Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. RNA Isolation and Quantitative Real-Time PCR Analysis
2.3. Evaluation of IL-6, TSLP, and TGF-β1 Concentration in Plasma
2.4. Statistical Analysis of Data
3. Results
3.1. Characteristics of the Study Population
3.2. Gene Expression of Extracellular Matrix Proteins
3.3. Gene Expression of MMP and TIMP
3.4. Gene Expression of TGF-β1
3.5. Concentration of IL-6, TSLP and TGF-β1 in Plasma
3.6. Integration of Clinical and Molecular Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRS | chronic rhinosinusitis |
CRSsNP | chronic rhinosinusitis without nasal polyposis |
CRSwNP | chronic rhinosinusitis with nasal polyposis |
DC | dendritic cells |
ECM | extracellular matrix |
EGF | epidermal growth factor |
ILD | innate lymphoid |
MMP | matrix metalloproteinases |
PDGF | platelet-derived growth factor |
TGF-β | transforming growth factor |
Th | T-helper cell |
TIMP | tissue inhibitor of metalloproteinases |
TSLP | thymic stromal lymphopoietin |
TSLPR | thymic stromal lymphopoietin receptor |
SIRI | systemic inflammation response index |
SNOT | sinonasal outcome test |
References
- Orlandi, R.R.; Kingdom, T.T.; Smith, T.L.; Bleier, B.; DeConde, A.; Luong, A.U.; Poetker, D.M.; Soler, Z.; Welch, K.C.; Wise, S.K. International consensus statement on allergy and rhinology: Rhinosinusitis 2021. Int. Forum Allergy Rhinol. 2021, 11, 213–739. [Google Scholar] [PubMed]
- Park, J.J.H.; Seidel, D.U.; Bachert, C.; Dazert, S.; Kostev, K. Medication use in patients with chronic rhinosinusitis in Germany—A large retrospective patient-based study. Rhinology 2019, 57, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Philpott, C.M.; Erskine, S.; Hopkins, C.; Kumar, N.; Anari, S.; Kara, N.; Sunkaraneni, S.; Ray, J.; Clark, A.; Wilson, A.; et al. Prevalence of asthma, aspirin sensitivity and allergy in chronic rhinosinusitis: Data from the UK National Chronic Rhinosinusitis Epidemiology Study. Respir. Res. 2018, 19, 129. [Google Scholar] [CrossRef] [PubMed]
- Barac, A.; Ong, D.S.Y.; Jovancevic, L.; Peric, A.; Surda, P.; Tomic Spiric, V.; Rubino, S. Fungi-Induced Upper and Lower Respiratory Tract Allergic Diseases: One Entity. Front. Microbiol. 2018, 9, 583. [Google Scholar] [CrossRef]
- Klimek, L.; Koennecke, M.; Hagemann, J.; Wollenberg, B.; Becker, S. Immunology of chronic rhinosinusitis with nasal polyps as a basis for treatment with biologicals. Hno 2019, 67, 15–26. [Google Scholar] [CrossRef]
- Pipolo, C.; Saibene, A.M.; Felisati, G. Prevalence of pain due to rhinosinusitis: A review. Neurol. Sci. 2018, 39, 21–24. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Yang, J.; Wang, M.; Cao, Z.; Wang, Y.; Gu, Z. The role and mechanism of extracellular traps in chronic rhinosinusitis. Biomed. Pharmacother. 2024, 181, 117655. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, D.W.; Gevaert, P. Chronic rhinosinusitis without nasal polyps. J. Allergy Clin. Immunol. Pract. 2016, 4, 575–582. [Google Scholar] [CrossRef]
- Takabayashi, T.; Schleimer, R.P. Formation of nasal polyps: The roles of innate type 2 inflammation and deposition of fibrin. J. Allergy Clin. Immunol. 2020, 145, 740–750. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, D.W. Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Van Zele, T.; Claeys, S.; Gevaert, P.; Van Maele, G.; Holtappels, G.; Van Cauwenberge, P.; Bachert, C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006, 61, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Asaka, D.; Yoshikawa, M.; Okushi, T.; Matsuwaki, Y.; Moriyama, H.; Otori, N. Identification of chronic rhinosinusitis phenotypes using cluster analysis. Am. J. Rhinol. Allergy 2012, 26, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Pinet, K.; McLaughlin, K.A. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev. Biol. 2019, 451, 134–145. [Google Scholar] [CrossRef]
- Zhang, W.; Hubin, G.; Endam, L.M.; Al-Mot, S.; Filali-Mouhim, A.; Desrosiers, M. Expression of the extracellular matrix gene periostin is increased in chronic rhinosinusitis and decreases following successful endoscopic sinus surgery. Int. Forum Allergy Rhinol. 2012, 2, 471–476. [Google Scholar] [CrossRef]
- Samitas, K.; Carter, A.; Kariyawasam, H.; Xanthou, G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy 2018, 73, 993–1002. [Google Scholar] [CrossRef]
- Janulaityte, I.; Januskevicius, A.; Kalinauskaite-Zukauske, V.; Bajoriuniene, I.; Malakauskas, K. In Vivo Allergen-Activated Eosinophils Promote Collagen I and Fibronectin Gene Expression in Airway Smooth Muscle Cells via TGF-β1 Signaling Pathway in Asthma. Int. J. Mol. Sci. 2020, 21, 1837. [Google Scholar] [CrossRef]
- Janulaityte, I.; Januskevicius, A.; Rimkunas, A.; Palacionyte, J.; Vitkauskiene, A.; Malakauskas, K. Asthmatic eosinophils alter the gene expression of extracellular matrix proteins in airway smooth muscle cells and pulmonary fibroblasts. Int. J. Mol. Sci. 2022, 23, 4086. [Google Scholar] [CrossRef]
- Shin, J.M.; Yang, H.W.; Park, J.H.; Kim, T.H. Role of Nasal Fibroblasts in Airway Remodeling of Chronic Rhinosinusitis: The Modulating Functions Reexamined. Int. J. Mol. Sci. 2023, 24, 4017. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, F.; Mauviel, A. Transforming growth factor-beta signaling through the Smad pathway: Role in extracellular matrix gene expression and regulation. J. Investig. Dermatol. 2002, 118, 211–215. [Google Scholar] [CrossRef]
- Hinz, B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 2015, 47, 54–65. [Google Scholar] [CrossRef]
- Chakravarthy, A.; Khan, L.; Bensler, N.P.; Bose, P.; De Carvalho, D.D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 2018, 9, 4692. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Kang, S.I.; Kong, I.G.; Cho, Y.H.; Song, S.K.; Hyun, S.J.; Cho, S.D.; Han, S.Y.; Cho, S.H.; Kim, D.W. Two-Track Medical Treatment Strategy According to the Clinical Scoring System for Chronic Rhinosinusitis. Allergy Asthma Immunol. Res. 2018, 10, 490–502. [Google Scholar] [CrossRef]
- Lee, K.; Tai, J.; Lee, S.H.; Kim, T.H. Advances in the knowledge of the underlying airway remodeling mechanisms in chronic rhinosinusitis based on the endotypes: A review. Int. J. Mol. Sci. 2021, 22, 910. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J. Executive summary of EPOS 2020 including integrated care pathways. Rhinology 2020, 58, 82–111. [Google Scholar] [CrossRef]
- Hastan, D.; Fokkens, W.J.; Bachert, C.; Newson, R.B.; Bislimovska, J.; Bockelbrink, A.; Bousquet, P.J.; Brozek, G.; Bruno, A.; Dahlén, S.E.; et al. Chronic rhinosinusitis in Europe--an underestimated disease. A GA²LEN study. Allergy 2011, 66, 1216–1223. [Google Scholar] [CrossRef]
- Shi, J.B.; Fu, Q.L.; Zhang, H.; Cheng, L.; Wang, Y.J.; Zhu, D.D.; Lv, W.; Liu, S.X.; Li, P.Z.; Ou, C.Q.; et al. Epidemiology of chronic rhinosinusitis: Results from a cross-sectional survey in seven Chinese cities. Allergy 2015, 70, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, N.; Bo, M.; Holtappels, G.; Zheng, M.; Lou, H.; Wang, H.; Zhang, L.; Bachert, C. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J. Allergy Clin. Immunol. 2016, 138, 1344–1353. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, C.H. Oxygen matters: Hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep. 2018, 51, 59–64. [Google Scholar] [CrossRef]
- Gurrola, J., II; Borish, L. Chronic rhinosinusitis: Endotypes, biomarkers, and treatment response. J. Allergy Clin. Immunol. 2017, 140, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sima, Y.; Zhao, Y.; Zhang, N.; Zheng, M.; Du, K.; Wang, M.; Wang, Y.; Hao, Y.; Li, Y.; et al. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J. Allergy Clin. Immunol. 2023, 151, 458–468. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Liu, J.; Sun, L.-Y.; Ong, H.H.; Ye, J.; Xu, Y.; Wang, D.-Y. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024, 79, 1146–1165. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, F.; Georas, S.N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am. J. Respir. Cell Mol. Biol. 2014, 50, 857–869. [Google Scholar] [CrossRef]
- Georas, S.N.; Rezaee, F. Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation. J. Allergy Clin. Immunol. 2014, 134, 509–520. [Google Scholar] [CrossRef]
- Goleva, E.; Berdyshev, E.; Leung, D.Y. Epithelial barrier repair and prevention of allergy. J. Clin. Investig. 2019, 129, 1463–1474. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Lv, Z.; Li, Y.; Chen, Y.; Huang, K.; Corrigan, C.J.; Ying, S. Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J. Immunol. 2018, 200, 2253–2262. [Google Scholar] [CrossRef]
- Akdis, C.A.; Bachert, C.; Cingi, C.; Dykewicz, M.S.; Hellings, P.W.; Naclerio, R.M.; Schleimer, R.P.; Ledford, D. Endotypes and phenotypes of chronic rhinosinusitis: A PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2013, 131, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Schleimer, R.; Kern, R.C. The Etiology and Pathogenesis of Chronic Rhinosinusitis: A Review of Current Hypotheses. Curr. Allergy Asthma Rep. 2015, 15, 41. [Google Scholar] [CrossRef]
- Shi, L.-L.; Song, J.; Xiong, P.; Cao, P.-P.; Liao, B.; Ma, J.; Zhang, Y.-N.; Zeng, M.; Liu, Y.; Wang, H. Disease-specific T-helper cell polarizing function of lesional dendritic cells in different types of chronic rhinosinusitis with nasal polyps. Am. J. Respir. Crit. Care Med. 2014, 190, 628–638. [Google Scholar] [CrossRef]
- Rehl, R.M.; Balla, A.A.; Cabay, R.J.; Hearp, M.L.; Pytynia, K.B.; Joe, S.A. Mucosal remodeling in chronic rhinosinusitis. Am. J. Rhinol. 2007, 21, 651–657. [Google Scholar] [CrossRef]
- Boruk, M.; Railwah, C.; Lora, A.; Nath, S.; Wu, D.; Chow, L.; Borhanjoo, P.; Dabo, A.J.; Chowdhury, S.; Kaiser, R.; et al. Elevated S100A9 expression in chronic rhinosinusitis coincides with elevated MMP production and proliferation in vitro. Sci. Rep. 2020, 10, 16350. [Google Scholar] [CrossRef]
- Li, Y.-C.; An, Y.-S.; Tong, W.; Zang, H.-R. Analysis of transforming growth factor β signaling in chronic rhinosinusitis. Chin. Med. J. 2013, 126, 3340–3343. [Google Scholar] [CrossRef] [PubMed]
- Can, I.H.; Ceylan, K.; Caydere, M.; Samim, E.E.; Ustun, H.; Karasoy, D.S. The expression of MMP-2, MMP-7, MMP-9, and TIMP-1 in chronic rhinosinusitis and nasal polyposis. Otolaryngol. Head. Neck Surg. 2008, 139, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Yeo, N.K.; Eom, D.W.; Oh, M.Y.; Lim, H.W.; Song, Y.J. Expression of matrix metalloproteinase 2 and 9 and tissue inhibitor of metalloproteinase 1 in nonrecurrent vs recurrent nasal polyps. Ann. Allergy Asthma Immunol. 2013, 111, 205–210. [Google Scholar] [CrossRef]
- Al-Alawi, M.; Hassan, T.; Chotirmall, S.H. Transforming growth factor β and severe asthma: A perfect storm. Respir. Med. 2014, 108, 1409–1423. [Google Scholar] [CrossRef]
- Daines, S.M.; Wang, Y.; Orlandi, R.R. Periostin and osteopontin are overexpressed in chronically inflamed sinuses. Int. Forum Allergy Rhinol. 2011, 1, 101–105. [Google Scholar] [CrossRef]
- Kato, A.; Peters, A.; Suh, L.; Carter, R.; Harris, K.E.; Chandra, R.; Conley, D.; Grammer, L.C.; Kern, R.; Schleimer, R.P. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2008, 121, 1385–1392. [Google Scholar] [CrossRef]
- Cho, S.H.; Bachert, C.; Lockey, R.F. Chronic Rhinosinusitis Phenotypes: An Approach to Better Medical Care for Chronic Rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2016, 4, 639–642. [Google Scholar] [CrossRef]
- Brar, T.; Marks, L.; Lal, D. Insights into the epigenetics of chronic rhinosinusitis with and without nasal polyps: A systematic review. Front. Allergy 2023, 4, 1165271. [Google Scholar] [CrossRef] [PubMed]
- Savin, I.A.; Zenkova, M.A.; Sen’kova, A.V. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int. J. Mol. Sci. 2023, 24, 16042. [Google Scholar] [CrossRef] [PubMed]
- Janulaityte, I.; Januskevicius, A.; Kalinauskaite-Zukauske, V.; Palacionyte, J.; Malakauskas, K. Asthmatic eosinophils promote contractility and migration of airway smooth muscle cells and pulmonary fibroblasts in vitro. Cells 2021, 10, 1389. [Google Scholar] [CrossRef]
- Amirapu, S.; Biswas, K.; Radcliff, F.J.; Wagner Mackenzie, B.; Ball, S.; Douglas, R.G. Sinonasal Tissue Remodelling during Chronic Rhinosinusitis. Int. J. Otolaryngol. 2021, 2021, 7428955. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tao, Y.; Li, X. Expression of MMP-9/TIMP-2 in nasal polyps and its functional implications. Int. J. Clin. Exp. Pathol. 2015, 8, 14556–14561. [Google Scholar] [PubMed]
- Delemarre, T.; Holtappels, G.; De Ruyck, N.; Zhang, N.; Nauwynck, H.; Bachert, C.; Gevaert, E. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: Another relevant endotype. J. Allergy Clin. Immunol. 2020, 146, 337–343.e336. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, N.; Zhang, L.; Bachert, C. Biologics for the treatment of chronic rhinosinusitis with nasal polyps—State of the art. World Allergy Organ. J. 2019, 12, 100050. [Google Scholar] [CrossRef] [PubMed]
18S | Forward | 5′-CGCCGCTAGAGGTGAAATTC-3′ |
Reverse | 5′-TTGGCAAATGCTTTCGCTC-3′ | |
Collagen I | Forward | 5′-TCGAGGAGGAAATTCCAATG-3′ |
Reverse | 5′-ACACACGTGCACCTCATCAT-3′ | |
Collagen III | Forward | 5′-TATCGAACACGCAAGGCTGTGAGA-3′ |
Reverse | 5′-GGCCAACGTCCACACCAAATTCTT-3’ | |
Fibronectin | Forward | 5′-AGCCAGCAGATCGAGAACAT-3′ |
Reverse | 5′-TCTTGTCCTTGGGGTTCTTG-3′ | |
Vimentin | Forward | 5′-GCAAAGATTCCACTTTGCGT-3′ |
Reverse | 5′-GAAATTGCAGGAGGAGATGC-3′ | |
Periostin | Forward | 5′-TGCCCTGGTTATATGAGAATGGAAG-3′ |
Reverse | 5′-GATGCCCAGAGTGCCATAAACA-3′ | |
Tenascin C | Forward | 5′-GAGACATCTGTGGAAGTGGA-3′ |
Reverse | 5′-CGTACTCAGTGTCAGGCTTC-3′ | |
α-actin | Forward | 5′-TGGGTGACGAAGCAC AGAGC-3′ |
Reverse | 5′-CTTCAGGGGCAACACGAAGC-3′ | |
Elastin | Forward | 5′-GGCCATTCCTGGTGGAGTTCC-3′ |
Reverse | 5′-AACTGGCTTAAGAGGTTTGCCTCCA-3′ | |
MMP-2 | Forward | 5′-GGCCCTGTCACTCCTGAGAT-3′ |
Reverse | 5′-GGCATCCAGGTTATCGGGGA-3′ | |
MMP-9 | Forward | 5′-GGCCTCCAACCACCACCAC-3′ |
Reverse | 5′-CGCCCAGAGAAGAAGAAAAGC-3′ | |
TIMP-1 | Forward | 5′-AGACCTACACTGTTGGCTGTGAG-3′ |
Reverse | 5′-GACTGGAAGCCCTTTTCAGAG-3′ | |
TIMP-2 | Forward | 5′-ATGCACATCACCCTCTGTGA-3′ |
Reverse | 5′-CTCTGTGACCCAGTCCATCC-3′ | |
TGF-β1 | Forward | 5′-GTACCTGAACCCGTGTTGCT-3′ |
Reverse | 5′-GAACCCGTTGATGTCCACTT-3′ |
CRSsNP | CRSwNP | Control Group | |
---|---|---|---|
Age, mean ± SD [min–max] | 53.27 ± 14.06 [28–78] | 53.93 ± 14.90 [20–72] | 46.90 ± 24.20 [22–87] |
Gender, M/F, n | 11/4 | 7/8 | 7/3 |
SIRI score | 0.93 ± 0.52 | 0.93 ± 0.60 | 0.99 ± 0.50 |
SNOT-22 | 45.53 ± 18.10 § | 47.73 ± 23.75 § | 14.80 ± 11.22 |
Time of disease, years | 7.78 ± 14.23 | 10.75 ± 11.22 | N/A |
WBC, ×109 | 6.573 ± 2.260 | 6.505 ± 1.927 | 7.003 ± 2.047 |
Neutrophils, ×109 | 3.900 ± 1.715 | 4.148 ± 1.450 | 4.479 ± 1.851 |
Lymphocytes, ×109 | 2.039 ± 0.891 | 1.816 ± 0.625 | 1.981 ± 0.661 |
Monocytes, × 109 | 0.448 ± 0.185 | 0.373 ± 0.120 | 0.415 ± 0.158 |
Eosinophils, ×109 | 0.159 ± 0.114 | 0.149 ± 0.102 | 0.097 ± 0.090 |
Basophils, ×109 | 0.027 ± 0.015 * | 0.018 ± 0.014 § | 0.031 ± 0.020 |
Neutrophils, % | 57.93 ± 10.74 | 62.78 ± 9.20 | 62.62 ± 11.41 |
Lymphocytes, % | 32.16 ± 8.78 | 28.86 ± 8.26 | 29.45 ± 9.53 |
Monocytes, % | 6.96 ± 2.06 | 5.79 ± 1.13 | 6.06 ± 1.89 |
Eosinophils, % | 2.473 ± 1.685 | 2.247 ± 1.212 § | 1.400 ± 1.173 |
Basophils, % | 0.473 ± 0.333 | 0.320 ± 0.251 | 0.470 ± 0.334 |
IgE, kIU/L mean ± SD [min–max] | 290.20 ± 470.40 [3.00–1649.00] | 163.00 ± 246.50 [3.00–1342.00] | 50.44 ± 58.33 [3.00–170.60] |
CRSsNP n = 15 | CRSwNP n = 15 | Control n = 10 | |
---|---|---|---|
Cytology findings | |||
Leukocytes (none/a few/some/many/a lot), % | 13.3/6.7/20.0/13.3/46.7 | −/13.3/6.7/20.0/60.0 | 12.5/37.5/−/−/50.0 |
Neutrophils (none/a few/some/many/a lot), % | 13.3/−/33.3/-/53.3 | 13.3/−/13.3/6.7/66.7 | 12.5/−/37.5/-/50.0 |
Eosinophils (none/a few/some/many/a lot), % | 93.3/−/6.7/−/− | 73.3/−/13.3/−/13.3 | 87.5/−/12.5/−/− |
Lymphocytes (none/found), % | 93.3/6.7 | 100.0/- | 100.0/- |
Plasma cells (none/ found), % | 93.3/6.7 | 100.0/- | 100.0/- |
Macrophages (none/a few/some/many/a lot), % | 93.3/−/6.7/−/− | 100.0/−/−/−/− | 100.0/−/−/−/− |
Mucus (none/found), % | 80.0/20.0 | 80.0/20.0 | 50.0/50.0 |
Bacteria (none/a few/some/many/a lot), % | 80.0/20.0 | 66.7/33.3 | 50.0/50.0 |
Histology findings | |||
Hyperplasia (none/found), % | 46.7/53.3 | 93.3/6.7 | ND |
Vascularization (none/found), % | 66.7/33.3 | 13.3/86.7 | ND |
Neutrophils (none/found), % | 40.0/60.0 | 80.0/20.0 | ND |
Eosinophils (none/found), % | 46.7/53.3 | 26.7/73.3 | ND |
Eosinophilia (≤50/51–100/101–199/≥200), % | 25.0/−/75/− | 25.0/37.5/12.5/25.0 | ND |
Lymphocytes (none/found), % | 6.7/93.3 | 6.7/93.3 | ND |
Plasmocytes (none/found), % | 13.3/86.7 | 6.7/93.3 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaitkus, Z.; Vitkauskiene, A.; Labanauskas, L.; Vaitkus, J.; Lozovskis, P.; Vaitkus, S.; Janulaityte, I. Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients. Cells 2025, 14, 654. https://doi.org/10.3390/cells14090654
Vaitkus Z, Vitkauskiene A, Labanauskas L, Vaitkus J, Lozovskis P, Vaitkus S, Janulaityte I. Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients. Cells. 2025; 14(9):654. https://doi.org/10.3390/cells14090654
Chicago/Turabian StyleVaitkus, Zygimantas, Astra Vitkauskiene, Liutauras Labanauskas, Justinas Vaitkus, Povilas Lozovskis, Saulius Vaitkus, and Ieva Janulaityte. 2025. "Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients" Cells 14, no. 9: 654. https://doi.org/10.3390/cells14090654
APA StyleVaitkus, Z., Vitkauskiene, A., Labanauskas, L., Vaitkus, J., Lozovskis, P., Vaitkus, S., & Janulaityte, I. (2025). Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients. Cells, 14(9), 654. https://doi.org/10.3390/cells14090654