeling in MFN2-deficient cells. Proc. Natl. Acad. Sci. USA 2025, 122, e2517552122. [Google Scholar] [CrossRef]
- Rosen, M.D.; Woods, C.R.; Goldberg, S.D.; Hack, M.D.; Bounds, A.D.; Yang, Y.; Wagaman, P.C.; Phuong, V.K.; Ameriks, A.P.; Barrett, T.D.; et al. Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2α (HRI) kinase. Bioorganic Med. Chem. Lett. 2009, 19, 6548–6551. [Google Scholar] [CrossRef]
- Qin, D.; Hu, J.; Yang, Y.; Li, X.; He, J.; Chen, J.; Guo, X.; Wei, C.; Wang, F.; Yi, T.; et al. Endothelial GTPBP3 directs developmental angiogenesis and neovascularization after limb ischemia via the mtROS/HRl/ATF4/mTORC1 axis. Angiogenesis 2025, 28, 36. [Google Scholar] [CrossRef]
- Upcin, B.; Szi-Marton, D.; Henke, E.; Ergün, S.; Aktas, B.H. Abstract 688: Targeting tumor associated host cells by modifiers of integrated endoplasmic reticulum stress response. Cancer Res. 2020, 80, 688. [Google Scholar] [CrossRef]
- Halliday, M.J.; Radford, H.; Sekine, Y.; Moreno, J.J.; Verity, N.; Le Quesne, J.P.C.; A Ortori, C.A.; Barrett, D.A.; Fromont, C.; Fischer, P.M.; et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 2015, 6, e1672. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.T.; Halliday, M.; Smith, H.L.; Verity, N.C.; Molloy, C.; Radford, H.; Butcher, A.J.; Mallucci, G.R. Targeting the kinase insert loop of PERK selectively modulates PERK signaling without systemic toxicity in mice. Sci. Signal. 2020, 13, eabb4749. [Google Scholar] [CrossRef]
- Yu, Q.; Zhao, B.; Gui, J.; Katlinski, K.V.; Brice, A.; Gao, Y.; Li, C.; Kushner, J.A.; Koumenis, C.; Diehl, J.A.; et al. Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc. Natl. Acad. Sci. USA 2015, 112, 15420–15425. [Google Scholar] [CrossRef]
- Mercado, G.; Castillo, V.; Soto, P.; López, N.; Axten, J.M.; Sardi, S.P.; Hoozemans, J.J.; Hetz, C. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol. Dis. 2018, 112, 136–148. [Google Scholar] [CrossRef]
- Vieira, F.G.; Tassinari, V.R.; Kidd, J.D.; Moreno, A.; Thompson, K.; Perrin, S.; Gill, A.; Hatzipetros, T. PERK modulation, with GSK2606414, Sephin1 or salubrinal, failed to produce therapeutic benefits in the SOD1G93A mouse model of ALS. PLoS ONE 2024, 19, e0292190. [Google Scholar] [CrossRef]
- Moreno, J.A.; Halliday, M.; Molloy, C.; Radford, H.; Verity, N.; Axten, J.M.; Ortori, C.A.; Willis, A.E.; Fischer, P.M.; Barrett, D.A.; et al. Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice. Sci. Transl. Med. 2013, 5, 206ra138. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rivera, D.; Delvaeye, T.; Roelandt, R.; Nerinckx, W.; Augustyns, K.; Vandenabeele, P.; Bertrand, M.J.M. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: Critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ. 2017, 24, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.; Pedersen, M.; Roulstone, V.; Bergerhoff, K.F.; Smith, H.G.; Whittock, H.; Kyula, J.N.; Dillon, M.T.; Pandha, H.S.; Vile, R.; et al. The PERK Inhibitor GSK2606414 Enhances Reovirus Infection in Head and Neck Squamous Cell Carcinoma via an ATF4-Dependent Mechanism. Mol. Ther. Oncolytics 2020, 16, 238–249. [Google Scholar] [CrossRef]
- Axten, J.M.; Medina, J.R.; Feng, Y.; Shu, A.; Romeril, S.P.; Grant, S.W.; Li, W.H.H.; Heerding, D.A.; Minthorn, E.; Mencken, T.; et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl) phenyl] acetyl}-2,3-dihydro-1 H-indol-5-yl)-7 H-pyrrolo [2,3-d] pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 2012, 55, 7193–7207. [Google Scholar] [CrossRef]
- Pandey, J.; Larson-Casey, J.; Pinthong, N.; Carter, A. PERK Inhibitor: GSK2656157 Reverses Established Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2025, 211, A3315. [Google Scholar] [CrossRef]
- Axten, J.M.; Romeril, S.P.; Shu, A.; Ralph, J.; Medina, J.R.; Feng, Y.; Li, W.H.H.; Grant, S.W.; Heerding, D.A.; Minthorn, E.; et al. Discovery of GSK2656157: An Optimized PERK Inhibitor Selected for Preclinical Development. ACS Med. Chem. Lett. 2013, 4, 964–968. [Google Scholar] [CrossRef]
- Szaruga, M.; Janssen, D.A.; de Miguel, C.; Hodgson, G.; Fatalska, A.; Pitera, A.P.; Andreeva, A.; Bertolotti, A. Activation of the integrated stress response by inhibitors of its kinases. Nat. Commun. 2023, 14, 5535. [Google Scholar] [CrossRef] [PubMed]
- Bruch, J.; Xu, H.; Rösler, T.W.; De Andrade, A.; Kuhn, P.; Lichtenthaler, S.F.; Arzberger, T.; Winklhofer, K.F.; Müller, U.; Höglinger, G.U. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol. Med. 2017, 9, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Halofuginone Safety Data Sheet. Available online: https://www.sigmaaldrich.com/US/en/sds/mm/5.05763 (accessed on 15 December 2025).
- Roffe, S.; Hagai, Y.; Pines, M.; Halevy, O. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion. Exp. Cell Res. 2010, 316, 1061–1069. [Google Scholar] [CrossRef]
- Nelson, E.F.; Huang, C.W.; Ewel, J.M.; Chang, A.A.; Yuan, C. Halofuginone down-regulates Smad3 expression and inhibits the TGFbeta-induced expression of fibrotic markers in human corneal fibroblasts. Mol. Vis. 2012, 18, 479–487. [Google Scholar] [PubMed]
- Pines, M. Targeting TGFβ signaling to inhibit fibroblast activation as a therapy for fibrosis and cancer: Effect of halofuginone. Expert Opin. Drug Discov. 2007, 3, 11–20. [Google Scholar] [CrossRef]
- Juárez, P.; Fournier, P.G.; Mohammad, K.S.; McKenna, R.C.; Davis, H.W.; Peng, X.H.; Niewolna, M.; Mauviel, A.; Chirgwin, J.M.; Guise, T.A. Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis. Oncotarget 2017, 8, 86447–86462. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; D’mEllo, S.R. A chemical compound commonly used to inhibit PKR, {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g] benzothiazol-7-one}, protects neurons by inhibiting cyclin-dependent kinase. Eur. J. Neurosci. 2008, 28, 2003–2016. [Google Scholar] [CrossRef]
- Aminopurine Safety Data Sheet. Available online: https://www.sigmaaldrich.com/US/en/sds/sigma/a3509 (accessed on 15 December 2025).
- Huang, S.; Qu, L.-K.; Cuddihy, A.R.; Ragheb, R.; Taya, Y.; Koromilas, A.E. Protein kinase inhibitor 2-aminopurine overrides multiple genotoxic stress-induced cellular pathways to promote cell survival. Oncogene 2003, 22, 3721–3733. [Google Scholar] [CrossRef] [PubMed]
- Sowers, L.C.; Boulard, Y.; Fazakerley, G.V. Multiple Structures for the 2-Aminopurine−Cytosine Mispair. Biochemistry 2000, 39, 7613–7620. [Google Scholar] [CrossRef]
- Rabouw, H.H.; Langereis, M.A.; Anand, A.A.; Visser, L.J.; de Groot, R.J.; Walter, P.; van Kuppeveld, F.J.M. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc. Natl. Acad. Sci. USA 2019, 116, 2097–2102. [Google Scholar] [CrossRef]
- Alsterda, A.; Asha, K.; Powrozek, O.; Repak, M.; Goswami, S.; Dunn, A.M.; Memmel, H.C.; Sharma-Walia, N. Salubrinal Exposes Anticancer Properties in Inflammatory Breast Cancer Cells by Manipulating the Endoplasmic Reticulum Stress Pathway. Front. Oncol. 2021, 11, 654940. [Google Scholar] [CrossRef]
- Matsuoka, M.; Komoike, Y. Experimental Evidence Shows Salubrinal, an eIF2α Dephosphorylation Inhibitor, Reduces Xenotoxicant-Induced Cellular Damage. Int. J. Mol. Sci. 2015, 16, 16275–16287. [Google Scholar] [CrossRef]
- Boyce, M.; Bryant, K.F.; Jousse, C.; Long, K.; Harding, H.P.; Scheuner, D.; Kaufman, R.J.; Ma, D.; Coen, D.M.; Ron, D.; et al. A Selective Inhibitor of eIF2α Dephosphorylation Protects Cells from ER Stress. Science 2005, 307, 935–939. [Google Scholar] [CrossRef]
- Kessel, D. Protection of Bcl-2 by salubrinal. Biochem. Biophys. Res. Commun. 2006, 346, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Koohestani, F.; Qiang, W.; MacNeill, A.L.; Druschitz, S.A.; Setrna, V.A.; Aldur, M.; Kurita, T.; Nowak, R.A. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model. Hum. Reprod. 2016, 31, 1540–1551. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kalinin, A.; Zubkova, E.; Beloglazova, I.; Parfyonova, Y.; Menshikov, M. Integrated Stress Response (ISR) Modulators in Vascular Diseases. Cells 2026, 15, 2. https://doi.org/10.3390/cells15010002
Kalinin A, Zubkova E, Beloglazova I, Parfyonova Y, Menshikov M. Integrated Stress Response (ISR) Modulators in Vascular Diseases. Cells. 2026; 15(1):2. https://doi.org/10.3390/cells15010002
Chicago/Turabian StyleKalinin, Alexander, Ekaterina Zubkova, Irina Beloglazova, Yelena Parfyonova, and Mikhail Menshikov. 2026. "Integrated Stress Response (ISR) Modulators in Vascular Diseases" Cells 15, no. 1: 2. https://doi.org/10.3390/cells15010002
APA StyleKalinin, A., Zubkova, E., Beloglazova, I., Parfyonova, Y., & Menshikov, M. (2026). Integrated Stress Response (ISR) Modulators in Vascular Diseases. Cells, 15(1), 2. https://doi.org/10.3390/cells15010002

