Aortic Valve Defect as an Independent Risk Factor for Endothelial Dysfunction
Abstract
:1. Introduction
2. Aortic Stenosis (AS) as an Independent Risk Factor for Systemic Endothelial Dysfunction
2.1. Arguments Supporting the Notion of Aortic Stenosis as an Independent Risk Factor for the Loss of Endothelial Function
2.2. Bicuspid Aortic Valve (BAV) as Additional Potential Evidence of Independent Aortic Valve Dysfunction’s Impact on Impaired Endothelial Function
3. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
ADMA | asymmetric dimethylarginine |
ARG-1 | arginase-1 |
AS | aortic stenosis |
BAV | bicuspid aortic valve |
BH4 | tetrahydrobiopterin |
CBF | coronary blood flow |
CFR | coronary flow reserve |
CNN1 | calponin 1 |
EC | endothelial cells |
ED | endothelial dysfunction |
eHb | extracellular hemoglobin |
EMPs | endothelial microparticles |
EndoMT | endothelial-to-mesenchymal transition |
eNOS | endothelial nitric oxide synthase |
FMD | flow-mediated dilation |
HSPG | heparan sulfate proteoglycans |
ICAM-1 | intracellular adhesion molecule 1 |
KLF2 | Krüppel-like factor 2 |
KLF4 | Kruppel-like factor 4 |
MACE | major adverse cardiac events |
mCRP | monomeric isoform of C-reactive protein |
mi-R200 | microRNA-200 |
miRNAs | microRNAs |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NO | nitric oxide |
NO2− | nitrites |
NO3− | nitrates |
O₂●− | superoxide radical |
ONOO− | peroxynitrite |
pCRP | pentameric isoform of C-reactive protein |
PECAM-1 | platelet endothelial cell adhesion molecule 1 |
PI3K | phosphatidylinositol 3-kinase |
Piezo-1 | Piezo-type mechanosensitive ion channel component 1 |
ROS | reactive oxygen species |
SAVR | surgical aortic valve replacement |
SMCs | smooth muscle cells |
Src | proto-oncogenic tyrosine kinase |
TAVI | transcatheter aortic valve implantation |
TAVR | transcatheter aortic valve replacement |
TGF-β | transforming growth factor-beta |
VCAM-1 | Vascular Cell Adhesion Molecule 1 |
VEGFR | vascular endothelial growth factor receptor |
VEGFR2 | vascular endothelial growth factor receptor 2 |
VICs | valvular interstitial cells |
VSMC | vascular smooth muscle cell |
WSS | wall shear stress |
References
- Anderson, T.J.; Uehata, A.; Gerhard, M.D.; Meredith, I.T.; Knab, S.; Delagrange, D.; Lieberman, E.H.; Ganz, P.; Creager, M.A.; Yeung, A.C.; et al. Close Relation of Endothelial Function in the Human Coronary and Peripheral Circulations. J. Am. Coll. Cardiol. 1995, 26, 1235–1241. [Google Scholar] [CrossRef]
- Kwak, B.R.; Bäck, M.; Bochaton-Piallat, M.-L.; Caligiuri, G.; Daemen, M.J.A.P.; Davies, P.F.; Hoefer, I.E.; Holvoet, P.; Jo, H.; Krams, R.; et al. Biomechanical Factors in Atherosclerosis: Mechanisms and Clinical Implications†. Eur. Heart J. 2014, 35, 3013–3020. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Kwon, T.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic Value of Flow—Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta—Analysis. J. Am. Heart Assoc. 2024, 4, e002270. [Google Scholar] [CrossRef]
- Panza, J.A.; Quyyumi, A.A.; Brush, J.E.; Epstein, S.E. Abnormal Endothelium-Dependent Vascular Relaxation in Patients with Essential Hypertension. N. Engl. J. Med. 1990, 323, 22–27. [Google Scholar] [CrossRef]
- JBrush, E.; Faxon, D.P.; Salmon, S.; Jacobs, A.K.; Ryan, T.J. Abnormal endothelium-dependent coronary vasomotion in hypertensive patients. J. Am. Coll. Cardiol. 1992, 19, 809–815. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Larson, M.G.; Keyes, M.J.; Mitchell, G.F.; Vasan, R.S.; Keaney, J.F.; Lehman, B.T.; Fan, S.; Osypiuk, E.; Vita, J.A. Clinical Correlates and Heritability of Flow-Mediated Dilation in the Community. Circulation 2004, 109, 613–619. [Google Scholar] [CrossRef]
- McVeigh, G.E.; Brennan, G.M.; Johnston, G.D.; McDermott, B.J.; McGrath, L.T.; Henry, W.R.; Andrews, J.W.; Hayes, J.R. Impaired Endothelium-Dependent and Independent Vasodilation in Patients with Type 2 (Non-Insulin-Dependent) Diabetes Mellitus. Diabetologia 1992, 35, 771–776. [Google Scholar] [CrossRef]
- Nitenberg, A.; Ledoux, S.; Valensi, P.; Sachs, R.; Attali, J.-R.; Antony, I. Impairment of Coronary Microvascular Dilation in Response to Cold Pressor–Induced Sympathetic Stimulation in Type 2 Diabetic Patients With Abnormal Stress Thallium Imaging. Diabetes 2001, 50, 1180–1185. [Google Scholar] [CrossRef]
- Williams, S.B.; Cusco, J.A.; Roddy, M.A.; Johnstone, M.T.; Creager, M.A. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol. 1996, 27, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Alexander, Y.; Osto, E.; Schmidt-Trucksäss, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Bäck, M.; Badimon, L.; Cosentino, F.; et al. Endothelial Function in Cardiovascular Medicine: A Consensus Paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Dikalov, S.; Itani, H.; Richmond, B.; Arslanbaeva, L.; Vergeade, A.; Rahman, S.M.J.; Boutaud, O.; Blackwell, T.; Massion, P.P.; Harrison, D.G.; et al. Tobacco Smoking Induces Cardiovascular Mitochondrial Oxidative Stress, Promotes Endothelial Dysfunction, and Enhances Hypertension. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H639–H646. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Carmeliet, P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab. 2019, 30, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Ludmer, P.L.; Selwyn, A.P.; Shook, T.L.; Wayne, R.R.; Mudge, G.H.; Alexander, R.W.; Ganz, P. Paradoxical Vasoconstriction Induced by Acetylcholine in Atherosclerotic Coronary Arteries. N. Engl. J. Med. 1986, 315, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Puri, R.; Liew, G.Y.H.; Nicholls, S.J.; Nelson, A.J.; Leong, D.P.; Carbone, A.; Copus, B.; Wong, D.T.L.; Beltrame, J.F.; Worthley, S.G.; et al. Coronary Β2-Adrenoreceptors Mediate Endothelium-Dependent Vasoreactivity in Humans: Novel Insights from an in Vivo Intravascular Ultrasound Study. Eur. Heart J. 2012, 33, 495–504. [Google Scholar] [CrossRef]
- Beltrame, J.F.; Crea, F.; Camici, P. Advances in Coronary Microvascular Dysfunction. Heart Lung Circ. 2009, 18, 19–27. [Google Scholar] [CrossRef]
- Camici, P.G.; Filippo, C. Coronary Microvascular Dysfunction. N. Engl. J. Med. 2024, 356, 830–840. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Pumper, G.M.; Higano, S.T.; Holmes, D.R.; Kuvin, J.T.; Lerman, A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 2004, 44, 2137–2141. [Google Scholar] [CrossRef]
- Takase, B.; Uehata, A.; Akima, T.; Nagai, T.; Nishioka, T.; Hamabe, A.; Satomura, K.; Ohsuzu, F.; Kurita, A. Endothelium-Dependent Flow-Mediated Vasodilation in Coronary and Brachial Arteries in Suspected Coronary Artery Disease. Am. J. Cardiol. 1998, 82, 1535–1539. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery: A Report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Schumm, J.; Luetzkendorf, S.; Rademacher, W.; Franz, M.; Schmidt-Winter, C.; Kiehntopf, M.; Figulla, H.R.; Brehm, B.R. In Patients with Aortic Stenosis Increased Flow-Mediated Dilation Is Independently Associated with Higher Peak Jet Velocity and Lower Asymmetric Dimethylarginine Levels. Am. Heart J. 2011, 161, 893–899. [Google Scholar] [CrossRef]
- Yoganathan, A.P. Fluid mechanics of aortic stenosis. Eur. Heart J. 1988, 9, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Gimbrone, M.A.; Topper, J.N.; Nagel, T.; Anderson, K.R.; Garcia-Cardeña, G. Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesis. Ann. N. Y. Acad. Sci. 2000, 902, 230–240. [Google Scholar] [CrossRef]
- Michail, M.; Hughes, A.D.; Comella, A.; Cameron, J.N.; Gooley, R.P.; McCormick, L.M.; Mathur, A.; Parker, K.H.; Brown, A.J.; Cameron, J.D. Acute Effects of Transcatheter Aortic Valve Replacement on Central Aortic Hemodynamics in Patients With Severe Aortic Stenosis. Hypertension 2020, 75, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- van Ooij, P.; Garcia, J.; Potters, W.V.; Malaisrie, S.C.; Collins, J.D.; Carr, J.C.; Markl, M.; Barker, A.J. Age-Related Changes in Aortic 3D Blood Flow Velocities and Wall Shear Stress: Implications for the Identification of Altered Hemodynamics in Patients with Aortic Valve Disease. J. Magn. Reson. Imaging 2016, 43, 1239–1249. [Google Scholar] [CrossRef]
- Irace, C.; Gnasso, A.; Cirillo, F.; Leonardo, G.; Ciamei, M.; Crivaro, A.; Renzulli, A.; Cotrufo, M. Arterial Remodeling of the Common Carotid Artery After Aortic Valve Replacement in Patients With Aortic Stenosis. Stroke 2002, 33, 2446–2450. [Google Scholar] [CrossRef] [PubMed]
- Baratchi, S.; Khoshmanesh, K.; Woodman, O.L.; Potocnik, S.; Peter, K.; McIntyre, P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol. Med. 2017, 23, 850–868. [Google Scholar] [CrossRef]
- Traub, O.; Berk, B.C. Laminar Shear Stress. Arter. Thromb. Vasc. Biol. 1998, 18, 677–685. [Google Scholar] [CrossRef]
- Moerman, A.M.; Korteland, S.; Dilba, K.; van Gaalen, K.; Poot, D.H.J.; van Der Lugt, A.; Verhagen, H.J.M.; Wentzel, J.J.; van Der Steen, A.F.W.; Gijsen, F.J.H.; et al. The Correlation Between Wall Shear Stress and Plaque Composition in Advanced Human Carotid Atherosclerosis. Front. Bioeng. Biotechnol. 2022, 9, 828577. [Google Scholar] [CrossRef]
- Katoh, K. Effects of Mechanical Stress on Endothelial Cells In Situ and In Vitro. Int. J. Mol. Sci. 2023, 24, 16518. [Google Scholar] [CrossRef]
- Baeriswyl, D.C.; Prionisti, I.; Peach, T.; Tsolkas, G.; Chooi, K.Y.; Vardakis, J.; Morel, S.; Diagbouga, M.R.; Bijlenga, P.; Cuhlmann, S.; et al. Disturbed Flow Induces a Sustained, Stochastic NF-ΚB Activation Which May Support Intracranial Aneurysm Growth in Vivo. Sci. Rep. 2019, 9, 4738. [Google Scholar] [CrossRef]
- Wentzel, J.J.; Chatzizisis, Y.S.; Gijsen, F.J.H.; Giannoglou, G.D.; Feldman, C.L.; Stone, P.H. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: Current understanding and remaining questions. Cardiovasc. Res. 2012, 96, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Storch, A.S.; Rocha, H.N.M.; Garcia, V.P.; da S. Batista, G.M.; Mattos, J.D.; Campos, M.O.; Fuly, A.L.; da Nóbrega, A.C.L.; Fernandes, I.A.; Rocha, N.G. Oscillatory Shear Stress Induces Hemostatic Imbalance in Healthy Men. Thromb. Res. 2018, 170, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Tresoldi, C.; Pellegata, A.F.; Mantero, S. Cells and Stimuli in Small-Caliber Blood Vessel Tissue Engineering. Regen. Med. 2015, 10, 505–527. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, D.; Birukov, K.G. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr. Physiol. 2019, 8, 873–904. [Google Scholar]
- Zeller, J.; Loseff-Silver, J.; Khoshmanesh, K.; Baratchi, S.; Lai, A.; Nero, T.L.; Roy, A.; Watson, A.; Dayawansa, N.; Sharma, P.; et al. Shear-Sensing by C-Reactive Protein: Linking Aortic Stenosis and Inflammation. Circ. Res. 2024, 135, 1033–1047. [Google Scholar] [CrossRef]
- Eisenhardt, S.U.; Habersberger, J.; Murphy, A.; Chen, Y.-C.; Woollard, K.J.; Bassler, N.; Qian, H.; von zur Muhlen, C.; Hagemeyer, C.E.; Ahrens, I.; et al. Dissociation of Pentameric to Monomeric C-Reactive Protein on Activated Platelets Localizes Inflammation to Atherosclerotic Plaques. Circ. Res. 2009, 105, 128–137. [Google Scholar] [CrossRef]
- Zeller, J.; Bogner, B.; McFadyen, J.D.; Kiefer, J.; Braig, D.; Pietersz, G.; Krippner, G.; Nero, T.L.; Morton, C.J.; Shing, K.S.C.T.; et al. Transitional Changes in the Structure of C-Reactive Protein Create Highly pro-Inflammatory Molecules: Therapeutic Implications for Cardiovascular Diseases. Pharmacol. Ther. 2022, 235, 108165. [Google Scholar] [CrossRef]
- Thiele, J.R.; Habersberger, J.; Braig, D.; Schmidt, Y.; Goerendt, K.; Maurer, V.; Bannasch, H.; Scheichl, A.; Woollard, K.J.; von Dobschütz, E.; et al. Dissociation of Pentameric to Monomeric C-Reactive Protein Localizes and Aggravates Inflammation. Circulation 2014, 130, 35–50. [Google Scholar] [CrossRef]
- Baratchi, S.; Zaldivia, M.T.K.; Wallert, M.; Loseff-Silver, J.; Al-Aryahi, S.; Zamani, J.; Thurgood, P.; Salim, A.; Htun, N.M.; Stub, D.; et al. Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress–Induced, Piezo-1–Mediated Monocyte Activation. Circulation 2020, 142, 1092–1105. [Google Scholar] [CrossRef]
- Dayawansa, N.H.; Baratchi, S.; Peter, K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front. Cardiovasc. Med. 2022, 9, 783543. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Z.; Daitoku, K.; Fukuda, I.; Motomura, S.; Matsumiya, T.; Imaizumi, T.; Furukawa, K.-I.; Seya, K. Human Aortic Valve Interstitial Cells Obtained from Patients with Aortic Valve Stenosis Are Vascular Endothelial Growth Factor Receptor 2 Positive and Contribute to Ectopic Calcification. J. Pharmacol. Sci. 2021, 145, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Ferenc, P.N.D.; Verena, S.; Thomas, H.; Friedhelm, B.; Manfred, O.; Christoph, B.; Martin, M. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb. Haemost. 2008, 99, 711–719. [Google Scholar] [CrossRef]
- Frimat, M.; Boudhabhay, I.; Roumenina, L.T. Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit. Toxins 2019, 11, 660. [Google Scholar] [CrossRef]
- Herold, S.; Exner, M.; Nauser, T. Kinetic and Mechanistic Studies of the NO•-Mediated Oxidation of Oxymyoglobin and Oxyhemoglobin. Biochemistry 2001, 40, 3385–3395. [Google Scholar] [CrossRef] [PubMed]
- Eich, R.F.; Li, T.; Lemon, D.D.; Doherty, D.H.; Curry, S.R.; Aitken, J.F.; Mathews, A.J.; Johnson, K.A.; Smith, R.D.; Phillips George, N.; et al. Mechanism of NO-Induced Oxidation of Myoglobin and Hemoglobin. Biochemistry 1996, 35, 6976–6983. [Google Scholar] [CrossRef] [PubMed]
- Schechter, A.N.; Gladwin, M.T. Hemoglobin and the Paracrine and Endocrine Functions of Nitric Oxide. N. Engl. J. Med. 2024, 348, 1483–1485. [Google Scholar] [CrossRef]
- Davids, M.; van Hell, A.J.; Visser, M.; Nijveldt, R.J.; van Leeuwen, P.A.M.; Teerlink, T. Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine. Am. J. Physiol.-Heart Circ. Physiol. 2012, 302, H1762–H1770. [Google Scholar] [CrossRef] [PubMed]
- Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma HemoglobinA Novel Mechanism of Human Disease. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef]
- Morris, C.R.; Kato, G.J.; Poljakovic, M.; Wang, X.; Blackwelder, W.C.; Sachdev, V.; Hazen, S.L.; Vichinsky, E.P.; Morris, S.M.; Gladwin, M.T. Dysregulated Arginine Metabolism, Hemolysis-Associated Pulmonary Hypertension, and Mortality in Sickle Cell Disease. JAMA 2005, 294, 81–90. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Gbotosho, O.T.; Kapetanaki, M.G.; Kato, G.J. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front. Immunol. 2021, 11, 561917. [Google Scholar] [CrossRef] [PubMed]
- Vallelian, F.; Buehler, P.W.; Schaer, D.J. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022, 140, 1837–1844. [Google Scholar] [CrossRef]
- Mahdi, A.; Kövamees, O.; Pernow, J. Improvement in endothelial function in cardiovascular disease—Is arginase the target? Int. J. Cardiol. 2020, 301, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Rautou, P.-E.; Vion, A.-C.; Amabile, N.; Chironi, G.; Simon, A.; Tedgui, A.; Boulanger, C.M.; Weber, C.; Mause, S. Microparticles, Vascular Function, and Atherothrombosis. Circ. Res. 2011, 109, 593–606. [Google Scholar] [CrossRef]
- Dignat-George, F.; Boulanger, C.M. The Many Faces of Endothelial Microparticles. Arter. Thromb. Vasc. Biol. 2011, 31, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Werner, N.; Wassmann, S.; Ahlers, P.; Kosiol, S.; Nickenig, G. Circulating CD31+/Annexin V+ Apoptotic Microparticles Correlate with Coronary Endothelial Function in Patients With Coronary Artery Disease. Arter. Thromb. Vasc. Biol. 2006, 26, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Sinning, J.-M.; Losch, J.; Walenta, K.; Böhm, M.; Nickenig, G.; Werner, N. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur. Heart J. 2011, 32, 2034–2041. [Google Scholar] [CrossRef]
- Amabile, N.; Guérin, A.P.; Tedgui, A.; Boulanger, C.M.; London, G.M. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: A pilot study. Nephrol. Dial. Transplant. 2012, 27, 1873–1880. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease: Developed by the Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Isselbacher, E.M.; Preventza, O.; Hamilton Black, J.; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022, 146, e334–e482. [Google Scholar] [CrossRef]
- Llndroos, M.; Kupari, M.; Valvanne, J.; Strandberg, T.; Heikkilä, J.; Tllvis, R. Factors associated with calcific aortic valve degeneration in the elderly. Eur. Heart J. 1994, 15, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Lind, B.K.; Kitzman, D.W.; Gersh, B.J.; Siscovick, D.S. Association of Aortic-Valve Sclerosis with Cardiovascular Mortality and Morbidity in the Elderly. N. Engl. J. Med. 2024, 341, 142–147. [Google Scholar] [CrossRef]
- Stewart, B.F.; Siscovick, D.; Lind, B.K.; Gardin, J.M.; Gottdiener, J.S.; Smith, V.E.; Kitzman, D.W.; Otto, C.M. Clinical Factors Associated With Calcific Aortic Valve Disease. J. Am. Coll. Cardiol. 1997, 29, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Developed by the Task Force for Cardiovascular Disease Prevention in Clinical Practice with Representatives of the European Society of Cardiology and 12 Medical Societies With the Special Contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Pohle, K.; Mäffert, R.; Ropers, D.; Moshage, W.; Stilianakis, N.; Daniel, W.G.; Achenbach, S. Progression of Aortic Valve Calcification. Circulation 2001, 104, 1927–1932. [Google Scholar] [CrossRef]
- Comella, A.; Michail, M.; Chan, J.; Cameron, J.D.; Gooley, R.; Mathur, A.; Hughes, A.D.; Brown, A.J. Patients with Aortic Stenosis Exhibit Early Improved Endothelial Function Following Transcatheter Aortic Valve Replacement: The EFAST Study. Int. J. Cardiol. 2021, 332, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Vitez, L.; Starc, V.; Jug, B.; Bunc, M. Improved Endothelial and Autonomic Function after Transcatheter Aortic Valve Implantation. Rev. Cardiovasc. Med. 2023, 24, 140. [Google Scholar] [CrossRef]
- Moscarelli, M.; Devito, F.; Fattouch, K.; Lancellotti, P.; Ciccone, M.M.; Rizzo, P.; Gaudino, M.; Marchese, A.; Angelini, G.; Speziale, G. The Effect of Surgical versus Transcatheter Aortic Valve Replacement on Endothelial Function. An Observational Study. Int. J. Surg. 2019, 63, 1–7. [Google Scholar] [CrossRef]
- Chenevard, R.; Bechir, M.; Hurlimann, D.; Ruschitzka, F.; Turina, J.; Luscher, T.F.; Noll, G. Persistent Endothelial Dysfunction in Calcified Aortic Stenosis beyond Valve Replacement Surgery. Heart 2006, 92, 1862. [Google Scholar] [CrossRef]
- Horn, P.; Stern, D.; Veulemans, V.; Heiss, C.; Zeus, T.; Merx, M.W.; Kelm, M.; Westenfeld, R. Improved Endothelial Function and Decreased Levels of Endothelium-Derived Microparticles after Transcatheter Aortic Valve Implantation. EuroIntervention 2015, 10, 1456–1463. [Google Scholar] [CrossRef]
- Quast, C.; Bönner, F.; Polzin, A.; Veulemans, V.; Chennupati, R.; Gyamfi Poku, I.; Pfeiler, S.; Kramser, N.; Nankinova, M.; Staub, N.; et al. Aortic Valve Stenosis Causes Accumulation of Extracellular Hemoglobin and Systemic Endothelial Dysfunction. Circulation 2024, 150, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Donadee, C.; Raat, N.J.H.; Kanias, T.; Tejero, J.; Lee, J.S.; Kelley, E.E.; Zhao, X.; Liu, C.; Reynolds, H.; Azarov, I.; et al. Nitric Oxide Scavenging by Red Blood Cell Microparticles and Cell-Free Hemoglobin as a Mechanism for the Red Cell Storage Lesion. Circulation 2011, 124, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Tzemos, N.; Therrien, J.; Yip, J.; Thanassoulis, G.; Tremblay, S.; Jamorski, M.T.; Webb, G.D.; Siu, S.C. Outcomes in Adults With Bicuspid Aortic Valves. JAMA 2008, 300, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Alegret, J.M.; Ligero, C.; Vernis, J.M.; Beltrán-Debón, R.; Aragonés, G.; Duran, I.; Palazón, O.; Hernández-Aparicio, A. Factors Related to the Need for Surgery after the Diagnosis of Bicuspid Aortic Valve: One Center´s Experience under a Conservative Approach. Int. J. Med. Sci. 2013, 10, 176–182. [Google Scholar] [CrossRef]
- Alegret, J.M.; Martínez-Micaelo, N.; Aragonès, G.; Beltrán-Debón, R. Circulating endothelial microparticles are elevated in bicuspid aortic valve disease and related to aortic dilation. Int. J. Cardiol. 2016, 217, 35–41. [Google Scholar] [CrossRef]
- Tzemos, N.; Lyseggen, E.; Silversides, C.; Jamorski, M.; Tong, J.H.; Harvey, P.; Floras, J.; Siu, S. Endothelial Function, Carotid–Femoral Stiffness, and Plasma Matrix Metalloproteinase-2 in Men With Bicuspid Aortic Valve and Dilated Aorta. J. Am. Coll. Cardiol. 2010, 55, 660–668. [Google Scholar] [CrossRef]
- Ali, O.A.; Chapman, M.; Nguyen, T.H.; Chirkov, Y.Y.; Heresztyn, T.; Mundisugih, J.; Horowitz, J.D. Interactions between Inflammatory Activation and Endothelial Dysfunction Selectively Modulate Valve Disease Progression in Patients with Bicuspid Aortic Valve. Heart 2014, 100, 800. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Li, Y.; Deng, Y.-B.; Liu, Y.-N.; Zhang, J.; Sun, J.; Zhu, Y.; Li, L.; Tang, Q.-Y.; Zhou, W. Enlarged Size and Impaired Elastic Properties of the Ascending Aorta Are Associated with Endothelial Dysfunction and Elevated Plasma Matrix Metalloproteinase-2 Level in Patients with Bicuspid Aortic Valve. Ultrasound Med. Biol. 2018, 44, 955–962. [Google Scholar] [CrossRef]
- Vaturi, M.; Perl, L.; Leshem-Lev, D.; Dadush, O.; Bental, T.; Shapira, Y.; Yedidya, I.; Greenberg, G.; Kornowski, R.; Sagie, A.; et al. Circulating Endothelial Progenitor Cells in Patients With Dysfunctional Versus Normally Functioning Congenitally Bicuspid Aortic Valves. Am. J. Cardiol. 2011, 108, 272–276. [Google Scholar] [CrossRef]
- Balistreri, C.R.; Crapanzano, F.; Schirone, L.; Allegra, A.; Pisano, C.; Ruvolo, G.; Forte, M.; Greco, E.; Cavarretta, E.; Marullo, A.G.M.; et al. Deregulation of Notch1 Pathway and Circulating Endothelial Progenitor Cell (EPC) Number in Patients with Bicuspid Aortic Valve with and without Ascending Aorta Aneurysm. Sci. Rep. 2018, 8, 13834. [Google Scholar] [CrossRef]
- Gavriliuk, N.D.; Tatiana, A.D.G.; Olga, B.I.; Alexandr, A.Z.; Tatiana, F.S.; Vladimir, E.U.; Nina, A.P.; Olga, M.M. Asymmetric Dimethylarginine in Patients with Ascending Aortic Aneurysms. AORTA 2016, 4, 219–225. [Google Scholar] [CrossRef] [PubMed]
- van de Pol, V.; Bons, L.R.; Lodder, K.; Kurakula, K.B.; Sanchez-Duffhues, G.; Siebelink, H.-M.J.; Roos-Hesselink, J.W.; DeRuiter, M.C.; Goumans, M.-J. Endothelial Colony Forming Cells as an Autologous Model to Study Endothelial Dysfunction in Patients with a Bicuspid Aortic Valve. Int. J. Mol. Sci. 2019, 20, 3251. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Poujade, F.-A.; Bergman, O.; Gådin, J.R.; Simon, N.; Lång, K.; Franco-Cereceda, A.; Body, S.C.; Björck, H.M.; Eriksson, P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front. Cardiovasc. Med. 2019, 6, 182. [Google Scholar] [CrossRef]
- Gehlen, J.; Stundl, A.; Debiec, R.; Fontana, F.; Krane, M.; Sharipova, D.; Nelson, C.P.; Al-Kassou, B.; Giel, A.-S.; Sinning, J.-M.; et al. Elucidation of the Genetic Causes of Bicuspid Aortic Valve Disease. Cardiovasc. Res. 2023, 119, 857–866. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Hill, L.; Browne, G.; Tulchinsky, E. ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int. J. Cancer 2013, 132, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Poggio, P.; Songia, P.; Moschetta, D.; Valerio, V.; Myasoedova, V.; Perrucci, G.L.; Pompilio, G. MiRNA Profiling Revealed Enhanced Susceptibility to Oxidative Stress of Endothelial Cells from Bicuspid Aortic Valve. J. Mol. Cell Cardiol. 2019, 131, 146–154. [Google Scholar] [CrossRef]
- Martínez-Micaelo, N.; Beltrán-Debón, R.; Aragonés, G.; Faiges, M.; Alegret, J.M. MicroRNAs Clustered within the 14q32 Locus Are Associated with Endothelial Damage and Microparticle Secretion in Bicuspid Aortic Valve Disease. Front. Physiol. 2017, 8, 648. [Google Scholar] [CrossRef]
- Odelin, G.; Faure, E.; Maurel-Zaffran, C.; Zaffran, S. Krox20 Regulates Endothelial Nitric Oxide Signaling in Aortic Valve Development and Disease. J. Cardiovasc. Dev. Dis. 2019, 6, 39. [Google Scholar] [CrossRef]
- Baeyens, N.; Bandyopadhyay, C.; Coon, B.G.; Yun, S.; Schwartz, M.A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 2016, 126, 821–828. [Google Scholar] [CrossRef]
- Meierhofer, C.; Schneider, E.P.; Lyko, C.; Hutter, A.; Martinoff, S.; Markl, M.; Hager, A.; Hess, J.; Stern, H.; Fratz, S. Wall Shear Stress and Flow Patterns in the Ascending Aorta in Patients with Bicuspid Aortic Valves Differ Significantly from Tricuspid Aortic Valves: A Prospective Study. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Effects of shear stress on endothelial cells: Go with the flow. Acta Physiol. 2017, 219, 382–408. [Google Scholar] [CrossRef]
- Brazil, M. Go with the flow. Nat. Rev. Drug Discov. 2005, 4, 883. [Google Scholar] [CrossRef]
- Osawa, M.; Masuda, M.; Harada, N.; Lopes, R.B.; Fujiwara, K. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. Eur. J. Cell Biol. 1997, 72, 229–237. [Google Scholar]
- Conway, D.E.; Breckenridge, M.T.; Hinde, E.; Gratton, E.; Chen, C.S.; Schwartz, M.A. Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1. Curr. Biol. 2013, 23, 1024–1030. [Google Scholar] [CrossRef]
- Fleming, I.; Fisslthaler, B.; Dixit, M.; Busse, R. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J. Cell Sci. 2005, 118, 4103–4111. [Google Scholar] [CrossRef] [PubMed]
- Ettenson, D.S.; Koo, E.W.Y.; Januzzi, J.L.; Edelman, E.R. Endothelial heparan sulfate is necessary but not sufficient for control of vascular smooth muscle cell growth. J. Cell Physiol. 2000, 184, 93–100. [Google Scholar] [CrossRef]
- Baker, A.B.; Ettenson, D.S.; Jonas, M.; Nugent, M.A.; Iozzo, R.V.; Edelman, E.R. Endothelial Cells Provide Feedback Control for Vascular Remodeling Through a Mechanosensitive Autocrine TGF-β Signaling Pathway. Circ. Res. 2008, 103, 289–297. [Google Scholar] [CrossRef]
- Walshe, T.E.; Paz, N.G.D.; D’Amore, P.A. The Role of Shear-Induced Transforming Growth Factor-β Signaling in the Endothelium. Arter. Thromb. Vasc. Biol. 2013, 33, 2608–2617. [Google Scholar] [CrossRef]
- Fontijn, R.D.; Volger, O.L.; van der Pouw-Kraan, T.C.; Doddaballapur, A.; Leyen, T.; Baggen, J.M.; Boon, R.A.; Horrevoets, A.J.G. Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo. PLoS ONE 2016, 10, e0145777. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.-S.; Chien, S. Shear Stress–Initiated Signaling and Its Regulation of Endothelial Function. Arter. Thromb. Vasc. Biol. 2014, 34, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Dijke, P.T.; Egorova, A.D.; Goumans, M.-J.T.H.; Poelmann, R.E.; Hierck, B.P. TGF-β Signaling in Endothelial-to-Mesenchymal Transition: The Role of Shear Stress and Primary Cilia. Sci. Signal 2012, 5(pt2). [Google Scholar] [CrossRef]
- Muylaert, D.E.P.; de Jong, O.G.; Slaats, G.G.G.; Nieuweboer, F.E.; Fledderus, J.O.; Goumans, M.-J.; Hierck, B.P.; Verhaar, M.C. Environmental Influences on Endothelial to Mesenchymal Transition in Developing Implanted Cardiovascular Tissue-Engineered Grafts. Tissue Eng. Part. B Rev. 2015, 22, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Aicher, D.; Urbich, C.; Zeiher, A.; Dimmeler, S.; Schäfers, H.-J. Endothelial Nitric Oxide Synthase in Bicuspid Aortic Valve Disease. Ann. Thorac. Surg. 2007, 83, 1290–1294. [Google Scholar] [CrossRef]
- Kotlarczyk, M.P.; Billaud, M.; Green, B.R.; Hill, J.C.; Shiva, S.; Kelley, E.E.; Phillippi, J.A.; Gleason, T.G. Regional Disruptions in Endothelial Nitric Oxide Pathway Associated With Bicuspid Aortic Valve. Ann. Thorac. Surg. 2016, 102, 1274–1281. [Google Scholar] [CrossRef]
- Phillippi, J.A.; Eskay, M.A.; Kubala, A.A.; Pitt, B.R.; Gleason, T.G. Altered Oxidative Stress Responses and Increased Type I Collagen Expression in Bicuspid Aortic Valve Patients. Ann. Thorac. Surg. 2010, 90, 1893–1898. [Google Scholar] [CrossRef]
- Phillippi, J.A.; Klyachko, E.A.; Kenny, J.P.; Eskay, M.A.; Gorman, R.C.; Gleason, T.G. Basal and Oxidative Stress–Induced Expression of Metallothionein Is Decreased in Ascending Aortic Aneurysms of Bicuspid Aortic Valve Patients. Circulation 2009, 119, 2498–2506. [Google Scholar] [CrossRef]
- Förstermann, U.; Li, H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br. J. Pharmacol. 2011, 164, 213–223. [Google Scholar] [CrossRef]
- Cai, H.; Harrison, D.G. Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circ. Res. 2000, 87, 840–844. [Google Scholar] [CrossRef]
- Hsu, P.-L.; Chen, J.-S.; Wang, C.-Y.; Wu, H.-L.; Mo, F.-E. Shear-Induced CCN1 Promotes Atheroprone Endothelial Phenotypes and Atherosclerosis. Circulation 2019, 139, 2877–2891. [Google Scholar] [CrossRef]
- Jiang, Y.-Z.; Jiménez, J.M.; Ou, K.; McCormick, M.E.; Zhang, L.-D.; Davies, P.F. Hemodynamic Disturbed Flow Induces Differential DNA Methylation of Endothelial Kruppel-Like Factor 4 Promoter In Vitro and In Vivo. Circ. Res. 2014, 115, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Drapisz, S.; Góralczyk, T.; Jamka-Miszalski, T.; Olszowska, M.; Undas, A. Nonstenotic bicuspid aortic valve is associated with elevated plasma asymmetric dimethylarginine. J. Cardiovasc. Med. 2013, 14, 446–452. [Google Scholar] [CrossRef] [PubMed]
Potential Causes of Reduced NO Bioavailability in Patients with Severe AS |
---|
Reduced endothelial nitric oxide synthase activity due to decreased WSS in peripheral arteries |
Increased activity of asymmetric dimethylarginine: an endogenous nitric oxide inhibitor |
Conversion of NO to nitrites or nitrates due to extracellular hemoglobin and hemoglobin microvesicles |
Upregulated arginase-1 activity, which is an enzyme responsible for the degradation of arginine, the primary substrate for nitric oxide synthesis |
Experimental | Clinical | Translational | |
---|---|---|---|
Reduced wall shear stress (WSS) in peripheral arteries. | D. C. Baeriswyl et al. [30] | C. Irace et al. [25]; A. S. Storch et al. [32]; | |
Elevated wall shear stress (WSS) in the ascending aorta. | P. van Ooij et al. [24]; A. M. Moerman et al. [28]; K. Katoh [29]; X. Liu et al. [41]; | M. Michail et al. [23]; S. Baratchi et al. [39]; P. N. Diehl Ferenc et al. [42]; | J. Zeller et al. [35]; S. U. Eisenhardt et al. [36]; J. R. Thiele et al. [38]; C. Quast et al. [71] |
Subclinical hemolysis. | M. Frimat et al. [43]; S. Herold et al. [44]; R. F. Eich et al. [45]; A. Mahdi et al. [53] | R. P. Rother et al. [48]; C. R. Morris et al. [49] | C. Quast et al. [71] |
Increase in flow-mediated dilation after the applied intervention on the stenotic aortic valve. | Comella et al. [66]; Vitez et al. [67]; M. Moscarelli et al. [68]; R. Chenevard et al. [69]; P. Horn et al. [70] | C. Quast et al. [71] |
Experimental | Clinical | |
---|---|---|
Genetic theory | S. Maleki et al. [83]; J. Gehlen et al. [84]; P. Poggio et al. [87]; N. Martínez-Micaelo et al. [88]; G. Odelin et al. [89] | C. R. Balistreri et al. [80]; |
Hemodynamic theory | C. Meierhofer et al. [91]; M. Osawa et al. [94]; D. E. Conway et al. [95]; I. Fleming et al. [96]; A. B. Baker et al. [98]; T. E. Walshe et al. [99]; R. D. Fontijn et al. [100] | N. Tzemos et al., 2010 * [76]; Y.-B. Wang et al. [78]; |
Focused on eNOS or ED markers | I. Fleming et al. [96] | N. Tzemos et al. [73]; J. M. Alegret et al. [74]; M. Vaturi et al. [79]; J. M. Alegret et al. [75]; D. Aicher et al. [104]; M. P. Kotlarczyk et al. [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malina, M.; Banasiak, W.; Doroszko, A. Aortic Valve Defect as an Independent Risk Factor for Endothelial Dysfunction. Cells 2025, 14, 885. https://doi.org/10.3390/cells14120885
Malina M, Banasiak W, Doroszko A. Aortic Valve Defect as an Independent Risk Factor for Endothelial Dysfunction. Cells. 2025; 14(12):885. https://doi.org/10.3390/cells14120885
Chicago/Turabian StyleMalina, Mateusz, Waldemar Banasiak, and Adrian Doroszko. 2025. "Aortic Valve Defect as an Independent Risk Factor for Endothelial Dysfunction" Cells 14, no. 12: 885. https://doi.org/10.3390/cells14120885
APA StyleMalina, M., Banasiak, W., & Doroszko, A. (2025). Aortic Valve Defect as an Independent Risk Factor for Endothelial Dysfunction. Cells, 14(12), 885. https://doi.org/10.3390/cells14120885