Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Reagents
2.3. Copper-64 Accumulation In Vitro
2.4. Western Blot Analyses
2.5. Cell Viability Assay
2.6. Cell Confluency
2.7. Acidic Activation of OM
2.8. UPLC/MS Analyses
2.9. HPLC Analyses
2.10. Statistical Analysis
3. Results
3.1. Expression of Copper Transport Proteins in PanC-1, HPaSteC, and HepG2
3.2. Modulation of Intracellular Copper Levels by Inhibition of ATP7A/B Expression
3.3. Modulation of Intracellular Copper Levels by Copper Chelation
3.4. Cellular Anticancer Acitivity of Cisplatin with and Without Copper-Transport Modulating Drugs
4. Discussion
5. Conclusions
6. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WCRF. World Cancer Research Fund. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/pancreatic-cancer-statistics/ (accessed on 7 July 2025).
- DRK. Deutsche Krebsregister e.V. Available online: https://www.dkr.de/ (accessed on 7 July 2025).
- NIH. Surveillance, Epidemiology, and End Results Program. National Cancer Institute. Available online: https://seer.cancer.gov/statistics/preliminary-estimates/ (accessed on 7 July 2025).
- Large, T.Y.S.L.; Bijlsma, M.F.; Kazemier, G.; Laarhoven, H.W.M.v.; Giovannetti, E.; Jimenez, C.R. Key Biological Processes Driving Metastatic Spread of Pancreatic Cancer as Identified by Multi-Omics Studies. Semin. Cancer Biol. 2017, 44, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-Z.; Cui, Z.-M.; Liu, X. Current Developments, Problems and Solutions in the Non-Surgical Treatment of Pancreatic Cancer. World J. Gastrointest. Oncol. 2013, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, S.; Guillaumond, F. LDL Receptor: An Open Route to Feed Pancreatic Tumor Cells. Mol. Cell. Oncol. 2015, 3, e1033586. [Google Scholar] [CrossRef]
- Ghaneh, P.; Costello, E.; Neoptolemos, J.P. Biology and Management of Pancreatic Cancer. Postgrad. Med. J. 2008, 84, 478–497. [Google Scholar] [CrossRef]
- Phillips, P. Pancreatic Stellate Cells and Fibrosis. In Pancreatic Cancer and Tumor Microenvironment; Grippo, P.J., Munshi, H.G., Eds.; Transworld Research Network: Trivandrum, India, 2012. [Google Scholar]
- Apte, M.V.; Pirola, R.C.; Wilson, J.S. Pancreatic Stellate Cells: A Starring Role in Normal and Diseased Pancreas. Front. Physiol. 2012, 3, 344. [Google Scholar] [CrossRef]
- Dubessy, C. Spheroids in Radiobiology and Photodynamic Therapy. Crit. Rev. Oncol. Hematol. 2000, 36, 179–192. [Google Scholar] [CrossRef]
- Ferdek, P.E.; Jakubowska, M.A. Biology of Pancreatic Stellate Cells—More Than Just Pancreatic Cancer. Pfluegers Arch. Eur. J. Physiol. 2017, 469, 1039–1050. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N. Increased Survival in Pancreatic Cancer with Nab-Paclitaxel Plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C. Folfirinox Versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef]
- Tong, H.; Fan, Z.; Liu, B.; Lu, T. The Benefits of Modified Folfirinox for Advanced Pancreatic Cancer and Its Induced Adverse Events: A Systematic Review and Meta-Analysis. Sci. Rep. 2018, 8, 8666. [Google Scholar] [CrossRef] [PubMed]
- Rapposelli, I.G.; Casadei-Gardini, A.; Vivaldi, C.; Bartolini, G.; Bernardini, L.; Passardi, A.; Frassineti, G.L.; Massa, V.; Cucchetti, A. Equivalent Efficacy but Different Safety Profiles of Gemcitabine Plus Nab-Paclitaxel and Folfirinox in Metastatic Pancreatic Cancer. Biomolecules 2021, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Reinacher-Schick, A.; Arnold, D.; Venerito, M.; Goekkurt, E.; Kraeft, A.-L.; Seufferlein, T. Platinum-Based Chemotherapy in Locally Advanced or Metastatic Pancreatic Ductal Adenocarcinoma: Summary of Evidence and Application in Clinical Practice. Oncol. Res. Treat. 2022, 45, 752–763. [Google Scholar] [CrossRef]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’Reilly, E.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K. Pancreatic Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef]
- Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019, 20, 4504. [Google Scholar] [CrossRef]
- Zhou, X.; An, J.; Kurilov, R.; Brors, B.; Hu, K.; Peccerella, T.; Roessler, S.; Pfütze, K.; Schulz, A.; Wolf, S. Persister Cell Phenotypes Contribute to Poor Patient Outcomes after Neoadjuvant Chemotherapy in PDAC. Nat. Cancer 2023, 4, 1362–1381. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems Biology of Cisplatin Resistance: Past, Present and Future. Cell Death Dis. 2014, 5, e1257. [Google Scholar] [CrossRef] [PubMed]
- Ryumon, S.; Okui, T.; Kunisada, Y.; Kishimoto, K.; Shimo, T.; Hasegawa, K.; Ibaragi, S.; Akiyama, K.; Ha, N.T.T.; Hassan, N.M.M. Ammonium Tetrathiomolybdate Enhances the Antitumor Effect of Cisplatin Via the Suppression of Atpase Copper Transporting Beta in Head and Neck Squamous Cell Carcinoma. Oncol. Rep. 2019, 42, 2611–2621. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Sumizawa, T.; Mutoh, M.; Chen, Z.-S.; Terada, K.; Furukawa, T.; Yang, X.-L.; Gao, H.; Miura, N.; Sugiyama, T. Copper-Transporting P-Type Adenosine Triphosphatase (Atp7b) is Associated with Cisplatin Resistance. Cancer Res. 2000, 60, 1312–1316. [Google Scholar]
- Kilari, D.; Guancial, E.; Kim, E.S. Role of Copper Transporters in Platinum Resistance. World J. Clin. Oncol. 2016, 7, 106. [Google Scholar] [CrossRef]
- Schwartz, M.K. Role of Trace Elements in Cancer. Cancer Res. 1975, 35 Pt 2, 3481–3487. [Google Scholar]
- Gupte, A.; Mumper, R.J. Elevated Copper and Oxidative Stress in Cancer Cells as a Target for Cancer Treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef]
- Holzer, A.K.; Varki, N.M.; Le, Q.T.; Gibson, M.A.; Naredi, P.; Howell, S.B. Expression of the Human Copper influx Transporter 1 in Normal and Malignant Human Tissues. J. Histochem. Cytochem. 2006, 54, 1041–1049. [Google Scholar] [CrossRef]
- Davis, C.I.; Gu, X.; Kiefer, R.M.; Ralle, M.; Gade, T.P.; Brady, D.C. Altered Copper Homeostasis Underlies Sensitivity of Hepatocellular Carcinoma to Copper Chelation. Metallomics 2020, 12, 1995–2008. [Google Scholar] [CrossRef]
- Aida, T.; Takebayashi, Y.; Shimizu, T.; Okamura, C.; Higasimoto, M.; Kanzaki, A.; Nakayama, K.; Terada, K.; Sugiyama, T.; Miyazaki, K. Expression of Copper-Transporting P-Type Adenosine Triphosphatase (Atp7b) as a Prognostic Factor in Human Endometrial Carcinoma. Gynecol. Oncol. 2005, 97, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Hueting, R. Radiocopper for the Imaging of Copper Metabolism: Radiocopper for the Imaging of Copper Metabolism. J. Label. Compd. Radiopharm. 2014, 57, 231–238. [Google Scholar] [CrossRef]
- Xue, Q.; Kang, R.; Klionsky, D.J.; Tang, D.; Liu, J.; Chen, X. Copper Metabolism in Cell Death and Autophagy. Autophagy 2023, 19, 2175–2195. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Dolgova, N.V.; Dmitriev, O.Y. Dynamics of the Metal Binding Domains and Regulation of the Human Copper Transporters Atp7b and Atp7a. IUBMB Life 2017, 69, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Schulte, N.B.; Pushie, M.J.; Martinez, A.; Sendzik, M.; Escobedo, M.; Kuter, K.; Haas, K.L. Exploration of the Potential Role of Serum Albumin in the Delivery of Cu (I) to Ctr1. Inorg. Chem. 2023, 62, 4021–4034. [Google Scholar] [CrossRef]
- Jong, N.N.; McKeage, M.J. Emerging Roles of Metal Solute Carriers in Cancer Mechanisms and Treatment. Biopharm. Drug Dispos. 2014, 35, 450–462. [Google Scholar] [CrossRef]
- Lee, J.; Peña, M.M.O.; Nose, Y.; Thiele, D.J. Biochemical Characterization of the Human Copper Transporter Ctr1. J. Biol. Chem. 2002, 277, 4380–4387. [Google Scholar] [CrossRef]
- Pierson, H.; Muchenditsi, A.; Kim, B.-E.; Ralle, M.; Zachos, N.; Huster, D.; Lutsenko, S. The Function of Atpase Copper Transporter Atp7b in Intestine. Gastroenterology 2018, 154, 168–180.e165. [Google Scholar] [CrossRef]
- Lukanović, D.; Herzog, M.; Kobal, B.; Černe, K. The Contribution of Copper Efflux Transporters Atp7a and Atp7b to Chemoresistance and Personalized Medicine in Ovarian Cancer. Biomed. Pharmacother. 2020, 129, 110401. [Google Scholar] [CrossRef]
- Lutsenko, S.; Barnes, N.L.; Bartee, M.Y.; Dmitriev, O.Y. Function and Regulation of Human Copper-Transporting Atpases. Physiol. Rev. 2007, 87, 1011–1046. [Google Scholar] [CrossRef]
- La Fontaine, S.; Mercer, J.F. Trafficking of the Copper-ATPases, Atp7a and Atp7b: Role in copper homeostasis. Arch. Biochem. Biophys. 2007, 463, 149–167. [Google Scholar] [CrossRef]
- Katano, K.; Safaei, R.; Samimi, G.; Holzer, A.; Rochdi, M.; Howell, S.B. The Copper Export Pump Atp7b Modulates the Cellular Pharmacology of Carboplatin in Ovarian Carcinoma Cells. Mol. Pharmacol. 2003, 64, 466–473. [Google Scholar] [CrossRef] [PubMed]
- da Veiga Moreira, J.; Schwartz, L.; Jolicoeur, M. Targeting Mitochondrial Singlet Oxygen Dynamics Offers New Perspectives for Effective Metabolic Therapies of Cancer. Front. Oncol. 2020, 10, 573399. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.A.; Patel, D.; Wu, X.; Hasinoff, B.B. Molecular Mechanisms of the Biological Activity of the Anticancer Drug Elesclomol and Its Complexes with Cu (Ii), Ni (Ii) and Pt (Ii). J. Inorg. Biochem. 2013, 126, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mariniello, M.; Petruzzelli, R.; Wanderlingh, L.G.; La Montagna, R.; Carissimo, A.; Pane, F.; Amoresano, A.; Ilyechova, E.Y.; Galagudza, M.M.; Catalano, F.; et al. Synthetic Lethality Screening Identifies FDA-Approved Drugs that Overcome Atp7b-Mediated Tolerance of Tumor Cells to Cisplatin. Cancers 2020, 12, 608. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.S.; Petris, M.J.; Niki, Y.; Karaman-Jurukovska, N.; Muizzuddin, N.; Ichihashi, M.; Yarosh, D.B. Omeprazole, a Gastric Proton Pump Inhibitor, Inhibits Melanogenesis by Blocking Atp7a Trafficking. J. Investig. Dermatol. 2015, 135, 834–841. [Google Scholar] [CrossRef]
- Gao, W.; Huang, Z.; Duan, J.; Nice, E.C.; Lin, J.; Huang, C. Elesclomol Induces Copper-Dependent Ferroptosis in Colorectal Cancer Cells Via Degradation of Atp7a. Mol. Oncol. 2021, 15, 3527–3544. [Google Scholar] [CrossRef]
- Gohil, V.M. Repurposing Elesclomol, an Investigational Drug for the Treatment of Copper Metabolism Disorders. Expert Opin. Investig. Drugs 2021, 30, 1–4. [Google Scholar] [CrossRef]
- Doctor, A.; Laube, M.; Meister, S.; Kiss, O.C.; Kopka, K.; Hauser, S.; Pietzsch, J. Combined PET Radiotracer Approach Reveals Insights into Stromal Cell-Induced Metabolic Changes in Pancreatic Cancer In Vitro and In Vivo. Cancers 2024, 16, 3393. [Google Scholar] [CrossRef]
- Doctor, A.; Seifert, V.; Ullrich, M.; Hauser, S.; Pietzsch, J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers 2020, 12, 2765. [Google Scholar] [CrossRef]
- Lemm, S.; Köhler, S.; Wodtke, R.; Jung, F.; Küpper, J.-H.; Pietzsch, J.; Laube, M. Investigation of Radiotracer Metabolic Stability in vitro with Cyp-Overexpressing Hepatoma Cell Lines. Cells 2022, 11, 2447. [Google Scholar] [CrossRef]
- Mitsuno, M.; Kitajima, Y.; Ohtaka, K.; Kai, K.; Hashiguchi, K.; Nakamura, J.; Hiraki, M.; Noshiro, H.; Miyazaki, K. Tranilast Strongly Sensitizes Pancreatic Cancer Cells to Gemcitabine Via Decreasing Protein Expression of Ribonucleotide Reductase 1. Int. J. Oncol. 2010, 36, 341–349. [Google Scholar]
- Nakashima, T.; Nagano, S.; Setoguchi, T.; Sasaki, H.; Saitoh, Y.; Maeda, S.; Komiya, S.; Taniguchi, N. Tranilast Enhances the Effect of Anticancer Agents in Osteosarcoma. Oncol. Rep. 2019, 42, 176–188. [Google Scholar] [CrossRef]
- Udelnow, A.; Kreyes, A.; Ellinger, S.; Landfester, K.; Walther, P.; Klapperstueck, T.; Wohlrab, J.; Henne-Bruns, D.; Knippschild, U.; Würl, P. Omeprazole Inhibits Proliferation and Modulates Autophagy in Pancreatic Cancer Cells. PLoS ONE 2011, 6, e20143. [Google Scholar] [CrossRef]
- Hasinoff, B.B.; Wu, X.; Yadav, A.A.; Patel, D.; Zhang, H.; Wang, D.-S.; Chen, Z.-S.; Yalowich, J.C. Cellular Mechanisms of the Cytotoxicity of the Anticancer Drug Elesclomol and Its Complex with Cu (II). Biochem. Pharmacol. 2015, 93, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Haase-Kohn, C.; Lenk, J.; Hoppmann, S.; Bergmann, R.; Steinbach, J.; Pietzsch, J. Expression, Purification and Fluorine-18 Radiolabeling of Recombinant S100a4: A Potential Probe for Molecular Imaging of Receptor for Advanced Glycation Endproducts In Vivo? Amino Acids 2011, 41, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Promega. Celltiter-Glo® 2.0 Cell Viability Assay. Available online: https://www.promega.de/en/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/celltiter_glo-2_0-assay/?catNum=G9241#protocols (accessed on 15 September 2025).
- Lindberg, P. The Mechanism of Action of the Gastric Acid Secretion Inhibitor Omeprazole. J. Med. Chem. 1986, 29, 1327–1329. [Google Scholar] [CrossRef] [PubMed]
- Darakhshan, S.; Pour, A.B. Tranilast: A Review of its Therapeutic Applications. Pharmacol. Res. 2015, 91, 15–28. [Google Scholar] [CrossRef]
- Brändström, A.; Lindberg, P.; Bergman, N.; Grundevik, I.; Johnsson, S.; Tekenbergs-Hjelte, L.; Ohelson, K. Chemical Reactions of Omeprazole and Omeprazole Analogues. Vi. The Reactions of Omeprazole in the Absence of 2-Mercaptoethanol. Acta Chem. Scand. 1989, 43, 595–611. [Google Scholar] [CrossRef]
- Ewers, K.M.; Patil, S.; Kopp, W.; Thomale, J.; Quilitz, T.; Magerhans, A.; Wang, X.; Hessmann, E.; Dobbelstein, M. HSP90 Inhibition Synergizes with Cisplatin to Eliminate Basal-Like Pancreatic Ductal Adenocarcinoma Cells. Cancers 2021, 13, 6163. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lew, D.-H.; Chung, S.; Rah, D.-K.; Park, B.-Y. A Clinical Evaluation of Safety and Efficacy of Tranilast for Keloid and Hypertrophic Scars: A Prospective, One-Group, Open-Labeled Study. J. Korean Soc. Plast. Reconstr. Surg. 2002, 29, 162–168. [Google Scholar]
- Takahashi, K.; Menju, T.; Nishikawa, S.; Miyata, R.; Tanaka, S.; Yutaka, Y.; Yamada, Y.; Nakajima, D.; Hamaji, M.; Ohsumi, A. Tranilast Inhibits Tgf-β1–Induced Epithelial-Mesenchymal Transition and Invasion/Metastasis via the Suppression of Smad4 in Human Lung Cancer Cell Lines. Anticancer Res. 2020, 40, 3287–3296. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Protic, O.; Ciavattini, A.; Giannubilo, S.R.; Tranquilli, A.L.; Catherino, W.H.; Castellucci, M.; Ciarmela, P. Tranilast, an Orally Active Antiallergic Compound, Inhibits Extracellular Matrix Production in Human Uterine Leiomyoma and Myometrial Cells. Fertil. Steril. 2014, 102, 597–606. [Google Scholar] [CrossRef]
- Hiroi, M.; Onda, M.; Uchida, E.; Aimoto, T. Anti-Tumor Effect of N-[3,4-Dimethoxycinnamoyl]-Anthranilic Acid (Tranilast) on Experimental Pancreatic Cancer. J. Nippon Med. Sch. 2002, 69, 224–234. [Google Scholar] [CrossRef]
- Lindberg, P. Omeprazole. In Comprehensive Medicinal Chemistry II; Taylor, J.B., Triggle, D.J., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 8, pp. 213–225. [Google Scholar]
- Tutunji, M.F.; Qaisi, A.M.; El-Eswed, B.I.; Tutunji, L.F. Reactions of Sulfenic Acid with 2-Mercaptoethanol: A Mechanism for the Inhibition of Gastric (H+− K+)-Adenosine Triphosphate by Omeprazole. J. Pharm. Sci. 2007, 96, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Qaisi, A.M.; Tutunji, M.F.; Tutunji, L.F. Acid decomposition of Omeprazole in the Absence of Thiol: A Differential Pulse Polarographic Study at the Static Mercury Drop Electrode (SMDE). J. Pharm. Sci. 2006, 95, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Luciani, F.; Spada, M.; De Milito, A.; Molinari, A.; Rivoltini, L.; Montinaro, A.; Marra, M.; Lugini, L.; Logozzi, M.; Lozupone, F. Effect of Proton Pump Inhibitor Pretreatment on Resistance of Solid Tumors to Cytotoxic Drugs. J. Natl. Cancer Inst. 2004, 96, 1702–1713. [Google Scholar] [CrossRef]
- Zheng, P.; Zhou, C.; Lu, L.; Liu, B.; Ding, Y. Elesclomol: A Copper Ionophore Targeting Mitochondrial Metabolism for Cancer Therapy. J. Exp. Clin. Cancer Res. 2022, 41, 1–13. [Google Scholar] [CrossRef]
- Nagai, M.; Vo, N.H.; Ogawa, L.S.; Chimmanamada, D.; Inoue, T.; Chu, J.; Beaudette-Zlatanova, B.C.; Lu, R.; Blackman, R.K.; Barsoum, J. The Oncology Drug Elesclomol Selectively Transports Copper to the Mitochondria to Induce Oxidative Stress in Cancer Cells. Free Radic. Biol. Med. 2012, 52, 2142–2150. [Google Scholar] [CrossRef]
- Gao, J.; Wu, X.; Huang, S.; Zhao, Z.; He, W.; Song, M. Novel Insights into Anticancer Mechanisms of Elesclomol: More Than a Prooxidant Drug. Redox Biol. 2023, 67, 102891. [Google Scholar] [CrossRef]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D. Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef]
- Chen, H.H.; Chen, W.-C.; Liang, Z.-D.; Tsai, W.-B.; Long, Y.; Aiba, I.; Fu, S.; Broaddus, R.; Liu, J.; Feun, L.G. Targeting Drug Transport Mechanisms for Improving Platinum-Based Cancer Chemotherapy. Expert Opin. Ther. Targets 2015, 19, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Shanbhag, V.; Wang, Y.; Lee, J.; Petris, M. A Role for the Atp7a Copper Transporter in Tumorigenesis and Cisplatin Resistance. J. Cancer 2017, 8, 1952. [Google Scholar] [CrossRef] [PubMed]
- Samimi, G.; Varki, N.M.; Wilczynski, S.; Safaei, R.; Alberts, D.S.; Howell, S.B. Increase in Expression of the Copper Transporter Atp7a During Platinum Drug-Based Treatment is Associated with Poor Survival in Ovarian Cancer patients. Clin. Cancer Res. 2003, 9, 5853–5859. [Google Scholar]
- Safaei, R.; Holzer, A.K.; Katano, K.; Samimi, G.; Howell, S.B. The Role of Copper Transporters in the Development of Resistance to Pt Drugs. J. Inorg. Biochem. 2004, 98, 1607–1613. [Google Scholar] [CrossRef]
- McCarroll, J.A.; Naim, S.; Sharbeen, G.; Russia, N.; Lee, J.; Kavallaris, M.; Goldstein, D.; Phillips, P.A. Role of Pancreatic Stellate Cells in Chemoresistance in Pancreatic Cancer. Front. Physiol. 2014, 5, 141. [Google Scholar] [CrossRef] [PubMed]
- Amrutkar, M.; Aasrum, M.; Verbeke, C.S.; Gladhaug, I.P. Secretion of Fibronectin by Human Pancreatic Stellate Cells Promotes Chemoresistance to Gemcitabine in Pancreatic Cancer Cells. BMC Cancer 2019, 19, 596. [Google Scholar] [CrossRef]
- Zisowsky, J.; Koegel, S.; Leyers, S.; Devarakonda, K.; Kassack, M.U.; Osmak, M.; Jaehde, U. Relevance of Drug Uptake and Efflux for Cisplatin Sensitivity of Tumor Cells. Biochem. Pharmacol. 2007, 73, 298–307. [Google Scholar] [CrossRef]
- Ren, F.; Logeman, B.L.; Zhang, X.; Liu, Y.; Thiele, D.J.; Yuan, P. X-Ray Structures of the High-Affinity Copper Transporter Ctr1. Nat. Commun. 2019, 10, 1386. [Google Scholar] [CrossRef]
- Kahra, D.; Kovermann, M.; Wittung-Stafshede, P. The C-Terminus of Human Copper Importer Ctr1 Acts As a Binding Site and Transfers Copper to Atox1. Biophys. J. 2016, 110, 95–102. [Google Scholar] [CrossRef]
- Schwab, S.; Shearer, J.; Conklin, S.E.; Alies, B.; Haas, K.L. Sequence Proximity Between Cu (II) and Cu (I) Binding Sites of Human Copper Transporter 1 Model Peptides Defines Reactivity with Ascorbate and O2. J. Inorg. Biochem. 2016, 158, 70–76. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Arnesano, F.; Scintilla, S.; Rossetti, G.; Ippoliti, E.; Carloni, P.; Natile, G. Structural Determinants of Cisplatin and Transplatin Binding to the Met-Rich Motif of Ctr1: A Computational Spectroscopy Approach. J. Chem. Theory Comput. 2012, 8, 2912–2920. [Google Scholar] [CrossRef]
- Guo, Y.; Smith, K.; Petris, M.J. Cisplatin Stabilizes a Multimeric Complex of the Human Ctr1 Copper Transporter: Requirement for the Extracellular Methionine-Rich Clusters. J. Biol. Chem. 2004, 279, 46393–46399. [Google Scholar] [CrossRef]
- Sinani, D.; Adle, D.J.; Kim, H.; Lee, J. Distinct Mechanisms for Ctr1-Mediated Copper and Cisplatin Transport. J. Biol. Chem. 2007, 282, 26775–26785. [Google Scholar] [CrossRef]
- Arnesano, F.; Nardella, M.I.; Natile, G. Platinum Drugs, Copper Transporters and Copper Chelators. Coord. Chem. Rev. 2018, 374, 254–260. [Google Scholar] [CrossRef]
- Liao, Y.; Zhao, J.; Bulek, K.; Tang, F.; Chen, X.; Cai, G.; Jia, S.; Fox, P.L.; Huang, E.; Pizarro, T.T. Inflammation Mobilizes Copper Metabolism to Promote Colon Tumorigenesis Via an IL-17-Steap4-Xiap Axis. Nat. Commun. 2020, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Qin, X.; Wang, J.; Yang, Q.; Fan, Y.; Xu, D. The Cuproptosis-Associated 13 Gene Signature as a Robust Predictor for Outcome and Response to Immune-and Targeted-Therapies in Clear Cell Renal Cell Carcinoma. Front. Immunol. 2022, 13, 971142. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, J.; Tao, L.; Huang, H.; Gao, Y.; Yao, J.; Liu, Z. Cuproptosis-Related lncrnas Are Biomarkers of Prognosis and Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. Front. Genet. 2022, 13, 947551. [Google Scholar] [CrossRef]
- Velma, V.; Dasari, S.R.; Tchounwou, P.B. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark. Insights 2016, 11, BMI.S39445. [Google Scholar] [CrossRef]
- Vishnoi, M.; Mishra, D.K.; Thrall, M.J.; Kurie, J.M.; Kim, M.P. Circulating Tumor Cells from a 4-Dimensional Lung Cancer Model Are Resistant to Cisplatin. J. Thorac. Cardiovasc. Surg. 2014, 148, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Dahle, M.A.; Lystad, M.H.; Marignol, L.; Karlsen, M.; Redalen, K.R. In Vitro and in Vivo Characterization of [64Cu][Cu (Elesclomol)] as a Novel Theranostic Agent for Hypoxic Solid Tumors. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3576–3588. [Google Scholar] [CrossRef]
- Peng, F.; Liu, J.; Wu, J.-s.; Lu, X.; Muzik, O. Mouse Extrahepatic Hepatoma Detected on Micropet Using Copper (Ii)-64 Chloride Uptake Mediated by Endogenous Mouse Copper Transporter 1. Mol. Imaging Biol. 2005, 7, 325–329. [Google Scholar] [CrossRef]
- Guthrie, L.M.; Soma, S.; Yuan, S.; Silva, A.; Zulkifli, M.; Snavely, T.C.; Greene, H.F.; Nunez, E.; Lynch, B.; De Ville, C. Elesclomol Alleviates Menkes Pathology and Mortality by Escorting Cu to Cuproenzymes in Mice. Science 2020, 368, 620–625. [Google Scholar] [CrossRef]
- Vonlaufen, A.; Joshi, S.; Qu, C.; Phillips, P.A.; Xu, Z.; Parker, N.R.; Toi, C.S.; Pirola, R.C.; Wilson, J.S.; Goldstein, D.; et al. Pancreatic Stellate Cells: Partners in Crime with Pancreatic Cancer Cells. Cancer Res. 2008, 68, 2085–2093. [Google Scholar] [CrossRef]
- Peng, F. Recent Advances in Cancer Imaging with 64CuCl2 Pet/Ct. Nucl. Med. Mol. Imaging 2022, 56, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, M.; Bergmann, R.; Peitzsch, M.; Zenker, E.F.; Cartellieri, M.; Bachmann, M.; Ehrhart-Bornstein, M.; Block, N.L.; Schally, A.V.; Eisenhofer, G.; et al. Multimodal Somatostatin Receptor Theranostics Using [64Cu] Cu-/[177Lu] Lu-Dota-(Tyr3) Octreotate and An-238 in a Mouse Pheochromocytoma Model. Theranostics 2016, 6, 650. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, M.; Richter, S.; Liers, J.; Drukewitz, S.; Friedemann, M.; Kotzerke, J.; Ziegler, C.G.; Nölting, S.; Kopka, K.; Pietzsch, J. Epigenetic Drugs in Somatostatin Type 2 Receptor Radionuclide Theranostics and Radiation Transcriptomics in Mouse Pheochromocytoma Models. Theranostics 2023, 13, 278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doctor, A.; Schädlich, J.; Hauser, S.; Pietzsch, J. Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma. Cells 2025, 14, 1489. https://doi.org/10.3390/cells14191489
Doctor A, Schädlich J, Hauser S, Pietzsch J. Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma. Cells. 2025; 14(19):1489. https://doi.org/10.3390/cells14191489
Chicago/Turabian StyleDoctor, Alina, Jonas Schädlich, Sandra Hauser, and Jens Pietzsch. 2025. "Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma" Cells 14, no. 19: 1489. https://doi.org/10.3390/cells14191489
APA StyleDoctor, A., Schädlich, J., Hauser, S., & Pietzsch, J. (2025). Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma. Cells, 14(19), 1489. https://doi.org/10.3390/cells14191489