Multi-Fused S,N-Heterocyclic Compounds for Targeting α-Synuclein Aggregates
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.2. Postmortem Tissues
2.3. In Vitro Competition (Ki) Assays
2.4. Two Point Screening Assays
2.5. Metabolic Stability in Human Liver Microsomes
2.6. In Vitro Transport Studies Using MDR1-Transfected MDCK Cells
- P_app is the apparent permeability,
- V_r is the volume of the receiver chamber,
- C0 is the initial concentration in the donor chamber,
- S is the surface area of the cell monolayer (0.7 cm2; for a 24-well insert),
- dC/dt is the rate of appearance of the compound in the receiver chamber.
3. Results and Discussion
3.1. Chemical Synthesis
3.2. Binding Assays and SAR Studies
3.3. Metabolic Stability, Permeability, and Efflux Characteristics of Selected LMD Compounds
Compound ID | % Remaining at 5 min | % Remaining at 30 min | t1/2 (min) | Clint (µg/min/mg) | Clearance Category 2 |
---|---|---|---|---|---|
LMD-032 | 53.3 | 5.02 | 7.05 | 197 | High |
LMD-046 | 3.43 | NC 1 | NC | NC | NC |
LMD-051 | 75.8 | 30.3 | 17.0 | 81.5 | High |
LMD-052 | 39.7 | 5.61 | 7.60 | 182 | High |
LMD-044 | 45.7 | 3.71 | 6.37 | 218 | High |
LMD-045 | 65.3 | 13.5 | 10.5 | 132 | High |
LMD-006 | 39.6 | 4.32 | 6.81 | 203 | High |
LMD-022 | 92.4 | 75.4 | 75.3 | 18.4 | Moderate |
Verapamil | 43.6 | 4.64 | 6.89 | 201 | High |
Compound ID | A→B (×10−6 cm/s) | B→A (×10−6 cm/s) | Efflux Ratio (B→A/A→B) | Permeability Category | Efflux Category |
---|---|---|---|---|---|
LMD-022 | 40.6 | 37.6 | 0.93 | High | Not a substrate |
Digoxin | 1.65 | 24 | 14.5 | Low | Substrate of efflux |
Propranolol | 9.28 | 8.03 | 0.9 | Medium | Not a substrate |
Radioligand | Ki (nM) |
---|---|
[3H]PiB | >10,000 |
[3H]MK-6240 | >10,000 |
[3H]Z-2340 | >10,000 |
[3H]PI-2620 | 2764 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Positron Emission Tomography |
PD | Parkinson’s disease |
DLB | dementia with Lewy bodies |
MSA | multiple system atrophy |
References
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef]
- Koga, S.; Sekiya, H.; Kondru, N.; Ross, O.A.; Dickson, D.W. Neuropathology and molecular diagnosis of Synucleinopathies. Mol. Neurodegener. 2021, 16, 83. [Google Scholar] [CrossRef]
- Kuo, G.; Kumbhar, R.; Blair, W.; Dawson, V.L.; Dawson, T.M.; Mao, X. Emerging targets of α-synuclein spreading in α-synucleinopathies: A review of mechanistic pathways and interventions. Mol. Neurodegener. 2025, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Tarutani, A.; Hasegawa, M. Chapter Eighteen—Prion-like propagation of α-synuclein in neurodegenerative diseases. In Progress in Molecular Biology and Translational Science; Teplow, D.B., Ed.; Academic Press: Oxford, UK, 2019; Volume 168, pp. 323–348. [Google Scholar]
- Radad, K.; Moldzio, R.; Krewenka, C.; Kranner, B.; Rausch, W.-D. Pathophysiology of non-motor signs in Parkinson’s disease: Some recent updating with brief presentation. Explor. Neuroprotective Ther. 2023, 3, 24–46. [Google Scholar] [CrossRef]
- Kotzbauer, P.T.; Tu, Z.; Mach, R.H. Current status of the development of PET radiotracers for imaging alpha synuclein aggregates in Lewy bodies and Lewy neurites. Clin. Transl. Imaging 2017, 5, 3–14. [Google Scholar] [CrossRef]
- Korat, Š.; Bidesi, N.S.R.; Bonanno, F.; Di Nanni, A.; Hoàng, A.N.N.; Herfert, K.; Maurer, A.; Battisti, U.M.; Bowden, G.D.; Thonon, D.; et al. Alpha-Synuclein PET Tracer Development—An Overview about Current Efforts. Pharmaceuticals 2021, 14, 847. [Google Scholar] [CrossRef]
- Alam, M.M.; Lee, S.H.; Wasim, S.; Lee, S.-Y. PET tracer development for imaging α-synucleinopathies. Arch. Pharmacal Res. 2025, 48, 333–350. [Google Scholar] [CrossRef]
- Mekala, S.; Wu, Y.; Li, Y.-M. Strategies of positron emission tomography (PET) tracer development for imaging of tau and α-synuclein in neurodegenerative disorders. RSC Med. Chem. 2025, 16, 605–639. [Google Scholar] [CrossRef]
- Park, H.; Kam, T.-I.; Dawson, V.L.; Dawson, T.M. α-Synuclein pathology as a target in neurodegenerative diseases. Nat. Rev. Neurol. 2025, 21, 32–47. [Google Scholar] [CrossRef]
- Fernandes Gomes, B.; Farris, C.M.; Ma, Y.; Concha-Marambio, L.; Lebovitz, R.; Nellgård, B.; Dalla, K.; Constantinescu, J.; Constantinescu, R.; Gobom, J.; et al. α-Synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Park. Relat. Disord. 2023, 117, 105807. [Google Scholar] [CrossRef]
- Kim, H.Y.; Chia, W.K.; Hsieh, C.-J.; Saturnino Guarino, D.; Graham, T.J.A.; Lengyel-Zhand, Z.; Schneider, M.; Tomita, C.; Lougee, M.G.; Kim, H.J.; et al. A Novel Brain PET Radiotracer for Imaging Alpha Synuclein Fibrils in Multiple System Atrophy. J. Med. Chem. 2023, 66, 12185–12202. [Google Scholar] [CrossRef]
- Di Nanni, A.; Saw, R.S.; Battisti, U.M.; Bowden, G.D.; Boeckermann, A.; Bjerregaard-Andersen, K.; Pichler, B.J.; Herfert, K.; Herth, M.M.; Maurer, A. A Fluorescent Probe as a Lead Compound for a Selective α-Synuclein PET Tracer: Development of a Library of 2-Styrylbenzothiazoles and Biological Evaluation of [18F]PFSB and [18F]MFSB. ACS Omega 2023, 8, 31450–31467. [Google Scholar] [CrossRef]
- Smith, R.; Capotosti, F.; Schain, M.; Ohlsson, T.; Vokali, E.; Molette, J.; Touilloux, T.; Hliva, V.; Dimitrakopoulos, I.K.; Puschmann, A.; et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat. Commun. 2023, 14, 6750. [Google Scholar] [CrossRef] [PubMed]
- Kuebler, L.; Buss, S.; Leonov, A.; Ryazanov, S.; Schmidt, F.; Maurer, A.; Weckbecker, D.; Landau, A.M.; Lillethorup, T.P.; Bleher, D.; et al. [11C]MODAG-001—Towards a PET tracer targeting α-synuclein aggregates. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1759–1772. [Google Scholar] [CrossRef] [PubMed]
- Pees, A.; Tong, J.; Birudaraju, S.; Munot, Y.S.; Liang, S.H.; Saturnino Guarino, D.; Mach, R.H.; Mathis, C.A.; Vasdev, N. Development of Pyridothiophene Compounds for PET Imaging of α-Synuclein. Chemistry 2024, 30, e202303921. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Zhang, Z.; Wu, S.; Ye, K. Positron emission tomography tracers for synucleinopathies. Mol. Neurodegener. 2025, 20, 1. [Google Scholar] [CrossRef]
- Xiang, J.; Tao, Y.; Xia, Y.; Luo, S.; Zhao, Q.; Li, B.; Zhang, X.; Sun, Y.; Xia, W.; Zhang, M.; et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023, 186, 3350–3367.e19. [Google Scholar] [CrossRef]
- Endo, H.; Ono, M.; Takado, Y.; Matsuoka, K.; Takahashi, M.; Tagai, K.; Kataoka, Y.; Hirata, K.; Takahata, K.; Seki, C.; et al. Imaging α-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron 2024, 112, 2540–2557.e8. [Google Scholar] [CrossRef]
- Tian, G.-L.; Hsieh, C.-J.; Guarino, D.S.; Graham, T.J.A.; Lengyel-Zhand, Z.; Schmitz, A.; Chia, W.K.; Young, A.J.; Crosby, J.-G.; Plakas, K.; et al. The development of a PET radiotracer for imaging alpha synuclein aggregates in Parkinson’s disease. RSC Med. Chem. 2025, 16, 2743–2753. [Google Scholar]
- Graham, T.J.A.; Lindberg, A.; Tong, J.; Stehouwer, J.S.; Vasdev, N.; Mach, R.H.; Mathis, C.A. In Silico Discovery and Subsequent Characterization of Potent 4R-Tauopathy Positron Emission Tomography Radiotracers. J. Med. Chem. 2023, 66, 10628–10638. [Google Scholar] [CrossRef]
- Come, J.H.; Collier, P.N.; Henderson, J.A.; Pierce, A.C.; Davies, R.J.; Le Tiran, A.; O’Dowd, H.; Bandarage, U.K.; Cao, J.; Deininger, D.; et al. Design and Synthesis of a Novel Series of Orally Bioavailable, CNS-Penetrant, Isoform Selective Phosphoinositide 3-Kinase γ (PI3Kγ) Inhibitors with Potential for the Treatment of Multiple Sclerosis (MS). J. Med. Chem. 2018, 61, 5245–5256. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Stehouwer, J.S.; Ummenthala, G.R.; Munot, Y.S.; Vasdev, N. Multi-Fused S,N-Heterocyclic Compounds for Targeting α-Synuclein Aggregates. Cells 2025, 14, 1531. https://doi.org/10.3390/cells14191531
Zheng C, Stehouwer JS, Ummenthala GR, Munot YS, Vasdev N. Multi-Fused S,N-Heterocyclic Compounds for Targeting α-Synuclein Aggregates. Cells. 2025; 14(19):1531. https://doi.org/10.3390/cells14191531
Chicago/Turabian StyleZheng, Chao, Jeffrey S. Stehouwer, Goverdhan Reddy Ummenthala, Yogeshkumar S. Munot, and Neil Vasdev. 2025. "Multi-Fused S,N-Heterocyclic Compounds for Targeting α-Synuclein Aggregates" Cells 14, no. 19: 1531. https://doi.org/10.3390/cells14191531
APA StyleZheng, C., Stehouwer, J. S., Ummenthala, G. R., Munot, Y. S., & Vasdev, N. (2025). Multi-Fused S,N-Heterocyclic Compounds for Targeting α-Synuclein Aggregates. Cells, 14(19), 1531. https://doi.org/10.3390/cells14191531