FAAH Modulators from Natural Sources: A Collection of New Potential Drugs
Abstract
:1. Introduction
FAAH Structure
2. FAAH Modulators
2.1. Natural FAAH Inhibitors
2.2. Phytocannabinoids
2.3. Kaempferol
2.4. Cyanidin-3-Glucoside
2.5. Biochanin-A
2.6. Genistein and Daidzein
2.7. 7-Hydroxyflavone
2.8. Macamide
2.9. Silymarin
2.10. Nutmeg Phenols
3. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maia, J.; Fonseca, B.; Teixeira, N.; Correia-da-Silva, G. The Fundamental Role of the Endocannabinoid System in Endometrium and Placenta: Implications in Pathophysiological Aspects of Uterine and Pregnancy Disorders. Hum. Reprod. Update 2020, 26, 586–602. [Google Scholar] [CrossRef]
- Pagano, C.; Navarra, G.; Coppola, L.; Avilia, G.; Bifulco, M.; Laezza, C. Cannabinoids: Therapeutic Use in Clinical Practice. Int. J. Mol. Sci. 2022, 23, 3344. [Google Scholar] [CrossRef] [PubMed]
- Walker, O.S.; Holloway, A.C.; Raha, S. The Role of the Endocannabinoid System in Female Reproductive Tissues. J. Ovarian Res. 2019, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; Toyang, N.; Steele, B.; Bryant, J.; Ngwa, W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int. J. Mol. Sci. 2021, 22, 9472. [Google Scholar] [CrossRef]
- Rabino, M.; Mallia, S.; Castiglioni, E.; Rovina, D.; Pompilio, G.; Gowran, A. The Endocannabinoid System and Cannabidiol: Past, Present, and Prospective for Cardiovascular Diseases. Pharmaceuticals 2021, 14, 936. [Google Scholar] [CrossRef]
- Scipioni, L.; Ciaramellano, F.; Carnicelli, V.; Leuti, A.; Lizzi, A.R.; De Dominicis, N.; Oddi, S.; Maccarrone, M. Microglial Endocannabinoid Signalling in AD. Cells 2022, 11, 1237. [Google Scholar] [CrossRef] [PubMed]
- Chiurchiù, V.; Battistini, L.; Maccarrone, M. Endocannabinoid Signalling in Innate and Adaptive Immunity. Immunology 2015, 144, 352–364. [Google Scholar] [CrossRef]
- Maccarrone, M.; Bab, I.; Bíró, T.; Cabral, G.A.; Dey, S.K.; Di Marzo, V.; Konje, J.C.; Kunos, G.; Mechoulam, R.; Pacher, P.; et al. Endocannabinoid Signaling at the Periphery: 50 Years after THC. Trends Pharmacol. Sci. 2015, 36, 277–296. [Google Scholar] [CrossRef]
- Friedman, D.; French, J.A.; Maccarrone, M. Safety, Efficacy, and Mechanisms of Action of Cannabinoids in Neurological Disorders. Lancet Neurol. 2019, 18, 504–512. [Google Scholar] [CrossRef]
- Oddi, S.; Scipioni, L.; Maccarrone, M. Endocannabinoid System and Adult Neurogenesis: A Focused Review. Curr. Opin. Pharmacol. 2020, 50, 25–32. [Google Scholar] [CrossRef]
- Joshi, N.; Onaivi, E.S. Endocannabinoid System Components: Overview and Tissue Distribution. In Recent Advances in Cannabinoid Physiology and Pathology; Bukiya, A.N., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 1162, pp. 1–12. ISBN 978-3-030-21736-5. [Google Scholar]
- Fezza, F.; Bari, M.; Florio, R.; Talamonti, E.; Feole, M.; Maccarrone, M. Endocannabinoids, Related Compounds and Their Metabolic Routes. Molecules 2014, 19, 17078–17106. [Google Scholar] [CrossRef] [PubMed]
- Biringer, R.G. The Rise and Fall of Anandamide: Processes That Control Synthesis, Degradation, and Storage. Mol. Cell. Biochem. 2021, 476, 2753–2775. [Google Scholar] [CrossRef]
- Aydin, E.; Cebo, M.; Mielnik, J.; Richter, H.; Schüle, R.; Sievers-Engler, A.; Młynarz, P.; Lämmerhofer, M. UHPLC-ESI-MS/MS Assay for Quantification of Endocannabinoids in Cerebrospinal Fluid Using Surrogate Calibrant and Surrogate Matrix Approaches. J. Pharm. Biomed. Anal. 2023, 222, 115090. [Google Scholar] [CrossRef]
- Criscuolo, E.; De Sciscio, M.L.; De Cristofaro, A.; Nicoara, C.; Maccarrone, M.; Fezza, F. Computational and Experimental Drug Repurposing of FDA-Approved Compounds Targeting the Cannabinoid Receptor CB1. Pharmaceuticals 2023, 16, 1678. [Google Scholar] [CrossRef] [PubMed]
- Crocq, M.-A. History of Cannabis and the Endocannabinoid System. Dialogues Clin. Neurosci. 2020, 22, 223–228. [Google Scholar] [CrossRef]
- Maccarrone, M.; Di Marzo, V.; Gertsch, J.; Grether, U.; Howlett, A.C.; Hua, T.; Makriyannis, A.; Piomelli, D.; Ueda, N.; Van Der Stelt, M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol. Rev. 2023, 75, 885–958. [Google Scholar] [CrossRef]
- Di Meo, C.; Tortolani, D.; Standoli, S.; Ciaramellano, F.; Angelucci, B.C.; Tisi, A.; Kadhim, S.; Hsu, E.; Rapino, C.; Maccarrone, M. Cannabinol Modulates the Endocannabinoid System and Shows TRPV1-mediated Anti-inflammatory Properties in Human Keratinocytes. BioFactors 2025, 51, e2122. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, D.L.; Devi, L.A. Diversity of Molecular Targets and Signaling Pathways for CBD. Pharmacol. Res. Perspect. 2020, 8, e00682. [Google Scholar] [CrossRef]
- Castillo-Arellano, J.; Canseco-Alba, A.; Cutler, S.J.; León, F. The Polypharmacological Effects of Cannabidiol. Molecules 2023, 28, 3271. [Google Scholar] [CrossRef]
- Britch, S.C.; Babalonis, S.; Walsh, S.L. Cannabidiol: Pharmacology and Therapeutic Targets. Psychopharmacology 2021, 238, 9–28. [Google Scholar] [CrossRef]
- Kisková, T.; Mungenast, F.; Suváková, M.; Jäger, W.; Thalhammer, T. Future Aspects for Cannabinoids in Breast Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 1673. [Google Scholar] [CrossRef] [PubMed]
- Raïch, I.; Lillo, J.; Rivas-Santisteban, R.; Rebassa, J.B.; Capó, T.; Santandreu, M.; Cubeles-Juberias, E.; Reyes-Resina, I.; Navarro, G. Potential of CBD Acting on Cannabinoid Receptors CB1 and CB2 in Ischemic Stroke. Int. J. Mol. Sci. 2024, 25, 6708. [Google Scholar] [CrossRef]
- Khosropoor, S.; Alavi, M.S.; Etemad, L.; Roohbakhsh, A. Cannabidiol Goes Nuclear: The Role of PPARγ. Phytomedicine 2023, 114, 154771. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Tsuboi, K.; Uyama, T. Enzymological Studies on the Biosynthesis of N-Acylethanolamines. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2010, 1801, 1274–1285. [Google Scholar] [CrossRef]
- Tsuboi, K.; Uyama, T.; Okamoto, Y.; Ueda, N. Endocannabinoids and Related N-Acylethanolamines: Biological Activities and Metabolism. Inflamm. Regen. 2018, 38, 28. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, T.; Howell, F.; Williams, G.; Minassi, A.; Cascio, M.G.; Ligresti, A.; Matias, I.; Schiano-Moriello, A.; Paul, P.; Williams, E.-J.; et al. Cloning of the First Sn1-DAG Lipases Points to the Spatial and Temporal Regulation of Endocannabinoid Signaling in the Brain. J. Cell Biol. 2003, 163, 463–468. [Google Scholar] [CrossRef]
- Bagues, A.; Goicoechea, C. Cannabinoid Agonists. In Neuropathology of Drug Addictions and Substance Misuse; Elsevier: Amsterdam, The Netherlands, 2016; pp. 702–712. ISBN 978-0-12-800213-1. [Google Scholar]
- Fazio, D.; Criscuolo, E.; Piccoli, A.; Barboni, B.; Fezza, F.; Maccarrone, M. Advances in the Discovery of Fatty Acid Amide Hydrolase Inhibitors: What Does the Future Hold? Expert Opin. Drug Discov. 2020, 15, 765–778. [Google Scholar] [CrossRef]
- Palermo, G.; Campomanes, P.; Neri, M.; Piomelli, D.; Cavalli, A.; Rothlisberger, U.; De Vivo, M. Wagging the Tail: Essential Role of Substrate Flexibility in FAAH Catalysis. J. Chem. Theory Comput. 2013, 9, 1202–1213. [Google Scholar] [CrossRef]
- Dainese, E.; Oddi, S.; Simonetti, M.; Sabatucci, A.; Angelucci, C.B.; Ballone, A.; Dufrusine, B.; Fezza, F.; De Fabritiis, G.; Maccarrone, M. The Endocannabinoid Hydrolase FAAH Is an Allosteric Enzyme. Sci. Rep. 2020, 10, 2292. [Google Scholar] [CrossRef]
- Leuci, R.; Brunetti, L.; Laghezza, A.; Piemontese, L.; Carrieri, A.; Pisani, L.; Tortorella, P.; Catto, M.; Loiodice, F. A New Series of Aryloxyacetic Acids Endowed with Multi-Target Activity towards Peroxisome Proliferator-Activated Receptors (PPARs), Fatty Acid Amide Hydrolase (FAAH), and Acetylcholinesterase (AChE). Molecules 2022, 27, 958. [Google Scholar] [CrossRef]
- Criscuolo, E.; De Sciscio, M.L.; Fezza, F.; Maccarrone, M. In Silico and In Vitro Analysis of Major Cannabis-Derived Compounds as Fatty Acid Amide Hydrolase Inhibitors. Molecules 2020, 26, 48. [Google Scholar] [CrossRef]
- Tuo, W.; Leleu-Chavain, N.; Barczyk, A.; Renault, N.; Lemaire, L.; Chavatte, P.; Millet, R. Design, Synthesis and Biological Evaluation of Potent FAAH Inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 2701–2705. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, C.; Zhang, Z.; Zheng, R.; Zheng, Y. Amidase as a Versatile Tool in Amide-Bond Cleavage: From Molecular Features to Biotechnological Applications. Biotechnol. Adv. 2020, 43, 107574. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.; Battista, N.; Fezza, F.; Finazzi-Agrò, A.; Maccarrone, M. Lipid Rafts Control Signaling of Type-1 Cannabinoid Receptors in Neuronal Cells. J. Biol. Chem. 2005, 280, 12212–12220. [Google Scholar] [CrossRef] [PubMed]
- Sarnataro, D.; Pisanti, S.; Santoro, A.; Gazzerro, P.; Malfitano, A.M.; Laezza, C.; Bifulco, M. The Cannabinoid CB1 Receptor Antagonist Rimonabant (SR141716) Inhibits Human Breast Cancer Cell Proliferation through a Lipid Raft-Mediated Mechanism. Mol. Pharmacol. 2006, 70, 1298–1306. [Google Scholar] [CrossRef]
- Sabatucci, A.; Simonetti, M.; Tortolani, D.; Angelucci, C.B.; Dainese, E.; Maccarrone, M. Role of Steroids on the Membrane Binding Ability of Fatty Acid Amide Hydrolase. Cannabis Cannabinoid Res. 2019, 4, 42–50. [Google Scholar] [CrossRef]
- Dainese, E.; De Fabritiis, G.; Sabatucci, A.; Oddi, S.; Angelucci, C.B.; Di Pancrazio, C.; Giorgino, T.; Stanley, N.; Del Carlo, M.; Cravatt, B.F.; et al. Membrane Lipids Are Key Modulators of the Endocannabinoid-Hydrolase FAAH. Biochem. J. 2014, 457, 463–472. [Google Scholar] [CrossRef]
- Tripathi, R.K.P. A Perspective Review on Fatty Acid Amide Hydrolase (FAAH) Inhibitors as Potential Therapeutic Agents. Eur. J. Med. Chem. 2020, 188, 111953. [Google Scholar] [CrossRef]
- Di Venere, A.; Dainese, E.; Fezza, F.; Angelucci, B.C.; Rosato, N.; Cravatt, B.F.; Finazzi-Agrò, A.; Mei, G.; Maccarrone, M. Rat and Human Fatty Acid Amide Hydrolases: Overt Similarities and Hidden Differences. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2012, 1821, 1425–1433. [Google Scholar] [CrossRef]
- Tuo, W.; Leleu-Chavain, N.; Spencer, J.; Sansook, S.; Millet, R.; Chavatte, P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N -Acylethanolamine Acid Amidase Inhibitors. J. Med. Chem. 2017, 60, 4–46. [Google Scholar] [CrossRef]
- Lambert, D.M.; Fowler, C.J. The Endocannabinoid System: Drug Targets, Lead Compounds, and Potential Therapeutic Applications. J. Med. Chem. 2005, 48, 5059–5087. [Google Scholar] [CrossRef] [PubMed]
- Seierstad, M.; Breitenbucher, J.G. Discovery and Development of Fatty Acid Amide Hydrolase (FAAH) Inhibitors. J. Med. Chem. 2008, 51, 7327–7343. [Google Scholar] [CrossRef]
- Piomelli, D.; Tarzia, G.; Duranti, A.; Tontini, A.; Mor, M.; Compton, T.R.; Dasse, O.; Monaghan, E.P.; Parrott, J.A.; Putman, D. Pharmacological Profile of the Selective FAAH Inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006, 12, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Griebel, G.; Stemmelin, J.; Lopez-Grancha, M.; Fauchey, V.; Slowinski, F.; Pichat, P.; Dargazanli, G.; Abouabdellah, A.; Cohen, C.; Bergis, O.E. The Selective Reversible FAAH Inhibitor, SSR411298, Restores the Development of Maladaptive Behaviors to Acute and Chronic Stress in Rodents. Sci. Rep. 2018, 8, 2416. [Google Scholar] [CrossRef]
- Keith, J.M.; Jones, W.M.; Tichenor, M.; Liu, J.; Seierstad, M.; Palmer, J.A.; Webb, M.; Karbarz, M.; Scott, B.P.; Wilson, S.J.; et al. Preclinical Characterization of the FAAH Inhibitor JNJ-42165279. ACS Med. Chem. Lett. 2015, 6, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.S.; Stiff, C.; Lazerwith, S.E.; Kesten, S.R.; Fay, L.K.; Morris, M.; Beidler, D.; Liimatta, M.B.; Smith, S.E.; Dudley, D.T.; et al. Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor. ACS Med. Chem. Lett. 2011, 2, 91–96. [Google Scholar] [CrossRef]
- Mangiatordi, G.F.; Cavalluzzi, M.M.; Delre, P.; Lamanna, G.; Lumuscio, M.C.; Saviano, M.; Majoral, J.-P.; Mignani, S.; Duranti, A.; Lentini, G. Endocannabinoid Degradation Enzyme Inhibitors as Potential Antipsychotics: A Medicinal Chemistry Perspective. Biomedicines 2023, 11, 469. [Google Scholar] [CrossRef]
- Van Esbroeck, A.C.M.; Janssen, A.P.A.; Cognetta, A.B.; Ogasawara, D.; Shpak, G.; Van Der Kroeg, M.; Kantae, V.; Baggelaar, M.P.; De Vrij, F.M.S.; Deng, H.; et al. Activity-Based Protein Profiling Reveals off-Target Proteins of the FAAH Inhibitor BIA 10-2474. Science 2017, 356, 1084–1087. [Google Scholar] [CrossRef]
- Timmons, A.; Seierstad, M.; Apodaca, R.; Epperson, M.; Pippel, D.; Brown, S.; Chang, L.; Scott, B.; Webb, M.; Chaplan, S.R.; et al. Novel Ketooxazole Based Inhibitors of Fatty Acid Amide Hydrolase (FAAH). Bioorg. Med. Chem. Lett. 2008, 18, 2109–2113. [Google Scholar] [CrossRef]
- Niphakis, M.J.; Johnson, D.S.; Ballard, T.E.; Stiff, C.; Cravatt, B.F. O -Hydroxyacetamide Carbamates as a Highly Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors. ACS Chem. Neurosci. 2012, 3, 418–426. [Google Scholar] [CrossRef]
- Gowlugari, S.; DeFalco, J.; Nguyen, M.T.; Kaub, C.; Chi, C.; Duncton, M.A.J.; Emerling, D.E.; Kelly, M.G.; Kincaid, J.; Vincent, F. Discovery of Potent, Non-Carbonyl Inhibitors of Fatty Acid Amide Hydrolase (FAAH). Med. Chem. Commun. 2012, 3, 1258. [Google Scholar] [CrossRef]
- Alexander, J.P.; Cravatt, B.F. Mechanism of Carbamate Inactivation of FAAH: Implications for the Design of Covalent Inhibitors and In Vivo Functional Probes for Enzymes. Chem. Biol. 2005, 12, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Santos, A.; Gama, H.; Moser, P.; Falcão, A.; Pressman, P.; Wallace Hayes, A.; Soares-da-Silva, P. Safety, Tolerability, and Pharmacokinetics of FAAH Inhibitor BIA 10-2474: A Double-Blind, Randomized, Placebo-Controlled Study in Healthy Volunteers. Clin. Pharmacol. Ther. 2022, 111, 391–403. [Google Scholar] [CrossRef]
- Mallet, C.; Dubray, C.; Dualé, C. FAAH Inhibitors in the Limelight, but Regrettably. Int. J. Clin. Pharmacol. Ther. 2016, 54, 498–501. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.; Cai, N.; Liao, X.; Tang, L.; Wang, Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des. Dev. Ther. 2024, 18, 2143–2167. [Google Scholar] [CrossRef]
- Chandra, S.; Saklani, S.; Kumar, P.; Kim, B.; Coutinho, H.D.M. Nutraceuticals: Pharmacologically Active Potent Dietary Supplements. BioMed Res. Int. 2022, 2022, 2051017. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.A.; Mitchell, A.E.; Shin, A.C.; Dehghani, F.; Shen, C.-L. Dietary Flavonoid Actions on Senescence, Aging, and Applications for Health. J. Nutr. Biochem. 2025, 139, 109862. [Google Scholar] [CrossRef]
- Fu, Z.; Zhao, P.-Y.; Yang, X.-P.; Li, H.; Hu, S.-D.; Xu, Y.-X.; Du, X.-H. Cannabidiol Regulates Apoptosis and Autophagy in Inflammation and Cancer: A Review. Front. Pharmacol. 2023, 14, 1094020. [Google Scholar] [CrossRef]
- Capasso, R.; Borrelli, F.; Aviello, G.; Romano, B.; Scalisi, C.; Capasso, F.; Izzo, A.A. Cannabidiol, Extracted from Cannabis sativa, Selectively Inhibits Inflammatory Hypermotility in Mice. Br. J. Pharmacol. 2008, 154, 1001–1008. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Allarà, M.; Bisogno, T.; Petrosino, S.; Stott, C.G.; Di Marzo, V. Effects of Cannabinoids and Cannabinoid-enriched Cannabis Extracts on TRP Channels and Endocannabinoid Metabolic Enzymes. Br. J Pharmacol. 2011, 163, 1479–1494. [Google Scholar] [CrossRef]
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol Enhances Anandamide Signaling and Alleviates Psychotic Symptoms of Schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Peng, Z.; Lai, W.; Shao, Y.; Gao, Q.; He, M.; Zhou, W.; Guo, L.; Kang, J.; Jin, X.; et al. The Efficient Synthesis and Anti-Fatigue Activity Evaluation of Macamides: The Unique Bioactive Compounds in Maca. Molecules 2023, 28, 3943. [Google Scholar] [CrossRef]
- Alasmari, M.; Bӧhlke, M.; Kelley, C.; Maher, T.; Pino-Figueroa, A. Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides. Mol. Neurobiol. 2019, 56, 1770–1781. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Jin, W.; Cui, Y.; Ao, M.; Liu, H.; Xu, H.; Yu, L. Protective Effects of Macamides from Lepidium meyenii Walp. against Corticosterone-Induced Neurotoxicity in PC12 Cells. RSC Adv. 2019, 9, 23096–23108. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.U. Recent Studies on Kaempferol and Its Biological and Pharmacological Activities. EXCLI J. 2020, 19, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Rauf, K.; Zada, W.; McCarthy, M.; Abbas, G.; Anwar, F.; Shah, A.J. Kaempferol Facilitated Extinction Learning in Contextual Fear Conditioned Rats via Inhibition of Fatty-Acid Amide Hydrolase. Molecules 2020, 25, 4683. [Google Scholar] [CrossRef]
- Thapa, R.; Afzal, O.; Alfawaz Altamimi, A.S.; Goyal, A.; Almalki, W.H.; Alzarea, S.I.; Kazmi, I.; Jakhmola, V.; Singh, S.K.; Dua, K.; et al. Galangin as an Inflammatory Response Modulator: An Updated Overview and Therapeutic Potential. Chem.-Biol. Interact. 2023, 378, 110482. [Google Scholar] [CrossRef]
- Thors, L.; Belghiti, M.; Fowler, C.J. Inhibition of Fatty Acid Amide Hydrolase by Kaempferol and Related Naturally Occurring Flavonoids. Br. J Pharmacol. 2008, 155, 244–252. [Google Scholar] [CrossRef]
- Zugravu, G.S.; Pintilescu, C.; Cumpat, C.-M.; Miron, S.D.; Miron, A. Silymarin Supplementation in Active Rheumatoid Arthritis: Outcomes of a Pilot Randomized Controlled Clinical Study. Medicina 2024, 60, 999. [Google Scholar] [CrossRef]
- Yang, R.; Yang, X.; Zhang, F. New Perspectives of Taxifolin in Neurodegenerative Diseases. Curr. Neuropharmacol. 2023, 21, 2097–2109. [Google Scholar] [CrossRef]
- Yao, W.; Gong, H.; Mei, H.; Shi, L.; Yu, J.; Hu, Y. Taxifolin Targets PI3K and mTOR and Inhibits Glioblastoma Multiforme. J. Oncol. 2021, 2021, 5560915. [Google Scholar] [CrossRef]
- Police, A.; Shankar, V.K.; Pandey, P.; Rangappa, S.; Doerksen, R.J.; Narasimha Murthy, S. Novel Topical Anandamide Formulation for Alleviating Peripheral Neuropathic Pain. Int. J. Pharm. 2023, 641, 123085. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; González-Burgos, E.; Gómez-Serranillos, M.P.; Smith, C.; López, V. Cyanidin-3-O-Glucoside Inhibits Different Enzymes Involved in Central Nervous System Pathologies and Type-2 Diabetes. S. Afr. J. Bot. 2019, 120, 241–246. [Google Scholar] [CrossRef]
- Zannou, O.; Oussou, K.F.; Chabi, I.B.; Awad, N.M.H.; Aïssi, M.V.; Goksen, G.; Mortas, M.; Oz, F.; Proestos, C.; Kayodé, A.P.P. Nanoencapsulation of Cyanidin 3-O-Glucoside: Purpose, Technique, Bioavailability, and Stability. Nanomaterials 2023, 13, 617. [Google Scholar] [CrossRef]
- Feng, Z.-J.; Lai, W.-F. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023, 15, 1105. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Akhtar, J.; Singh, S.P.; Badruddeen; Ahsan, F. An Overview on Genistein and Its Various Formulations. Drug Res. 2019, 69, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Zada, W.; VanRyzin, J.W.; Perez-Pouchoulen, M.; Baglot, S.L.; Hill, M.N.; Abbas, G.; Clark, S.M.; Rashid, U.; McCarthy, M.M.; Mannan, A. Fatty Acid Amide Hydrolase Inhibition and N-arachidonoylethanolamine Modulation by Isoflavonoids: A Novel Target for Upcoming Antidepressants. Pharmacol. Res. Perspect. 2022, 10, e00999. [Google Scholar] [CrossRef]
- Thors, L.; Burston, J.; Alter, B.; McKinney, M.; Cravatt, B.; Ross, R.; Pertwee, R.; Gereau 4Th, R.; Wiley, J.; Fowler, C. Biochanin A, a Naturally Occurring Inhibitor of Fatty Acid Amide Hydrolase. Br. J Pharmacol. 2010, 160, 549–560. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Espíndola, C.; Correa, A.J.; López-López, M.; López-Cornejo, P.; Bernal, E.; Lebrón, J.A.; Ostos, F.J.; Benhnia, M.R.-E.-I.; Moyá, M.L. Single -and Multi-Walled Carbon Nanotubes as Nanocarriers for the Delivery of 7-Hydroxyflavone. Pharmaceutics 2022, 14, 2806. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Křenek, K.; Marhol, P.; Peikerová, Ž.; Křen, V.; Biedermann, D. Preparatory Separation of the Silymarin Flavonolignans by Sephadex LH-20 Gel. Food Res. Int. 2014, 65, 115–120. [Google Scholar] [CrossRef]
- El-Alfy, A.T.; Abourashed, E.A.; Patel, C.; Mazhari, N.; An, H.; Jeon, A. Phenolic Compounds from Nutmeg (Myristica fragrans Houtt.) Inhibit the Endocannabinoid-Modulating Enzyme Fatty Acid Amide Hydrolase. J. Pharm. Pharmacol. 2019, 71, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Blanco Carcache, P.J.; Castro-Dionicio, I.Y.; Mirtallo Ezzone, N.P.; Salinas-Arrellano, E.D.; Bahar, J.; Clinton, S.K.; Kinghorn, A.D. Molecular Networking, Docking, and Biological Evaluation of Licarin A from Myristica Fragrans as a Potential Cancer Chemopreventive Agent. Molecules 2024, 29, 4919. [Google Scholar] [CrossRef]
- Mengarda, A.C.; Silva, M.P.; Cirino, M.E.; Morais, T.R.; Conserva, G.A.A.; Lago, J.H.G.; De Moraes, J. Licarin A, a neolignan isolated from Nectandra oppositifolia Nees & Mart. (Lauraceae), exhibited moderate preclinical efficacy against Schistosoma mansoni infection. Phytother. Res. 2021, 35, 5154–5162. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Park, J.-Y.; Ryu, Y.B.; Kim, W.S.; Lee, I.-C.; Kim, J.-H.; Kim, D.; Ha, J.-H.; Lee, B.-W.; Nam, J.; et al. Myristica Fragrans Extract Inhibits Platelet Desialylation and Activation to Ameliorate Sepsis-Associated Thrombocytopenia in a Murine CLP-Induced Sepsis Model. Int. J. Mol. Sci. 2023, 24, 8863. [Google Scholar] [CrossRef]
- Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture. In Phytocannabinoids; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Eds.; Progress in the Chemistry of Organic Natural Products; Springer International Publishing: Cham, Switzerland, 2017; Volume 103, pp. 103–131. ISBN 978-3-319-45539-6. [Google Scholar]
- Massi, P.; Valenti, M.; Vaccani, A.; Gasperi, V.; Perletti, G.; Marras, E.; Fezza, F.; Maccarrone, M.; Parolaro, D. 5-Lipoxygenase and Anandamide Hydrolase (FAAH) Mediate the Antitumor Activity of Cannabidiol, a Non-psychoactive Cannabinoid. J. Neurochem. 2008, 104, 1091–1100. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef]
- Sinopoli, A.; Calogero, G.; Bartolotta, A. Computational Aspects of Anthocyanidins and Anthocyanins: A Review. Food Chem. 2019, 297, 124898. [Google Scholar] [CrossRef]
- Fan, Y.; Yan, L.-T.; Yao, Z.; Xiong, G.-Y. Biochanin A Regulates Cholesterol Metabolism Further Delays the Progression of Nonalcoholic Fatty Liver Disease. Diabetes Metab. Syndr. Obes. 2021, 14, 3161–3172. [Google Scholar] [CrossRef]
- Sklenickova, O.; Flesar, J.; Kokoska, L.; Vlkova, E.; Halamova, K.; Malik, J. Selective Growth Inhibitory Effect of Biochanin A Against Intestinal Tract Colonizing Bacteria. Molecules 2010, 15, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-N.; Shyu, H.-W.; Hu, T.-W.; Yeh, J.-P.; Lin, Y.-W.; Lee, L.-Y.; Yeh, Y.-T.; Dai, H.-Y.; Perng, D.-S.; Su, S.-H.; et al. Anti-Proliferative Activity of Biochanin A in Human Osteosarcoma Cells via Mitochondrial-Involved Apoptosis. Food Chem. Toxicol. 2018, 112, 194–204. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.J.; Huang, D. Anti-Inflammation Mechanisms of Flavones Are Highly Sensitive to the Position Isomers of Flavonoids: Acacetin vs. Biochanin A. J. Agric. Food Chem. 2024, 72, 22939–22951. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, T.; Lee, M.-S. Pro-Apoptotic Effect and Cytotoxicity of Genistein and Genistin in Human Ovarian Cancer SK-OV-3 Cells. Life Sci. 2007, 80, 1403–1408. [Google Scholar] [CrossRef]
- Steensma, A. Bioavailability of Genistein and Its Glycoside Genistin. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2006. [Google Scholar]
- Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a Specific Inhibitor of Tyrosine-Specific Protein Kinases. J. Biol. Chem. 1987, 262, 5592–5595. [Google Scholar] [CrossRef]
- Bhat, S.S.; Prasad, S.K.; Shivamallu, C.; Prasad, K.S.; Syed, A.; Reddy, P.; Cull, C.A.; Amachawadi, R.G. Genistein: A Potent Anti-Breast Cancer Agent. Curr. Issues Mol. Biol. 2021, 43, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Uifălean, A.; Schneider, S.; Gierok, P.; Ionescu, C.; Iuga, C.; Lalk, M. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach. Int. J. Mol. Sci. 2016, 17, 1443. [Google Scholar] [CrossRef] [PubMed]
- Miadoková, E. Isoflavonoids—An Overview of Their Biological Activities and Potential Health Benefits. Interdiscip. Toxicol. 2009, 2, 211–218. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M.; et al. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxidative Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef]
- Zada, W.; Murtaza, G.; Iqbal, G.; Abbas, G.; Ali Khan, S.; Abdul Mannan, A.M. Antidepressant Potential of Daidzein Through Modulation of Endocannabinoid System by Targeting Fatty Acid Amide Hydrolase. Sains Malays. 2022, 51, 3383–3399. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, X.; Cheang, W.S. Isoflavones Daidzin and Daidzein Inhibit Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages. Chin. Med. 2022, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.S.; Arisaka, O.; Miyake, N.; Morgan, L.D.; Evans, B.A.J. Phytoestrogen Concentrations in Serum from Japanese Men and Women over Forty Years of Age. J. Nutr. 2002, 132, 3168–3171. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Ali, G.; Rasheed, A.; Subhan, F.; Khan, A.; Ahsan Halim, S.; Al-Harrasi, A. The 7-Hydroxyflavone Attenuates Chemotherapy-Induced Neuropathic Pain by Targeting Inflammatory Pathway. Int. Immunopharmacol. 2022, 107, 108674. [Google Scholar] [CrossRef] [PubMed]
- Vera-López, K.J.; Davila-Del-Carpio, G.; Nieto-Montesinos, R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurol. Int. 2024, 16, 1611–1625. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Guo, F.; Si, N.; Brantner, A.; Yang, J.; Han, L.; Wei, X.; Zhao, H.; Bian, B. Integrated Proteomics and Lipidomics Investigation of the Mechanism Underlying the Neuroprotective Effect of N-Benzylhexadecanamide. Molecules 2018, 23, 2929. [Google Scholar] [CrossRef]
- Bhattacharya, S. Milk Thistle (Silybum marianum L. Gaert.) Seeds in Health. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 759–766. ISBN 978-0-12-375688-6. [Google Scholar]
- Younas, M.; Drouet, S.; Nadeem, M.; Giglioli-Guivarc’h, N.; Hano, C.; Abbasi, B.H. Differential Accumulation of Silymarin Induced by Exposure of Silybum marianum L. Callus Cultures to Several Spectres of Monochromatic Lights. J. Photochem. Photobiol. B Biol. 2018, 184, 61–70. [Google Scholar] [CrossRef]
- Shen, R.-S.; Cao, D.; Chen, F.-L.; Wu, X.-J.; Gao, J.; Bai, L.-P.; Zhang, W.; Jiang, Z.-H.; Zhu, G.-Y. New Monoterpene-Conjugated Phenolic Constituents from Nutmeg and Their Autophagy Modulating Activities. J. Agric. Food Chem. 2022, 70, 9684–9693. [Google Scholar] [CrossRef]
- Hayfaa, A.A.S.; Sahar, A.M.A.S.; Awatif, M.A.S. Evaluation of Analgesic Activity and Toxicity of Alkaloids in Myristica Fragrans Seeds in Mice. J. Pain Res. 2013, 6, 611–615. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, X.; Zhang, H.; Alitanhua; Xiao, Y. Safety of Nutmeg Powder by Oral Exposure: Toxicity Prediction and in Vivo Evaluation. Food Chem. Toxicol. 2025, 200, 115364. [Google Scholar] [CrossRef]
- Ha, M.T.; Vu, N.K.; Tran, T.H.; Kim, J.A.; Woo, M.H.; Min, B.S. Phytochemical and Pharmacological Properties of Myristica Fragrans Houtt.: An Updated Review. Arch. Pharm. Res. 2020, 43, 1067–1092. [Google Scholar] [CrossRef]
- Yang, X.-N.; Liu, X.-M.; Fang, J.-H.; Zhu, X.; Yang, X.-W.; Xiao, X.-R.; Huang, J.-F.; Gonzalez, F.J.; Li, F. PPARα Mediates the Hepatoprotective Effects of Nutmeg. J. Proteome Res. 2018, 17, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Xia, W.; Zhang, X.; Yuan, H.; Guan, D.; Gao, L. Hepatotoxicity of Nutmeg: A Pilot Study Based on Metabolomics. Biomed. Pharmacother. 2020, 131, 110780. [Google Scholar] [CrossRef]
- El-Alfy, A.T.; Joseph, S.; Brahmbhatt, A.; Akati, S.; Abourashed, E.A. Indirect Modulation of the Endocannabinoid System by Specific Fractions of Nutmeg Total Extract. Pharm. Biol. 2016, 54, 2933–2938. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Kubota, E.; Kobayashi, H.; Fujita, Y.; Hatanaka, K.; Kamijo, Y.; Funayama, M.; Mimasaka, S. Detection of Major Psychoactive Compounds (Safrole, Myristicin, and Elemicin) of Nutmeg in Human Serum via GC–MS/MS Using MonoSpin® Extraction: Application in a Nutmeg Poisoning Case. J. Pharm. Biomed. Anal. 2023, 234, 115565. [Google Scholar] [CrossRef]
- Sangalli, B.C.; Sangalli, B.; Chiang, W. Toxicology of Nutmeg Abuse. J. Toxicol. Clin. Toxicol. 2000, 38, 671–678. [Google Scholar] [CrossRef] [PubMed]
- El-Alfy, A.T.; Wilson, L.; ElSohly, M.A.; Abourashed, E.A. Towards a Better Understanding of the Psychopharmacology of Nutmeg: Activities in the Mouse Tetrad Assay. J. Ethnopharmacol. 2009, 126, 280–286. [Google Scholar] [CrossRef]
- Götz, M.E.; Sachse, B.; Schäfer, B.; Eisenreich, A. Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food. Foods 2022, 11, 1988. [Google Scholar] [CrossRef]
- Toczek, M.; Malinowska, B. Enhanced Endocannabinoid Tone as a Potential Target of Pharmacotherapy. Life Sci. 2018, 204, 20–45. [Google Scholar] [CrossRef]
- Paredes-Ruiz, K.J.; Chavira-Ramos, K.; Orozco-Morales, M.; Karasu, C.; Tinkov, A.A.; Aschner, M.; Santamaría, A.; Colín-González, A.L. On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-Clinical and Clinical Evidence. Neurotox. Res. 2021, 39, 2072–2097. [Google Scholar] [CrossRef]
- Mullard, A. EMA Rewrites Phase I Guidelines in Aftermath of FAAH Tragedy. Nat. Rev. Drug Discov. 2016, 15, 595. [Google Scholar] [CrossRef]
- Hua, D.Y.-H.; Hindocha, C.; Baio, G.; Lees, R.; Shaban, N.; Morgan, C.J.; Mofeez, A.; Curran, H.V.; Freeman, T.P. Effects of Cannabidiol on Anandamide Levels in Individuals with Cannabis Use Disorder: Findings from a Randomised Clinical Trial for the Treatment of Cannabis Use Disorder. Transl. Psychiatry 2023, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Poulia, K.-A.; Bakaloudi, D.R.; Alevizou, M.; Papakonstantinou, E.; Zampelas, A.; Chourdakis, M. Impact of Organic Foods on Chronic Diseases and Health Perception: A Systematic Review of the Evidence. Eur. J. Clin. Nutr. 2025, 79, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Pagidipati, N.J.; Taub, P.R.; Ostfeld, R.J.; Kirkpatrick, C.F. Dietary Patterns to Promote Cardiometabolic Health. Nat. Rev. Cardiol. 2025, 22, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Hentsch, A.; Guberman, M.; Radetzki, S.; Kaushik, S.; Huizenga, M.; He, Y.; Contzen, J.; Kuhn, B.; Benz, J.; Schippers, M.; et al. Highly Specific Miniaturized Fluorescent Monoacylglycerol Lipase Probes Enable Translational Research. J. Am. Chem. Soc. 2025, 147, 10188–10202. [Google Scholar] [CrossRef]
Compound | ID Study | Max Phase | Class | Type | IC50 | Pathology | References |
---|---|---|---|---|---|---|---|
URB-597 | NCT00916201 | 1 | Carbamate | Covalent Irreversible | rFAAH (rBM): 5 nM; hFAAH (hLM): 3 nM | Schizophrenia | [34,42,44,45] |
SSR411298 | NCT01439919, NCT00822744 | 2 | Carbamate | Reversible | mFAAH: 62.5 ± 8.4 nM | Persistent cancer pain and major depressive disorder | [44,46] |
PF-04457845 | NCT01618656, NCT02216097, NCT03386487, NCT00981357 | 2 | Urea | Covalent Irreversible | hFAAH: 7.2 ± 0.63 nM rFAAH: 7.4 ± 0.62 nM | Cannabis dependence, post traumatic stress disorder, cannabis use disorders, and osteoarthritis | [47,48] |
JNJ-42165279 | NCT03664232, NCT02432703, NCT02498392 | 2 | Urea | Covalent Reversible | hFAAH: 70 ± 8 nM rFAAH: 313 ± 28 nM | Autism spectrum disorder, phobic disorders, depressive disorder/anxiety | [47,49] |
BIA 10-2474 | NCT03943017 | / | Urea | Covalent Irreversible | hFAAH (HEK293T): 50 to 70 nM | Health knowledge, attitudes, and safety evaluation | [50] |
OL-135 | / | / | α-Ketoheterocycle | Covalent Reversible | hFAAH: 15 nM | / | [34,42,44,47,51] |
SA-57 | / | / | Carbamate | Covalent Irreversible | hFAAH: 1–3 nM mFAAH: 1–3 nM | / | [52] |
Compound | Class | Group | IC50 | References |
---|---|---|---|---|
CBD | Terpenophenol | Phytocannabinoid | rFAAH 15.2 ± 3.2 μM rFAAH 43.5 ± 1.5 µM rFAAH 8.6 ± 0.2 µM hFAAH > 100 µM | [33,57,60,61,62,63] |
CBN | rFAAH > 50 μM rFAAH 60.0 ± 10 µM hFAAH ~ 100 µM | [33,61,62] | ||
N-benzyl-oleamide | N-benzylamide | Macamide | hFAAH 7.9 µM | [57,64,65] |
N-benzyl-linoleamide | hFAAH 7.2 µM | [57,64,65] | ||
N-benzyl-linolenamide | hFAAH 8.5 µM | [57,64,65,66] | ||
Kaempferol | Flavonoid | Flavonol | hFAAH 1.064 µM | [67,68] |
Galangin | rFAAH 31 μM | [69,70] | ||
Taxifolin | Flavanone | hFAAH 7.20 ± 0.31 µM | [71,72,73,74] | |
Cyanidin-3-glucoside | Anthocyanin | hFAAH 152.1 µM | [75,76] | |
Biochanin-A | Isoflavone | hFAAH 2.1 ± 0.24 and 2.4 μM mFAAH 1.8 μM rFAAH 1.4 μM | [21,77,78,79,80] | |
Genistein | hFAAH 1.3 ± 0.13 and 4.8 µM mFAAH 2.7 µM rFAAH 3.1 µM | [22,78,79,80] | ||
Daidzein | hFAAH 14 µM mFAAH 4.4 µM rFAAH 2.5 µM | [78,80,81] | ||
7-Hydroxyflavone | Flavone | rFAAH 0.99 μM (DMSO) and 0.48 μM (EtOH) hFAAH 2.04 ± 0.19 μM | [70,79,82] | |
Apigenin | rFAAH 35 μM | [83] | ||
Silychristin | Flavonolignans | Silymarin | hFAAH 6.11 ± 1.03 µM | [74,84] |
Silydianin | hFAAH 5.38 ± 0.31 µM | [74,84] | ||
Silybin | hFAAH 5.08 ± 0.08 µM | [57,71,74,84] | ||
Isosilybin | hFAAH 6.18 ± 0.38 µM | [57,74,84] | ||
5′-methoxylicarin A | Neolignan | Nutmeg | hFAAH 4.57 ± 0.66 µM | [85] |
Licarin A | hFAAH 7.02 ± 2.02 µM | [85,86,87] | ||
Malabaricone C | Diarylnonanoids | hFAAH 38.29 ± 6.18 µM | [85,88] |
Compound | ID Study | Status | Max Phase | Participant Group | Treatment | Outcome |
---|---|---|---|---|---|---|
Phytocannabinoids | NCT05044819 | Active, not recruiting | 4 | Cannabidiol | CBD (100 mg/mL) | Change in fibrosis and number of participants, as assessed by an independent adjudication committee |
NCT05649059 | Not yet recruiting | 4 | Cannabidiol | Epidiolex (3 mL) (CBD 100 mg/mL) | Change in subjective anxiety | |
Placebo | Placebo (3 mL) | |||||
NCT03891264 | Terminated | 4 | Cannabidiol | Epidiolex (CBD 100 mg/mL) | Changes in brain positron emission tomography signal | |
NCT04899050 | Completed | 4 | Cannabidiol | Epidiolex (CBD 20 mg/kg two day) | Number of epileptiform activities | |
NCT05864846 | Recruiting | 4 | Cannabidiol | Epidiolex (CBD 100 mg/mL) | Changes in problematic behavior severity, neuropsychiatric disorder assessment, behavior (aberrant, child, adult, and self-reported), patient-reported outcomes, sleep characteristics, executive function, caregiver-reported quality of life and family functioning, overall quality of life, symptom severity perception, retention rate, number of treatment responders, seizure frequency, suicidal ideation and attempts, number of epilepsy-releated hospitalizations, and number of withdrawals due to treatment-emergent adverse events | |
NCT05022186 | Unknown status | 4 | Cannabidiol | CBD oil 5% | Changes in cognitive functions, verbal fluency, dementia assessment, memory performance, executive function, mood and anxiety, and cerebrospinal fluid biomarkers | |
Homotaurine | Vivimind (homotaurine) | |||||
Control | No treatment | |||||
NCT04749628 | Completed | 4 | Placebo | Placebo | Change in total opioid consumption after bilateral total knee arthroplasty | |
Cannabidiol 400 mg | Epidiolex (cannabidiol) (400 mg) | |||||
Cannabidiol 800 mg | Epidiolex (cannabidiol) (800 mg) | |||||
NCT04603391 | Completed | 4 | CBD first, followed by placebo | Epidiolex (100 mg/mL, 7.5 mL) (CBD 750 mg) twice a day for three days, then CBD (750 mg) and ritalin (10 mg) on the fourth day, followed by placebo (7.5 mL) twice a day for three days, then placebo (7.5 mL) and ritalin (10 mg) on the fourth day | Changes in the GMR of Cmax will be compared between the two exposure conditions: methylphenidate + CBD vs. methylphenidate + placebo, and differences in the GMR of the AUCinf for methylphenidate will be compared between the two exposure conditions, specifically methylphenidate with CBD versus methylphenidate with placebo. | |
Placebo first, followed by CBD | Placebo (7.5 mL) twice a day for three days, then placebo (7.5 mL) and ritalin (10 mg) on the fourth day, followed by epidiolex (100 mg/mL, 7.5 mL) (CBD 750 mg) twice a day for three days, then CBD (750 mg) and ritalin (10 mg) | |||||
NCT05324449 | Recruiting | 4 | Treatment | Cannabidiol (100 mg/mL) | Changes in the CGI-I score for anxiety from baseline in pediatric epilepsy | |
NCT04607603 | Completed | 4 | Cannabidiol | CBD 3 caps/day of 200 mg | Change in WOMAC pain score | |
Placebo | Placebo 3 caps/day | |||||
NCT04133480 | Withdrawn | 4 | Cannabidiol | GWP42003-P (CBD 100 mg/mL) | Change in processing speed on the National Institutes of Health Toolbox Cognition Battery in pediatric patients with Lennox–Gastaut syndrome | |
NCT05209867 | Completed | 4 | Cannabidiol | CBD (63 mg/day) | Variations in the number of inflammation-related genes in PBMCs, with a significant change in expression before and after CBD treatment | |
NCT04396730 | Completed | 4 | Placebo first, followed by CBD | Contraceptives along with placebo, followed by contraceptives and CBD oil (400 mg) | Changes in maximum plasma ethinyl estradiol and concentration of levonorgestrel | |
CBD first, followed by placebo | Contraceptives along with CBD oil (400 mg), followed by contraceptives and placebo | |||||
NCT04732169 | Withdrawn | 4 | Cannabidiol | Different concentration of epidiolex (CBD 250 mg/day, 500 mg/day and 1000 mg/day) | Changes in Hamilton Depression Rating Scale-17 | |
Placebo | Placebo | |||||
NCT04989413 | Unknown status | 4 | Cannabinoids | CBD (133 mg) + CBG (66 mg) + THC (4 mg) | Reduction in migraine days | |
Placebo | Placebo oral drops | |||||
NCT04768478 | Withdrawn | 4 | Cannabidiol | CBD (25 mg) three times a day with routine post-operative pain management | Changes is score on pain VAS and level of nausea using VAS after ankle and tibia fracture | |
Control | Placebo three times a day with routine post-operative pain management | |||||
NCT04997954 | Active, not recruiting | 4 | Cannabidiol oil | MediCabilis, which provides CBD + CBDA (50 mg) and THC (<2 mg) | Evaluate safety and tolerability | |
NCT05961501 | Not yet recruiting | 3 | Study group | Solution of CBD and CBN | Changes in muscle pain assessed using the PPT with the Wagner pain test FPX 25 algometer and electrical activity and nerve conduction in muscles assessed using EMG | |
Placebo group | Aqueous solution | |||||
Kaempferol | NCT06060691 | Completed | 1 | Kaempferol | Kaempferol vaginal gel | Change in FSFI |
Placebo | Vaginal plain formulation | |||||
Cyanidin-3-glucoside | NCT04404218 | Unknown status | 2 | Açaí extract | Açaí extract capsule (gallic acid, catechin, chlorogenic acid, caffeic acid, p-coumaric acid, epicatechin, orientin, cyanidin-3-glucoside, luteolin, and apigenin) (520 mg) 3 times a day | Comparison of the two groups based on the 7-Point Ordinal Symptom Scale in patients with COVID-19 |
Placebo | Placebo caps 3 times a day | |||||
Genistein | NCT02796794 | Unknown Status | 4 | Genistein | Genistein (60 mg/day) in addition to their enteral nutrition | Changes in serum TNF-α, interleukin 1-β, interleukin-6, and high mobility group box 1 in sepsis |
Control | Enteral nutrition only | |||||
NCT03167827 | Completed | 4 | Isoflavone and exercise | Isoflavones 1 capsule/day (100 mg composed of 3.3% genistein, 93.5% daidzein and 3.2% glycitein) + aerobic and resistance training program | Changes in vaginal squeeze pressure, muscle function, and electromyography pelvic floor | |
Genistein and Daidzein | NCT01497977 | Completed | 4 | Placebo and exercise | 1 capsule/day of corn starch + aerobic and resistance training program | Change from baseline of serum lipids in postmenopausal women |
Red clover phytoestrogens | Biokain A (23 mg), daidzein (1 mg), formononetin (15 mg), and genistein (1 mg) | |||||
No drugs | No treatment | |||||
NCT02026518 | Completed | 4 | Soy | Soy isoflavones (40 mg/day as 2 capsules/day) + placebo similar to 50,000 IU cholecalciferol | Changes in sensation of pain, flatulence, diarrhea, and constipation in patients with irritable bowel syndrome | |
Soy-cholecalciferol | Soy isoflavones (40 mg/day as 2 capsules/day of genistein, daidzein and glycitin) + supplement of cholecalciferol | |||||
Cholecalciferol | Placebo similar to soy isoflavones (2 capsules/day) + 50,000 IU cholecalciferol | |||||
Placebo | Placebo in similar form of cholecalciferol + soy isoflavones | |||||
NCT01048606 | Completed | 4 | Placebo and exercise | 4 placebo capsules/day + aerobic and resistance exercise session | Changes in body composition, plasma lipid profile (apolipoproteins, cholesterol HDL and LDL, and triglycerides), glucose metabolism, markers of oxidative stress, quality of life, plasma fibrinogen levels | |
Phytoestrogens without exercise | Isoflavones (70 mg/day composed of 44 mg of daidzein, 16 mg of glycitein, and 10 mg of genistein) 4 capsules/day | |||||
Phytoestrogen + exercise Placebo without exercise | Isoflavones (70 mg/day composed of 44 mg of daidzein, 16 mg of glycitein, and 10 mg of genistein) 4 capsules/day + aerobic and resistance exercise session 4 placebo capsules/day | |||||
Macamide | NCT00181961 | Completed | 3 | Maca root 1 | Maca root (1500 mg) | Change in sexual dysfunction inventory score |
Maca root 2 | Maca root (3000 mg) | |||||
NCT00568126 | Completed | 3 | Maca root | Maca root (3 g/day) | Proportion of participants in remission according to ASEX and proportion of participants in remission according to MGH-SFQ | |
Placebo | Inactive placebo | |||||
NCT00575328 | Terminated | 3 | Maca root | Maca root (3 g/day) | ASEX and decreases in MGH-SD | |
Placebo | Inactive placebo | |||||
Silymarin | NCT03130634 | Completed | 4 | FOLFIRI + Silymarin | FOLFIRI + silymarin (150 mg), 3 times/day | Gastrointestinal-related adverse events |
Only FOLFIRI | FOLFIRI | |||||
NCT04816682 | Completed | 4 | LAGOSA (silymarin) | Silymarin tablets T.I.D 3-2-2 (150 mg/tablet) | Changes of at least one point in the COVID-19 stage and enhancement in aminotransferase activity | |
Control | No treatment | |||||
NCT05099601 | Unknown status | 4 | Silymarin | Silymarin topical cream (0.7%) twice daily | Compare the effectiveness of topical silymarin alone versus its combination with microneedling in the treatment of melasma | |
Silymarin + microneedling | Silymarin topical cream (0.7%) twice daily + three sessions of microneedling | |||||
NCT05666765 | Unknown status | 4 | 3 experimental groups: acne vulgaris group 1, 2, and 3. The patients in each group are randomly assigned to each treatment | Isotretinoin (20 mg/day) | Change in Global Acne Grading Classification | |
Silymarin (140 mg/day) | ||||||
Isotretinoin (20 mg/day) + silymarin (140 mg/day) | ||||||
NCT04434404 | Completed | 4 | Placebo | Anthracycline-containing chemotherapy (50 mg/m2) | The addition of L-carnitine could extend the continuous administration of anthracycline-containing chemotherapy | |
L-Carnitine | L-carnitine (3 tabs of 500 mg/tablet) + anthracycline-containing chemotherapy (50 mg/m2) | |||||
Silymarin | Silymarin (140 mg/capsule) + anthracycline-containing chemotherapy (50 mg/m2) | |||||
NCT02347319 | Completed | 4 | Pennel | Garlic oil (50 mg) + DDB | Restore ALT levels to physiological values in patients with chronic liver disease | |
Legalon | Silymarin (140 mg) | |||||
Placebo | Placebo | |||||
NCT04490967 | Unknown status | 4 | A single group of patients using one treatment on one side of the face and the other treatment on the other side | On the left side: silymarin cream (1.4%), 2 times/day | Change in number of total lesions, inflammatory lesions, and non-inflammatory lesions, and evaluation of tolerability | |
On the right side: salicylic acid peeling (30%), every 2 weeks | ||||||
NCT02973295 | Withdrawn | 4 | Silymarin | Silymarin (100 mg/cap of 2 × 200 mg) 8 weeks and 2 × 100 mg 16 weeks) | Reduction in liver steatosis parameters, assessed by CAP and liver fibrosis by LSM | |
Placebo | Placebo capsule (2 × 2 caps 8 weeks and 2 × 1 caps 16 weeks) | |||||
NCT00412763 | Completed | 4 | Silymarin | Silymarin | Assessment of symptoms and signs of acute hepatitis | |
NCT05042245 | Unknown status | 4 | Ornithine aspartate | Ornithine aspartate (3 g) three times a day + silymarin placebo (140 mg) 2 times a day | The percentage of patients with NAFLD whose CAP value normalized of changed by more than 10% | |
Silymarin | Silymarin (140 mg) 2 times a day + ornithine aspartate placebo (3 g) three times a day | |||||
NCT02669641 | Unknown status | 4 | Steatosis group | Silymarin (150 mg/cap) + Phyllanthus niruri (225 mg/cap) + choline (60 mg/cap) | Assessment of MRI spectroscopy in the quantification of fat fraction in patients with hepatic steatosis | |
NCT06724952 | Not yet recruiting | 4 | Silymarin | Methotrexate intramuscularly or subcutaneously + one tab of silymarin (140 mg/cap), once a day | Assessment of DAS-28-CRP for evaluating rheumatoid arthritis disease activity | |
Placebo | Methotrexate intramuscularly or subcutaneously + one cap of placebo, once a day | |||||
NCT05849558 | Recruiting | 4 | Ursoplus + silymarin | Ursodeoxycholic acid (250 mg) + silymarin (140 mg), 2 caps/12 h | Change in total serum bilirubin and direct serum bilirubin, as well as alterations in AST and ALT | |
Ursodeoxycholic acid | Ursodeoxycholic acid (250 mg), 2 caps/12 h | |||||
Placebo | Placebo 2 caps/12 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoara, C.; Fezza, F.; Maccarrone, M. FAAH Modulators from Natural Sources: A Collection of New Potential Drugs. Cells 2025, 14, 551. https://doi.org/10.3390/cells14070551
Nicoara C, Fezza F, Maccarrone M. FAAH Modulators from Natural Sources: A Collection of New Potential Drugs. Cells. 2025; 14(7):551. https://doi.org/10.3390/cells14070551
Chicago/Turabian StyleNicoara, Catalin, Filomena Fezza, and Mauro Maccarrone. 2025. "FAAH Modulators from Natural Sources: A Collection of New Potential Drugs" Cells 14, no. 7: 551. https://doi.org/10.3390/cells14070551
APA StyleNicoara, C., Fezza, F., & Maccarrone, M. (2025). FAAH Modulators from Natural Sources: A Collection of New Potential Drugs. Cells, 14(7), 551. https://doi.org/10.3390/cells14070551