Role of microRNAs in Osteosarcopenic Obesity/Adiposity: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Quality Process
3. Results
3.1. Literature Research
3.2. Study Characteristics
3.3. Clinical Outcome
3.3.1. Human Studies
3.3.2. Animal Studies
3.3.3. Studies on Both Animals and Humans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALP | Alkaline Phosphatase; |
AMSTAR 2 | A MeaSurement Tool to Assess systematic Reviews 2 |
DEmiRs | Differential expression microRNAs |
FRAX® score | Fracture Risk Assessment Tool Score |
LRER | Low-Intensity Running Exercise Routine |
miRNAs | microRNAs |
OSA | Osteosarcopenic Adiposity |
OSO | Osteosarcopenic Obesity |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RT-PCR | Reverse transcription polymerase chain reaction |
References
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E.; Panton, L.B.; Duque, G.; Ormsbee, M.J. Interrelationship among muscle, fat, and bone: Connecting the dots on cellular, hormonal, and whole body levels. Ageing Res. Rev. 2014, 15, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E. Osteosarcopenic Obesity Syndrome: What Is It and How Can It Be Identified and Diagnosed? Curr. Gerontol. Geriatr. Res. 2016, 2016, 7325973. [Google Scholar] [CrossRef]
- Nasabian, P.J.; Inglis, J.; Kelly, O.J.; Ilich, J.Z. Osteosarcopenic obesity in women: Impact, prevalence, and management challenges. Int. J. Women’s Health 2017, 9, 33–42. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Pokimica, B.; Ristić-Medić, D.; Petrović, S.; Arsić, A.; Vasiljević, N.; Vučić, V.; Kelly, O.J. Osteosarcopenic adiposity (OSA) phenotype and its connection with cardiometabolic disorders: Is there a cause-and-effect? Ageing Res. Rev. 2024, 98, 102326. [Google Scholar] [CrossRef]
- Vaidya, R. Obesity, sarcopenia and postmenopausal osteoporosis: An interlinked triad! J. Midlife Health 2014, 5, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.W.J.; Wee, S.-L.; Chen, K.K.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, D.H.M.; Tan, Q.L.L.; Jagadish, M.U.; Ng, T.P. Coexistence of osteoporosis, sarcopenia and obesity in community-dwelling adults—The Yishun Study. Osteoporos Sarcopenia 2021, 7, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Hwang, H.J.; Shin, H.-Y.; Han, C.H. Association between Sarcopenic Obesity and Bone Mineral Density in Middle-Aged and Elderly Korean. Ann. Nutr. Metab. 2016, 68, 77–84. [Google Scholar] [CrossRef]
- Chen, X.; Kong, C.; Yu, H.; Gong, J.; Lan, L.; Zhou, L.; Gong, J.; Liu, P.; Xu, L.; Deng, Q. Association between osteosarcopenic obesity and hypertension among four minority populations in China: A cross-sectional study. BMJ Open 2019, 9, e026818. [Google Scholar] [CrossRef]
- Abidin, N.Z.; Mitra, S.R. Determination of Cutoff Values for the Screening of Osteosarcopenia in Obese Postmenopausal Women. Curr. Gerontol. Geriatr. Res. 2021, 2021, 6634474. [Google Scholar] [CrossRef]
- Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455, 58–63. [Google Scholar] [CrossRef]
- Fan, J.; Kou, X.; Yang, Y.; Chen, N. MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediat. Inflamm. 2016, 2016, 1438686. [Google Scholar] [CrossRef] [PubMed]
- Sannicandro, A.J.; Soriano-Arroquia, A.; Goljanek-Whysall, K. Micro(RNA)-managing muscle wasting. J. Appl. Physiol. 2019, 127, 619–632. [Google Scholar] [CrossRef]
- Drummond, M.J.; McCarthy, J.J.; Sinha, M.; Spratt, H.M.; Volpi, E.; Esser, K.A.; Rasmussen, B.B. Aging and microRNA expression in human skeletal muscle: A microarray and bioinformatics analysis. Physiol. Genom. 2011, 43, 595–603. [Google Scholar] [CrossRef]
- Yamakuchi, M. MicroRNA Regulation of SIRT1. Front. Physiol. 2012, 3, 68. [Google Scholar] [CrossRef]
- Vaquero, A.; Scher, M.; Lee, D.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 2004, 16, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13421–13426. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Padhye, A.; Sharma, A.; Song, G.; Miao, J.; Mo, Y.-Y.; Wang, L.; Kemper, J.K. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 2010, 285, 12604–12611. [Google Scholar] [CrossRef]
- Kemper, J.K.; Xiao, Z.; Ponugoti, B.; Miao, J.; Fang, S.; Kanamaluru, D.; Tsang, S.; Wu, S.-Y.; Chiang, C.-M.; Veenstra, T.D. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009, 10, 392–404. [Google Scholar] [CrossRef]
- Lee, J.; Kemper, J.K. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging 2010, 2, 527–534. [Google Scholar] [CrossRef]
- Cheung, O.; Puri, P.; Eicken, C.; Contos, M.J.; Mirshahi, F.; Maher, J.W.; Kellum, J.M.; Min, H.; Luketic, V.A.; Sanyal, A.J. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008, 48, 1810–1820. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Xu, X.Q.; Ji, C.B.; Shi, C.M.; Guo, X.R.; Fu, J.F. Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease. Cell. Physiol. Biochem. 2014, 34, 1983–1997. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Muthusamy, S.; Liang, R.; Sarojini, H.; Wang, E. Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech. Ageing Dev. 2011, 132, 75–85. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, A. Adipose Extracellular Vesicles in Intercellular and Inter-Organ Crosstalk in Metabolic Health and Diseases. Front. Immunol. 2021, 12, 608680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Wei, M.; Yang, G.; Yuan, L. Multifaceted Roles of Adipose Tissue-Derived Exosomes in Physiological and Pathological Conditions. Front. Physiol. 2021, 12, 669429. [Google Scholar] [CrossRef] [PubMed]
- Kita; Maeda, N.; Shimomura, I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Investig. 2019, 129, 4041–4049. [Google Scholar] [CrossRef] [PubMed]
- Vechetti, I.J.; Peck, B.D.; Wen, Y.; Walton, R.G.; Valentino, T.R.; Alimov, A.P.; Dungan, C.M.; Van Pelt, D.W.; von Walden, F.; Alkner, B.; et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J. 2021, 35, e21644. [Google Scholar] [CrossRef]
- Mercatelli, N.; Fittipaldi, S.; De Paola, E.; Dimauro, I.; Paronetto, M.P.; Jackson, M.J.; Caporossi, D. MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Sci. Rep. 2017, 7, 7219. [Google Scholar] [CrossRef]
- Margolis, L.M.; McClung, H.L.; Murphy, N.E.; Carrigan, C.T.; Pasiakos, S.M. Skeletal Muscle myomiR Are Differentially Expressed by Endurance Exercise Mode and Combined Essential Amino Acid and Carbohydrate Supplementation. Front. Physiol. 2017, 8, 182. [Google Scholar] [CrossRef]
- Ke, S.; Cao, X.; Lu, X.; Xu, J.; Zhang, C.Y.; Xu, L.; Jiang, X. Atheroprotective roles of exercise-regulated microRNAs. Atherosclerosis 2025, 405, 119229. [Google Scholar] [CrossRef]
- Maiuri, M.C.; De Stefano, D.; Farooqi, A.A. Physiology to the pleiotropic role of RNAs: Prospecting novel therapies. BioMed Res. Int. 2014, 2014, 735374. [Google Scholar] [CrossRef]
- Ultimo, S.; Zauli, G.; Martelli, A.M.; Vitale, M.; McCubrey, J.A.; Capitani, S.; Neri, L.M. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 2018, 9, 17220–17237. [Google Scholar] [CrossRef] [PubMed]
- Spakova, I.; Zelko, A.; Rabajdova, M.; Kolarcik, P.; Rosenberger, J.; Zavacka, M.; Marekova, M.; Geckova, A.M.; van Dijk, J.P.; Reijneveld, S.A. MicroRNA molecules as predictive biomarkers of adaptive responses to strength training and physical inactivity in haemodialysis patients. Sci. Rep. 2020, 10, 15597. [Google Scholar] [CrossRef] [PubMed]
- Banitalebi, E.; Ghahfarrokhi, M.M.; Dehghan, M. Effect of 12-weeks elastic band resistance training on MyomiRs and osteoporosis markers in elderly women with Osteosarcopenic obesity: A randomized controlled trial. BMC Geriatr. 2021, 21, 433. [Google Scholar] [CrossRef]
- Pedraza-Vázquez, G.; Mena-Montes, B.; Hernández-Álvarez, D.; Gómez-Verjan, J.C.; Toledo-Pérez, R.; López-Teros, M.T.; Königsberg, M.; Gómez-Quiroz, L.E.; Luna-López, A. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation. Arch. Gerontol. Geriatr. 2023, 105, 104856. [Google Scholar] [CrossRef]
- van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 2014, 6, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Shamseer, L.; Tricco, A.C. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst. Rev. 2018, 7, 32. [Google Scholar] [CrossRef]
- Brown, D. A Review of the PubMed PICO Tool: Using Evidence-Based Practice in Health Education. Health Promot. Pract. 2020, 21, 496–498. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Huang, L.-Y.; Lim, A.Y.; Hsu, C.-C.; Tsai, Y.-F.; Fu, T.-C.; Shyu, Y.-C.; Peng, S.-C.; Wang, J.-S. Sustainability of exercise-induced benefits on circulating MicroRNAs and physical fitness in community-dwelling older adults: A randomized controlled trial with follow up. BMC Geriatr. 2024, 24, 473. [Google Scholar] [CrossRef]
- Faraldi, M.; Sansoni, V.; Vitale, J.; Perego, S.; Gomarasca, M.; Verdelli, C.; Messina, C.; Sconfienza, L.M.; Banfi, G.; Corbetta, S.; et al. Plasma microRNA signature associated with skeletal muscle wasting in post-menopausal osteoporotic women. J. Cachex Sarcopenia Muscle 2024, 15, 690–701. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Zhang, Y.; Zhang, Y.; Feng, B.; Zheng, Z.; Ye, H. Circulating miR-29b decrease in response to sarcopenia in patients with cardiovascular risk factors in older Chinese. Front. Cardiovasc. Med. 2022, 9, 1094388. [Google Scholar] [CrossRef]
- Qaisar, R.; Karim, A.; Muhammad, T.; Shah, I.; Khan, J. Circulating MicroRNAs as Biomarkers of Accelerated Sarcopenia in Chronic Heart Failure. Glob. Heart 2021, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Iannone, F.; Montesanto, A.; Cione, E.; Crocco, P.; Caroleo, M.C.; Dato, S.; Rose, G.; Passarino, G. Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia. Nutrients 2020, 12, 297. [Google Scholar] [CrossRef]
- Rosa, F.L.; Agostini, S.; Saresella, M.; Costa, A.S.; Piancone, F.; Miglioli, R.; Trecate, F.; Clerici, M. Deregulation of IL-37 and its miRNAs modulators in sarcopenic patients after rehabilitation. J. Transl. Med. 2021, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Millet, M.; Auroux, M.; Beaudart, C.; Demonceau, C.; Ladang, A.; Cavalier, E.; Reginster, J.-Y.; Bruyère, O.; Chapurlat, R.; Rousseau, J.-C. Association of circulating hsa-miRNAs with sarcopenia: The SarcoPhAge study. Aging Clin. Exp. Res. 2024, 36, 70. [Google Scholar] [CrossRef]
- Gao, H.-E.; Li, F.-H.; Xie, T.; Ma, S.; Qiao, Y.-B.; Wu, D.-S.; Sun, L. Lifelong Exercise in Age Rats Improves Skeletal Muscle Function and MicroRNA Profile. Med. Sci. Sports Exerc. 2021, 53, 1873–1882. [Google Scholar] [CrossRef]
- Hamrick, M.W.; Herberg, S.; Arounleut, P.; He, H.-Z.; Shiver, A.; Qi, R.-Q.; Zhou, L.; Isales, C.M.; Mi, Q.-S. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice. Biochem. Biophys. Res. Commun. 2010, 400, 379–383. [Google Scholar] [CrossRef]
- Jung, H.J.; Lee, K.-P.; Milholland, B.; Shin, Y.J.; Kang, J.S.; Kwon, K.-S.; Suh, Y. Comprehensive miRNA Profiling of Skeletal Muscle and Serum in Induced and Normal Mouse Muscle Atrophy During Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1483–1491. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, Y.-K.; Lee, K.-P.; Lee, S.-M.; Kang, T.-W.; Kim, H.-J.; Dho, S.H.; Kim, S.-Y.; Kwon, K.-S. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging 2014, 6, 524–544. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.I.; Nirmala, F.S.; Kim, J.-S.; Seo, H.-D.; Ha, T.Y.; Jang, Y.-J.; Jung, C.H.; Ahn, J. MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging 2021, 13, 4881–4894. [Google Scholar] [CrossRef] [PubMed]
- Pardo, P.S.; Hajira, A.; Boriek, A.M.; Mohamed, J.S. MicroRNA-434-3p regulates age-related apoptosis through eIF5A1 in the skeletal muscle. Aging 2017, 9, 1012–1029. [Google Scholar] [CrossRef]
- Rivas, D.A.; Peng, F.; Benard, T.; da Silva, A.S.R.; Fielding, R.A.; Margolis, L.M. miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition. Am. J. Physiol. Physiol. 2021, 321, C977–C991. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, G.; Wu, H.; Kang, L.; Xiang, J.; Zheng, P.; Qiu, S.; Liang, Z.; Lu, Y.; Jia, L. MicroRNA-193b impairs muscle growth in mouse models of type 2 diabetes by targeting the PDK1/Akt signalling pathway. Diabetologia 2022, 65, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Itokazu, M.; Onodera, Y.; Mori, T.; Inoue, S.; Yamagishi, K.; Moritake, A.; Iwawaki, N.; Shigi, K.; Takehara, T.; Higashimoto, Y.; et al. Adipose-derived exosomes block muscular stem cell proliferation in aged mouse by delivering miRNA Let-7d-3p that targets transcription factor HMGA2. J. Biol. Chem. 2022, 298, 102098. [Google Scholar] [CrossRef]
- Okamura, T.; Okada, H.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Nakanishi, N.; Asano, M.; Yamazaki, M.; Hamaguchi, M.; Fukui, M. Let-7e-5p Regulates IGF2BP2, and Induces Muscle Atrophy. Front. Endocrinol. 2021, 12, 791363. [Google Scholar] [CrossRef]
- Lu, M.; Qin, X.; Yao, J.; Yang, Y.; Zhao, M.; Sun, L. MiR-134-5p targeting XIAP modulates oxidative stress and apoptosis in cardiomyocytes under hypoxia/reperfusion-induced injury. IUBMB Life 2020, 72, 2154–2166. [Google Scholar] [CrossRef]
- Hisakane, K.; Seike, M.; Sugano, T.; Matsuda, K.; Kashiwada, T.; Nakamichi, S.; Matsumoto, M.; Miyanaga, A.; Noro, R.; Kubota, K.; et al. Serum-derived exosomal miR-125a-3p predicts the response to anti-programmed cell death-1/programmed cell death-ligand 1 monotherapy in patients with non-small cell lung cancer. Gene 2023, 857, 147177. [Google Scholar] [CrossRef]
- Li, F.; Yao, J.-H.; Li, L.; Nie, Q.; Cao, J.-J.; Ning, X.-R. MiRNA-23a-5p is the biomarkers for gouty arthritis and promotes inflammation in rats of gouty arthritis via MyD88/NF-κB pathway by induction TLR2. Arch. Rheumatol. 2022, 37, 536–546. [Google Scholar] [CrossRef]
- Raitoharju, E.; Seppälä, I.; Lyytikäinen, L.-P.; Viikari, J.; Ala-Korpela, M.; Soininen, P.; Kangas, A.J.; Waldenberger, M.; Klopp, N.; Illig, T.; et al. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci. Rep. 2016, 6, 38262. [Google Scholar] [CrossRef]
- Yu, J.; Xue, J.; Liu, C.; Zhang, A.; Qin, L.; Liu, J.; Yang, Y. MiR-146a-5p accelerates sepsis through dendritic cell activation and glycolysis via targeting ATG7. J. Biochem. Mol. Toxicol. 2022, 36, e23151. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H. MicroRNA in myogenesis and muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Duran, B.O.D.S.; Dal-Pai-Silva, M.; de la Serrana, D.G. Rainbow trout slow myoblast cell culture as a model to study slow skeletal muscle, and the characterization of mir-133 and mir-499 families as a case study. J. Exp. Biol. 2020, 223 Pt 2, jeb216390. [Google Scholar]
- Ma, G.; Wang, Y.; Li, Y.; Cui, L.; Zhao, Y.; Zhao, B.; Li, K. MiR-206, a key modulator of skeletal muscle development and disease. Int. J. Biol. Sci. 2015, 11, 345–352. [Google Scholar] [CrossRef]
- Przanowska, R.K. miR-206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro. FASEB. J. 2020, 34, 7687–7702. [Google Scholar] [CrossRef] [PubMed]
- Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016, 410, 1–13. [Google Scholar] [CrossRef]
- Fathi, M.; Gharakhanlou, R.; Rezaei, R. The Changes of Heart miR-1 and miR-133 Expressions following Physiological Hypertrophy Due to Endurance Training. Cell J. 2020, 22 (Suppl. S1), 133–140. [Google Scholar]
- Bahrami, F.; Fathi, M.; Ahmadvand, H.; Pajohi, N. Endurance training changes the expression of miR-1 and miR-133 and predicted genes in slow and fast twitch muscles. Arch. Gerontol. Geriatr. 2023, 108, 104929. [Google Scholar] [CrossRef]
- Mytidou, C.; Koutsoulidou, A.; Zachariou, M.; Prokopi, M.; Kapnisis, K.; Spyrou, G.M.; Anayiotos, A.; Phylactou, L.A. Age-Related Exosomal and Endogenous Expression Patterns of miR-1, miR-133a, miR-133b, and miR-206 in Skeletal Muscles. Front. Physiol. 2021, 12, 708278. [Google Scholar] [CrossRef]
- Marinho, R.; Alcântara, P.S.M.; Ottoch, J.P.; Seelaender, M. Role of Exosomal MicroRNAs and myomiRs in the Development of Cancer Cachexia-Associated Muscle Wasting. Front. Nutr. 2017, 4, 69. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Z.; Wu, Y.; Xu, J.; He, Y.; Wang, R.; Zhang, W.; Chen, D. Case Report: Transient antenatal bartter syndrome in an extremely preterm infant with a novel MAGED2 variant. Front. Pediatr. 2023, 10, 1093268. [Google Scholar] [CrossRef]
- Tu, X.-M.; Gu, Y.-L.; Ren, G.-Q. miR-125a-3p targetedly regulates GIT1 expression to inhibit osteoblastic proliferation and differentiation. Exp. Ther. Med. 2016, 12, 4099–4106. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Yang, B.; Guo, H.; Kang, F. MicroRNAs regulate osteogenesis and chondrogenesis. Biochem. Biophys. Res. Commun. 2012, 418, 587–591. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Yao, G.; Zhao, H.; Qiao, P.; Wu, S. lncRNA-Gm5532 regulates osteoclast differentiation through the miR-125a-3p/TRAF6 axis. Acta Biochim. Biophys. Sin. 2024, 56, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, T. Electron microscopic studies on progressive muscular dystrophy. Nihon Seikeigeka Gakkai Zasshi 1968, 42, 89–103. [Google Scholar] [PubMed]
- Yeh, C.-L.; Cheng, I.-C.; Hou, Y.-C.; Wang, W.; Yeh, S.-L. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: Observations in Taiwanese. Asia Pac. J. Clin. Nutr. 2014, 23, 331–337. [Google Scholar]
- Huang, M.; Wang, Y.; Wang, Z.; Qin, Q.; Zhang, H.; Liu, S.; Cui, J.; Zhang, Y.; Jiang, X.; Xu, L. miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway. J. Biol. Chem. 2022, 298, 102116. [Google Scholar] [CrossRef]
- Tang, L.; Yuan, L.; Yan, J.; Ge, J.; Lian, Z.; Li, Z. circ_0029463 promotes osteoclast differentiation by mediating miR-134-5p/Rab27a axis. J. Orthop. Surg. Res. 2024, 19, 128. [Google Scholar] [CrossRef]
- Ma, Y.; Shan, Z.; Ma, J.; Wang, Q.; Chu, J.; Xu, P.; Qin, A.; Fan, S. Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. Mol. Med. Rep. 2016, 13, 2273–2280. [Google Scholar] [CrossRef]
- Yang, J.-X.; Xie, P.; Li, Y.-S.; Wen, T.; Yang, X.-C. Osteoclast-derived miR-23a-5p-containing exosomes inhibit osteogenic differentiation by regulating Runx2. Cell Signal 2020, 70, 109504. [Google Scholar] [CrossRef]
- Ren, G.; Sun, J.; Li, M.; Zhang, Y.; Li, R.; Li, Y. MicroRNA-23a-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting mitogen-activated protein kinase-13. Mol. Med. Rep. 2018, 17, 4554–4560. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bae, Y.-U.; Lee, H.; Kim, H.; Jeon, J.S.; Noh, H.; Han, D.C.; Byun, D.W.; Kim, S.H.; Park, H.K.; et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res. Care 2020, 8, e001403. [Google Scholar] [CrossRef] [PubMed]
- Miranda, K.; Mehrpouya-Bahrami, P.; Nagarkatti, P.S.; Nagarkatti, M. Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells. Front. Immunol. 2019, 10, 1049. [Google Scholar] [CrossRef]
- Bedene, A.; Bedrač, S.M.; Ješe, L.; Marc, J.; Vrtačnik, P.; Preželj, J.; Kocjan, T.; Kranjc, T.; Ostanek, B. MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien. Klin. Wochenschr. 2016, 128 (Suppl. S7), 519–526. [Google Scholar] [CrossRef]
- Coste, H.; Grondin, P. Characterization of a novel potent and specific inhibitor of type V phosphodiesterase. Biochem. Pharmacol. 1995, 50, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Sun, J.; Luo, W.; Chen, H.; Chen, T.; Chen, C.; Zhang, B.; Zhang, Y. Down-expression of miR-494-3p in senescent osteocyte-derived exosomes inhibits osteogenesis and accelerates age-related bone loss via PTEN/PI3K/AKT pathway. Bone Jt. Res. 2024, 13, 52–65. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Wu, B.; Chen, B.; Song, Q.; Guan, Y.; Gong, Y.; Yang, C.; Lin, J.; Huang, M.; et al. Bone transport induces the release of factors with multi-tissue regenerative potential for diabetic wound healing in rats and patients. Cell Rep. Med. 2024, 5, 101588. [Google Scholar] [CrossRef]
- Wu, J.; Qin, X.-H.; Hou, Z.-X.; Fu, Z.-H.; Li, G.-H.; Yang, H.-Y.; Zhang, X.; Gao, F. miR-494-3p reduces insulin sensitivity in diabetic cardiomyocytes by down-regulation of insulin receptor substrate 1. Sheng Li Xue Bao 2019, 71, 271–278. [Google Scholar] [PubMed]
- Lee, S.; Hong, N.; Kim, Y.; Park, S.; Kim, K.-J.; Jeong, J.; Jung, H.-I.; Rhee, Y. Circulating miR-122-5p and miR-375 as Potential Biomarkers for Bone Mass Recovery after Parathyroidectomy in Patients with Primary Hyperparathyroidism: A Proof-of-Concept Study. Diagnostics 2021, 11, 1704. [Google Scholar] [CrossRef]
- Li, C.; Qin, Y.; Ouyang, T.; Yao, M.; Zhang, A.; Luo, P.; Pan, X. miR-122-5p Mediates Fluoride-Induced Osteoblast Activation by Targeting CDK4. Biol. Trace Element Res. 2021, 199, 1215–1227. [Google Scholar] [CrossRef]
- Verdelli, C.; Sansoni, V.; Perego, S.; Favero, V.; Vitale, J.; Terrasi, A.; Morotti, A.; Passeri, E.; Lombardi, G.; Corbetta, S. Circulating fractures-related microRNAs distinguish primary hyperparathyroidism-related from estrogen withdrawal-related osteoporosis in postmenopausal osteoporotic women: A pilot study. Bone 2020, 137, 115350. [Google Scholar] [CrossRef] [PubMed]
- Panach, L.; Mifsut, D.; Tarín, J.J.; Cano, A.; García-Pérez, M.Á. Serum Circulating MicroRNAs as Biomarkers of Osteoporotic Fracture. Calcif. Tissue Int. 2015, 97, 495–505. [Google Scholar] [CrossRef]
- Santos, D.; Porter-Gill, P.; Goode, G.; Delhey, L.; Sørensen, A.E.; Rose, S.; Børsheim, E.; Dalgaard, L.T.; Carvalho, E. Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity. Life Sci. 2023, 312, 121246. [Google Scholar] [CrossRef] [PubMed]
- Kocijan, R.; Muschitz, C.; Geiger, E.; Skalicky, S.; Baierl, A.; Dormann, R.; Plachel, F.; Feichtinger, X.; Heimel, P.; Fahrleitner-Pammer, A.; et al. Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. J. Clin. Endocrinol. Metab. 2016, 101, 4125–4134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, J.; Wang, X.; Li, M.; Li, F.; Zhu, E.; Li, X.; Li, X.; Wang, B. A Novel Regulatory Circuit “C/EBPα/miR-20a-5p/TOB2” Regulates Adipogenesis and Lipogenesis. Front. Endocrinol. 2019, 10, 894. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, Y.; Li, L.; Zhou, S.; Yin, G.; Yu, G.; Cui, H. Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med. 2019, 8, 5687–5701. [Google Scholar] [CrossRef]
- Huang, W.; Wu, Y.; Zhao, Y.; Gao, X.; Zhang, B.; Cen, X.; Huang, X.; Zhao, Z. Down-regulation of hsa-circ-0107593 promotes osteogenic differentiation of hADSCs via miR-20a-5p/SMAD6 signaling. Oral Dis. 2023, 29, 3447–3459. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, D.; Pan, N.; Sun, N.; Wang, Q.; Fan, J.; Zhou, P.; Zhu, W.; Jiang, L. Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis. PeerJ 2015, 3, e971. [Google Scholar] [CrossRef]
- Ding, H.; Meng, J.; Zhang, W.; Li, Z.; Li, W.; Zhang, M.; Fan, Y.; Wang, Q.; Zhang, Y.; Jiang, L.; et al. Medical examination powers miR-194-5p as a biomarker for postmenopausal osteoporosis. Sci. Rep. 2017, 7, 16726. [Google Scholar] [CrossRef]
- Ma, J.; Lin, X.; Chen, C.; Li, S.; Zhang, S.; Chen, Z.; Li, D.; Zhao, F.; Yang, C.; Yin, C.; et al. Circulating miR-181c-5p and miR-497-5p Are Potential Biomarkers for Prognosis and Diagnosis of Osteoporosis. J. Clin. Endocrinol. Metab. 2020, 105, dgz300. [Google Scholar] [CrossRef]
- Huang, J.; Yang, H.; Chai, S.; Lin, Y.; Zhang, Z.; Huang, H.; Wan, L. Identification of miRNAs related to osteoporosis by high-throughput sequencing. Front. Pharmacol. 2024, 15, 1451695. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Kushwaha, P.; Karvande, A.; Tripathi, A.K.; Kothari, P.; Adhikary, S.; Khedgikar, V.; Mishra, V.K.; Trivedi, R. MicroRNA-672-5p Identified during Weaning Reverses Osteopenia and Sarcopenia in Ovariectomized Mice. Mol. Ther. Nucleic Acids 2019, 14, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qian, T.; Zheng, X.; Qin, H. Role of mir-32-3p in the diagnosis and risk assessment of osteoporotic fractures. J. Orthop. Surg. Res. 2024, 19, 709. [Google Scholar] [CrossRef]
- Hong, J.; Ye, F.; Yu, B.; Gao, J.; Qi, F.; Wang, W. Identification of the specific microRNAs and competitive endogenous RNA mechanisms in osteoporosis. J. Int. Med Res. 2020, 48, 300060520954722. [Google Scholar] [CrossRef]
- Tan, Y.; Gan, M.; Fan, Y.; Li, L.; Zhong, Z.; Li, X.; Bai, L.; Zhao, Y.; Niu, L.; Shang, Y.; et al. miR-10b-5p regulates 3T3-L1 cells differentiation by targeting Apol6. Gene 2019, 687, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Wróblewski, A.; Strycharz, J.; Oszajca, K.; Czarny, P.; Świderska, E.; Matyjas, T.; Zieleniak, A.; Rucińska, M.; Pomorski, L.; Drzewoski, J.; et al. Dysregulation of Inflammation, Oxidative Stress, and Glucose Metabolism-Related Genes and miRNAs in Visceral Adipose Tissue of Women with Type 2 Diabetes Mellitus. Med Sci. Monit. 2023, 29, e939299. [Google Scholar] [CrossRef]
- Iacomino, G.; Russo, P.; Marena, P.; Lauria, F.; Venezia, A.; Ahrens, W.; De Henauw, S.; De Luca, P.; Foraita, R.; Günther, K.; et al. Circulating microRNAs are associated with early childhood obesity: Results of the I.Family Study. Genes Nutr. 2019, 14, 2. [Google Scholar] [CrossRef]
- Lauria, F.; Iacomino, G.; Russo, P.; Venezia, A.; Marena, P.; Ahrens, W.; De Henauw, S.; Eiben, G.; Foraita, R.; Hebestreit, A.; et al. Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study. Genes 2022, 13, 632. [Google Scholar] [CrossRef]
- Mitchell, C.J.; D’Souza, R.F.; Schierding, W.; Zeng, N.; Ramzan, F.; O’Sullivan, J.M.; Poppitt, S.D.; Cameron-Smith, D. Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing. Phys. Genom. 2018, 50, 416–424. [Google Scholar] [CrossRef]
- Zheng, M.; Tan, J.; Liu, X.; Jin, F.; Lai, R.; Wang, X. miR-146a-5p targets. Bone Rep. 2021, 14, 101013. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Feng, J.; Xu, B.; Niu, Y.; Zheng, Y. From Bone Remodeling to Wound Healing: An miR-146a-5p-Loaded Nanocarrier Targets Endothelial Cells to Promote Angiogenesis. ACS Appl. Mater. Interfaces 2024, 16, 32992–33004. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, Z.; Gao, H.; Dos Reis, F.C.G.; Bandyopadhyay, G.; Jin, Z.; Manda, K.A.; Isaac, R.; Yang, M.; Fu, W.; et al. Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nat. Metab. 2021, 3, 1163–1174. [Google Scholar] [CrossRef]
- Cheng, M.; Guo, Y.; Zhong, W.; Chen, X.; Guo, G. Abnormal Expression of microRNA-296-3p in Type 2 Diabetes Patients and its Role in Pancreatic β-Cells Function by Targeting Tensin Homolog Deleted on Chromosome Ten. Biochem. Genet. 2022, 60, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Xue, Y.; Liu, Y.; Xu, Y.; Chen, G.; Wu, H. Role of lncRNA-MEG8/miR-296-3p axis in gestational diabetes mellitus. Nephrology 2022, 27, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yujiao, W.; Fang, W.; Linhui, Y.; Ziqi, G.; Zhichen, W.; Zirui, W.; Shengwang, W. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol. Res. 2020, 53, 40. [Google Scholar] [CrossRef] [PubMed]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef]
- Gong, Q.; Shen, Z.-M.; Sheng, Z.; Jiang, S.; Ge, S.-L. Hsa-miR-494-3p attenuates gene HtrA3 transcription to increase inflammatory response in hypoxia/reoxygenation HK2 Cells. Sci. Rep. 2021, 11, 1665. [Google Scholar] [CrossRef]
- Strycharz, J.; Wróblewski, A.; Zieleniak, A.; Świderska, E.; Matyjas, T.; Rucińska, M.; Pomorski, L.; Czarny, P.; Szemraj, J.; Drzewoski, J.; et al. Visceral Adipose Tissue of Prediabetic and Diabetic Females Shares a Set of Similarly Upregulated microRNAs Functionally Annotated to Inflammation, Oxidative Stress and Insulin Signaling. Antioxidants 2021, 10, 101. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Zhang, C.; Wang, Y.; Zhai, K.; Tong, Z. MicroRNA-122-5p regulates coagulation and inflammation through MASP1 and HO-1 genes. Infect. Genet. Evol. 2022, 100, 105268. [Google Scholar] [CrossRef]
- La Rosa, F.; Mancuso, R.; Agositini, S.; Piancone, F.; Marventano, I.; Saresella, M.; Hernis, A.; Fenoglio, C.; Galimberti, D.; Scarpini, E.; et al. Pharmacological and Epigenetic Regulators of NLRP3 Inflammasome Activation in Alzheimer’s Disease. Pharmaceuticals 2021, 14, 1187. [Google Scholar] [CrossRef]
- Li, M.; Hua, Q.; Shao, Y.; Zeng, H.; Liu, Y.; Diao, Q.; Zhang, H.; Qiu, M.; Zhu, J.; Li, X.; et al. Circular RNA circBbs9 promotes PM. Environ. Int. 2020, 143, 105976. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, W.; Tan, M.; Guo, P.; Liu, X.; Pan, X.; Yu, D.; Pang, Y.; Li, D.; Wang, Q.; et al. Identification of miRNAs involved in liver injury induced by chronic exposure to cadmium. Toxicology 2022, 469, 153133. [Google Scholar] [CrossRef]
- Rostami, M.N.; Douraghi, M.; Mohammadi, A.M.; Nikmanesh, B. Altered serum pro-inflammatory cytokines in children with Down’s syndrome. Eur. Cytokine Netw. 2012, 23, 64–67. [Google Scholar]
- Xiong, Y.; Tang, R.; Xu, J.; Jiang, W.; Gong, Z.; Zhang, L.; Ning, Y.; Huang, P.; Xu, J.; Chen, G.; et al. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res. Ther. 2022, 13, 289. [Google Scholar] [CrossRef]
- Iulita, M.F.; Ower, A.; Barone, C.; Pentz, R.; Gubert, P.; Romano, C.; Cantarella, R.A.; Elia, F.; Buono, S.; Recupero, M.; et al. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: Relation to cognitive decline and longitudinal evaluation. Alzheimer’s Dement. 2016, 12, 1132–1148. [Google Scholar] [CrossRef]
- Morsiani, C.; Bacalini, M.G.; Collura, S.; Moreno-Villanueva, M.; Breusing, N.; Bürkle, A.; Grune, T.; Franceschi, C.; De Eguileor, M.; Capri, M. Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down syndrome. Mech. Ageing Dev. 2022, 206, 111691. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, L.; Li, J.; Sun, P.; Shang, L.; Zhang, J.; Zhao, Q.; Ouyang, Y.; Li, L.; Gong, K. MicroRNA profiling of diabetic atherosclerosis in a rat model. Eur. J. Med Res. 2018, 23, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiang, X.; Lu, Y.; Li, H.; Wahaab, A.; Sharma, M.; Liu, K.; Wei, J.; Li, Z.; Shao, D.; et al. Downregulation of miR-296-3p by highly pathogenic porcine reproductive and respiratory syndrome virus activates the IRF1/TNF-α signaling axis in porcine alveolar macrophages. Arch. Virol. 2021, 166, 511–519. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Zhou, F.; Li, J.; Lu, G.; Zhao, Y. MiR-20a-5p Regulates MPP. Evid. Based Complement Alternat. Med. 2021, 2021, 6621206. [Google Scholar]
- Silva, F.C.D.; Lop, R.D.R.; Andrade, A.; Costa, V.P.; Filho, P.J.B.G.; Silva, R.D. Effects of Physical Exercise on the Expression of MicroRNAs: A Systematic Review. J. Strength Cond. Res. 2020, 34, 270–280. [Google Scholar] [CrossRef]
- Hou, Z.; Qin, X.; Hu, Y.; Zhang, X.; Li, G.; Wu, J.; Li, J.; Sha, J.; Chen, J.; Xia, J.; et al. Longterm Exercise-Derived Exosomal miR-342-5p: A Novel Exerkine for Cardioprotection. Circ. Res. 2019, 124, 1386–1400. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Arroquia, A.; McCormick, R.; Molloy, A.P.; McArdle, A.; Goljanek-Whysall, K. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration. Aging Cell 2016, 15, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-M.; Ye, H.; Zhu, Q.; Zhang, J.-H.; Liu, Q.-Q.; Xie, H.-Y.; Long, Y.; Huang, H.; Niu, Y.-L.; Luo, Y.; et al. Effects of resistance training on body composition and physical function in elderly patients with osteosarcopenic obesity: A systematic review and meta-analysis. Arch. Osteoporos. 2022, 17, 82. [Google Scholar] [CrossRef] [PubMed]
Authors | Study Population | Number of Participants | Experimental Subdivision | Time of Measurement | Sample | miRNA Detection Technique | Effect |
---|---|---|---|---|---|---|---|
Banitalebi E et al. (2021) [33] | Human | 63 postmenopausal women | Divided into resistance training/control group | Before and 48 h after training | Serum | RT-PCR | After exercise, different correlations were found between miRNAs and Bone Health Parameter. |
Huang L et al. (2024) [40] | Human | Not specified | Randomized into exercise/control groups | 3 time points: Baseline, Week 8, Week 24 | Plasma | qPCR | Exercise improved body fat and cardiorespiratory fitness; specific miRNAs increased after training. |
Faraldi M et al. (2024) [41] | Human | 28 postmenopausal women | Divided into tertiles based on ASMMI | At enrollment | Plasma | qPCR | ROC curves indicated that discovered miRNAs had excellent diagnostic potential. |
He N et al. (2022) [42] | Human | 186 participants (59 female, 34 male) | Divided into sarcopenia/ non-sarcopenia groups | November 2016 to March 2017 | Plasma | RT-PCR | miR-29b downregulated in sarcopenia group; potential biomarker for sarcopenia, useful in assessing cardiovascular risks in the elderly. |
Qaisar R et al. (2021) [43] | Human | 181 male participants | Divided into CHF/controls | January 2019 to September 2019 | Plasma | RT-PCR | CHF patients showed lower physical capacity; specific miRNAs linked to muscle health and inflammation. |
Iannone F et al. (2020) [44] | Human | 218 participants (139 females, 79 males) | Divided into sarcopenia/ non-sarcopenia groups | Specific time points not detailed | Plasma | RT-PCR | Lower miR-133b levels associated with sarcopenia; nutrients mediating effect observed. |
La Rosa F et al. (2021) [45] | Human | 21 elderly patients (13 females, 8 males) | All participants received a rehabilitative treatment program and underwent the same intervention | Baseline (T0) and post-rehabilitation (T1) | Plasma | ddPCR | Improved physical and cognitive parameters; highlighted importance of comprehensive geriatric assessment. |
Millet M et al. (2024) [46] | Human | 534 older Belgian individuals | Divided into sarcopenia/ non-sarcopenia groups | January 2019 to September 2019 | Serum | NGS RT-PCR | Higher malnourished or at-risk individuals in sarcopenic group; miR-133b and miR-206 levels associated with sarcopenia. |
Gao H et al. (2021) [47] | Rats | 48 female Sprague Dawley rats | Divided into four groups based on training/sedentary conditions | After specified training periods | Skeletal muscles | qRT-PCR | Lifelong MICT improved age-related miR-486 expression; upregulation of mitochondrial activity. |
Pedraza-Vázquez G et al. (2023) [34] | Rats | 80 female Wistar rats | Divided into treadmill LRER/sedentary control | At 8, 12, 18, 24 months | Gastrocnemius muscle | miRNA array | DEmiRs associated with inflammatory profiles identified across age groups. |
Hamrick M et al. (2010) [48] | Mice | 48 C57BL/6 mice | Divided by age and leptin treatment | After 10-day treatment period | Serum, Quadriceps muscles | miRNA arrays | Aging altered 57 miRNAs; leptin treatment increased muscle mass and altered miRNAs associated with muscle’s repair. |
Jung H et al. (2017) [49] | Mice | 15 C57BL/6 mice | Divided into young/aged groups | After designated experimental conditions | Serum, Tibialis anterior muscle | miRNA sequencing qRT-PCR | Findings suggest a significant link between adipose tissue-derived miRNAs and aging-associated muscle atrophy, contributing to our understanding of sarcopenia. |
Kim J et al. (2014) [50] | Mice | 12 C57BL/6 mice | Divided into young/aged groups | After designated experimental conditions | Gastrocnemius muscles | miRNA sequencing qRT-PCR | Gene expression analysis provided insights into the molecular changes associated with aging and muscle decline, emphasizing the role of miRNAs and their interactions with mRNAs in the context of sarcopenia and muscle atrophy. |
Lee H et al. (2021) [51] | Mice | Not specified female C57/BL6 mice | Divided into ovariectomized/sham models | After designated experimental conditions | Gastrocnemius muscle | qRT-PCR miRNA sequencing | Identified miRNA interactions in obesogenic sarcopenia |
Pardo P et al. (2017) [52] | Mice | 44 C57BL/6J mice | Divided into young/aged | 15 weeks post-surgery | Skeletal muscles | Microarray analysis qRT-PCR | miR-434-3p downregulated in aging muscle; it is considered to be an anti-apoptotic miRNA with potential therapeutic applications for addressing muscle atrophy, particularly in the context of sarcopenia and other pathophysiological conditions. |
Rivas D et al. (2021) [53] | Human and Mice | 73 community-dwelling older adults (43 females, 30 males) | Categorized into losers (those who lost muscle mass)/ gainers (those who gained muscle mass) | January 2019–September 2019 with assessments carried out before and at the end of a 6-month rehabilitation protocol | Plasma | qRT-PCR | Six miRNAs were discovered in humans, while miR-19b-3p was identified as significant in murine models as well, with a particular focus on the comparison between young and older mice. This suggested that it is significantly associated with an increase in lean mass. |
12 male C57BL/6 mice | Mice divided into young/aged groups | After designated experimental conditions | Plasma | ||||
Yang S et al. (2022) [54] | Human and Mice | 40 individuals (17 females, 23 males) | Categorized into individuals with type 2 diabetes/ healthy | Assessment was carried out after an overnight fast of at least 10 h | TA and gastrocnemius muscle | RT-PCR, miRNA analysis | The findings suggest that miR-193b plays a critical role in muscle mass regulation and could be a potential therapeutic target for muscle loss associated with type 2 diabetes. |
20 mice: 10 mouse models of type 2 diabetes (BKS.C g–m +/+ Leprdb/J 10 C57BLKS/J wild-type | Categorized into HFD/ control diet | After a 16-week treatment, all mice were euthanized following a 16 h fasting period, after which blood and muscle samples were taken for further analysis | Serum | ||||
Itokazu M et al. (2022) [55] | Human and Mice | 18 human participants (10 females, 8 males) divided by age | Humans divided by age | After surgical procedures | Muscle | miRNA array qPCR | Changes in the microRNA profile were linked to the interaction of aged adipocytes, indicating that adipose-derived miRNAs could have an important role in the development of sarcopenia. |
C57BL/6 mice | Mice divided by age | After surgical procedures | Adipose tissue | ||||
Okamura T et al. (2021) [56] | Human and Mice | 32 male patients from KAMOGAWA-DM cohort | Humans were divided into two groups based on muscle mass: those with decreased muscle mass/those without | Assessments during August 2015–September 2017 | Tissue | miRNA arrays RT-PCR | Investigated association of serum miRNAs with sarcopenia; highlighted roles of specific miRNAs in muscle health. |
12 male C57BL/6 Mice | Mice were divided into two age groups: young (6 months)/ aged (24 months) | Measurements related to muscle dissection were performed after the mice were aged accordingly, with treatments applied following baseline assessments | The soleus muscle |
Authors | Study Design | Age | Experimental Division | Type | miRNA | Effect |
---|---|---|---|---|---|---|
Banitalebi E et al. (2021) [33] | Randomized Controlled | Over 65 years | Divided into Exercise Group: 32 subjects underwent EBRT. Control Group: 31 subjects represented the sedentary control group. | Circulating | miR-133 miR-206 | Both miRNAs showed a negative correlation with the FRAX score and vitamin D levels, indicating unfavorable effects on bone health; a positive correlation with ALP levels suggests an increase in bone turnover. |
Huang L et al. (2024) [40] | Assessor-Blinded, Parallel, Randomized Controlled | Over 60 years | Divided into Exercise Group: Received supervised cycling training. Control Group: No exercise intervention. | Circulating | miR-126 miR-146a miR-222 miR-21 | Exercise improved body fat and cardiorespiratory fitness; increased expression of specified miRNAs post-training. Potential mediating effect of miR-21 on body composition, cardiorespiratory fitness, and lower limb strength, but no significant indirect effect. |
Faraldi M et al. (2024) [41] | Cohort | Over 60 years | Divided into tertiles based on the ASMMI: First tertile: 9 participants (ASMMI = 4.88 ± 0.40 kg·m−2). Second tertile: 10 participants (ASMMI = 5.73 ± 0.23 kg·m−2). Third tertile: 9 participants (ASMMI = 6.40 ± 0.22 kg·m−2). | Circulating | miR-221-3p miR-374b-5p miR-146a-5p miR-126-5p miR-425-5p miR-145-5p miR-25-3p | miR-221-3p, miR-374b-5p, miR-146a-5p, miR-126-5p and miR-425-5p were downregulated, while miR-145-5p and miR-25-3p were upregulated in the first tertile. |
He N et al. (2022) [42] | Paired Case–Control | Over 65 years | Divided into Sarcopenia group: 93 individuals. Non-sarcopenia group: 93 individuals. | Circulating | miR-29b | miR-29b levels were significantly reduced in elderly patients with sarcopenia and CVRF. Additionally, a strong correlation was found between miR-29b and appendicular skeletal muscle mass (ASM) relative to height squared. |
Qaisar R et al. (2021) [43] | Case–Control | Over 65 years | Divided into Patients with CHF: 89 participants. Healthy Controls: 92 participants. | Circulating | miR-21 miR-181a miR-133a miR-434-3p miR-455-3p | CHF patients have elevated levels of miR-21 and reduced levels of miR-181a, miR-133a, miR-434-3p and miR-455-3p compared to healthy controls. HGS showed the strongest correlation with miR-133a. |
Iannone F et al. (2020) [44] | Case–Control | Over 65 years | Divided into Sarcopenia Group: 109 participants. Non-Sarcopenic Group: 109 participants. | Circulating | miR-133b | Lower levels of miR-133b were significantly associated with the presence of sarcopenia (p = 0.006), though this relationship was influenced by nutritional status, indicating a mediating effect of nutrition on the connection between miR-133b and sarcopenia. |
La Rosa F et al. (2021) [45] | Cohort | Over 65 years | The study did not specify comparison groups, as all participants underwent the same rehabilitative treatment and had severe sarcopenia. | Circulating | miR-335-3p miR-657 | Upregulation of both miRNAs was observed in severe sarcopenia as a result of the rehabilitation program. |
Millet M et al. (2024) [46] | Case–Control | Over 65 years | Divided into Sarcopenic Group: 18 individuals in the screening phase and 92 in the validation phase. Non-Sarcopenic Group: 19 healthy individuals in the screening phase and 92 matched for the validation phase. | Circulating | miR-133a-3p miR-200a-3p miR-744-5p miR-151a-3p | miR-133a-3p, miR-200a-3p and miR-744-5p were downregulated, while miR-151a-3p was upregulated in sarcopenic patients. |
Authors | Study Design | Age | Experimental Division | Sample | miRNA | Effect |
---|---|---|---|---|---|---|
Gao H et al. (2021) [47] | Experimental | Starting from 8 months old | Rats underwent treadmill training and were divided into Group 1: Adult-MICT (12 rats)—18 months of moderate-intensity continuous training (MICT) initiated at 8 months. Group 2: Presarcopenia-MICT (12 rats)—8 months of MICT initiated at 18 months. Group 3: Adult-SED (12 rats)—sedentary controls at 8 months. Group 4: Old-SED (12 rats)—aging sedentary controls at 26 months. | Skeletal muscle | miR-486 | Age-related loss of miR-486 expression was improved, skeletal muscle atrophy and apoptosis were downregulated and mitochondrial activity and autophagy were upregulated in the adult-MICT group. |
Pedraza-Vázquez G et al. (2023) [34] | Experimental | 8–12 months 12–18 months 18–24 months | Divided into 33 rats that underwent a treadmill LRER. 47 rats represented the sedentary control group. | Tissue | miR-134-5p miR-678 miR-23a-5p miR-125a-3p miR-6332 miR-3075 miR-30e-5p miR-1839-5p miR-194-5p miR-10b-5p miR-497-5p miR-494-3p miR-127-3p miR-672-5p miR-32-3p miR-122-5p miR-152-3p miR-146a-5p miR-1839-5p (duplicate) miR-296-3p miR-20a-5p | Identification of DEmiRs linked to inflammatory profiles in different experimental age categories. |
Hamrick M et al. (2010) [48] | Experimental | 12 months and 24 months | 24 mice per age group, divided into Age group 1: 12 months (control and leptin-injected groups) Age group 2: 24 months (control and leptin-injected groups). | Quadriceps muscles | miR-685 miR-142-3p miR-206 miR-155 | miR-685, miR-142-3p were upregulated, while miR-206 miR-155 were downregulated in leptin treatment compared to control aged mice. |
Jung H et al. (2017) [49] | Experimental | 6 months and 24 months | Divided into 5 young mice (6 months). 5 old mice (24 months). 5 young mice (6 months) for the induction of disuse muscle atrophy. | Circulating And Tissue | miR-455-3p miR-434-3p | miR-455-3p is involved in muscle atrophy, and an increase in its expression may promote muscle growth. miR-434-3p could be a potential serum biomarker for muscle aging, as it is negatively regulated in the presence of atrophy. |
Kim J et al. (2014) [50] | Experimental | 6 months and 24 months | Divided into 6 young mice (6 months). 6 old mice (24 months). | Tissue | miR-148a miR-411 miR-136 miR-34a/c miR-92b miR-132 miR-146a miR-152 miR-155 miR-185 miR-203 miR-206 miR-215 | miR-148a, miR-411, miR-136 were downregulated, while miR-34a/c, miR-92b, miR-132, miR-146a, miR-152, miR-155, miR-185, miR-203, miR-206, miR-215 were downregulatedin aged mice. |
Lee H et al. (2021) [51] | Experimental | Eight-week-old | Divided into Ovariectomized group. Sham-operated group. | Tissue | miR-141-3p | miR-141-3p is upregulated in OVX mice, and this could be a therapeutic target for alleviating obesogenic sarcopenia. |
Pardo P et al. (2017) [52] | Experimental | 3 months and 26 months | Divided into 20 young group. 2 aged group. | Tissue | miR-434-3p | miR-434-3p as a highly downregulated miRNA in the skeletal muscle of aging mice. |
Authors | Study Design | Age | Experimental Division | Sample | miRNA | Effect |
---|---|---|---|---|---|---|
Rivas D et al. (2021) [53] | Randomized Controlled Trial | Over 65 years | All participants underwent PRET and a diet with protein supplementation. They were categorized into 33 losers; 40 gainers. | Circulating | miR-1-3p miR-19b miR-92a miR-126 miR-133a-3p miR-133b | miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p and miR-133b were not identified as differentially expressed between gainers and losers in older adults. The expression of miR-19b-3p was higher in young mice compared to older mice. |
Experimental | 3 months and 21 months | Mice were categorized into 6 young mice (3 months); 6 old mice (21 months). | Circulating | |||
Yang S et al. (2022) [54] | Case–Control | Over 50 years | Categorized into 20 individuals with type 2 diabetes. 20 healthy participants. | Circulating | miR-193b | Increased miR-193b levels: serum levels of miR-193b were found to be elevated in individuals with type 2 diabetes. There is a negative correlation between miR-193b levels and muscle mass in participants with type 2 diabetes, indicating that higher levels of miR-193b are associated with lower muscle mass. |
Experimental | 8 ± 0.5 weeks old | Divided into Group 1: Control diet (5 diabetic mice vs. 5 wild type). Group 2: HFD (5 diabetic mice vs. 5 wild type). | Tissues | |||
Itokazu M et al. (2022) [55] | Translational | mean age = 31.8 years and mean age = 77.5 | Divided into young patients. aged patients. | Tissue | miR-8113 miR-6239 miR-7075 let-7d miR-7653 miR-7052 miR-365-2 miR-1940 miR-6906 miR-6898 miR-677 miR-7040 miR-6966 miR-709 miR-7025 miR-1224 miR-7030 miR-6236 miR-490 miR-92a miR-3544 miR-7016 miR-7032 miR-101a miR-3093 miR-30c miR-7076 miR-3104 | Reduction in Let-7 miRNA repressor Lin28 A/B and activation of nuclear factor-kappa B signaling can lead to the accumulation of Let-7d-3p in the exosomes of aged PMAT. |
Experimental | 5-week-old and 2-year-old | Divided into young mice (5-week-old). old mice (2-year-old). | Tissue | |||
Okamura T et al. (2021) [56] | Experimental | 8-week-old | Divided into ORX Group Sham Group Androgen Treatment Group | Tissue | let-7e-5p | let-7e-5p is reduced in ORX mice and increased after androgen treatment. Finally, serum levels of let-7e-5p were significantly lower in subjects with decreased muscle mass compared to those without decreased muscle mass. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braile, M.; Braile, A.; Greggi, C.; Visconti, V.V.; Toro, G.; Trotta, M.C.; Conza, G.; Tarantino, U. Role of microRNAs in Osteosarcopenic Obesity/Adiposity: A Scoping Review. Cells 2025, 14, 802. https://doi.org/10.3390/cells14110802
Braile M, Braile A, Greggi C, Visconti VV, Toro G, Trotta MC, Conza G, Tarantino U. Role of microRNAs in Osteosarcopenic Obesity/Adiposity: A Scoping Review. Cells. 2025; 14(11):802. https://doi.org/10.3390/cells14110802
Chicago/Turabian StyleBraile, Mariantonia, Adriano Braile, Chiara Greggi, Virginia Veronica Visconti, Giuseppe Toro, Maria Consiglia Trotta, Gianluca Conza, and Umberto Tarantino. 2025. "Role of microRNAs in Osteosarcopenic Obesity/Adiposity: A Scoping Review" Cells 14, no. 11: 802. https://doi.org/10.3390/cells14110802
APA StyleBraile, M., Braile, A., Greggi, C., Visconti, V. V., Toro, G., Trotta, M. C., Conza, G., & Tarantino, U. (2025). Role of microRNAs in Osteosarcopenic Obesity/Adiposity: A Scoping Review. Cells, 14(11), 802. https://doi.org/10.3390/cells14110802