Cognitive Flexibility in Mice: Effects of Puberty and Role of NMDA Receptor Subunits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Substance
2.3. Attentional Set Shifting Task (ASST)
2.3.1. Setup and Material
2.3.2. Food Restriction
2.3.3. Habituation to the Bowls and the Reward
2.3.4. Group Habituation
2.3.5. Single Habituation
2.3.6. Test Days
- Day 1, simple discrimination (SD): In this phase, only cues of one dimension were presented, either medium or odor. The goal of this phase was that mice learn which of the two media or odors, respectively, is associated with the reward. For example, big green beads (M1) indicated the reward while small green beads (M2) were not associated with reward.
- Day 2, compound discrimination (CD) and reversal (Rev1). Importantly, cues of the second dimension were added. However, still the cues of the SD phase indicate the reward, i.e., the cues of the second dimension were irrelevant. For example, the big green beads (M1) were still rewarded, but were either presented with citral (O1) or eucalyptol (O2). In the Rev1 phase, the previously not rewarded cue was now the rewarding one (in our example the small green beads (M2)).
- Day 3, intra-dimensional shift (IDS) and reversal (Rev2). All cue exemplars were exchanged but the relevant cue dimension stayed the same. For example, big grains (M3) were rewarded, while small grains (M4) were not. Irrelevant since not associated with the reward were the new odorants valeric acid (O3) and R-(+)-carvone (O4). In Rev2, contingencies changed and the small grains (M4) were rewarded.
- Day 4, extra-dimensional shift (EDS) and reversal (Rev3). Again, new cue exemplars were used. However, now the relevant cue dimension changed, i.e., the odorants became relevant. For example, R-(-)-carvone (O5) predicted the reward, 2-phenylethanol (O6) not. The new filling media big clay granulate (M5) and small clay granulate (M6) were irrelevant. In Rev3, the contingency of the two odors changed, so 2-phenylethanol (O6) was rewarded.
2.4. Collecting Brain Samples and Molecular Analyses
2.4.1. Brain Sample Preparation
2.4.2. Crude Synaptosomal Membrane Preparation
2.4.3. Western Blot Analysis
2.5. Experiments
2.5.1. Experiment 1: ASST Performance during Puberty and Adultness
2.5.2. Experiment 2: NMDA Receptor Subunits Expression
2.5.3. Experiment 3: GluN2A Blockade during ASST in Pubertal Mice
2.6. Statistical Analyses
3. Results
3.1. Experiment 1: ASST Performance during Puberty and Adultness
3.2. Experiment 2: NMDA Receptor Subunits Expression before, during and after Puberty
3.3. Experiment 3: GluN2A Blockade during ASST in Pubertal Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dajani, D.R.; Uddin, L.Q. Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci. 2015, 38, 571–578. [Google Scholar] [CrossRef]
- Logue, S.F.; Gould, T.J. The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacol. Biochem. Behav. 2014, 123, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Thoma, P.; Wiebel, B.; Daum, I. Response inhibition and cognitive flexibility in schizophrenia with and without comorbid substance use disorder. Schizophr. Res. 2007, 92, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Roshani, F.; Piri, R.; Malek, A.; Michel, T.M.; Vafaee, M.S. Comparison of cognitive flexibility, appropriate risk-taking and reaction time in individuals with and without adult ADHD. Psychiatry Res. 2020, 284, 112494. [Google Scholar] [CrossRef]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; Lawrence, A.D.; McInnes, L.; Rabbitt, P.M. A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J. Int. Neuropsychol. Soc. 1998, 4, 474–490. [Google Scholar] [CrossRef]
- Tait, D.S.; Bowman, E.M.; Neuwirth, L.S.; Brown, V.J. Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neurosci. Biobehav. Rev. 2018, 89, 72–84. [Google Scholar] [CrossRef]
- Bissonette, G.B.; Powell, E.M. Reversal learning and attentional set-shifting in mice. Neuropharmacology 2012, 62, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Young, J.W.; Powell, S.B.; Geyer, M.A.; Jeste, D.V.; Risbrough, V.B. The mouse attentional-set-shifting task: A method for assaying successful cognitive aging? Cogn. Affect. Behav. Neurosci. 2010, 10, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Rodefer, J.S.; Murphy, E.R.; Baxter, M.G. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur. J. Neurosci. 2005, 21, 1070–1076. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Golembiowska, K.; Popik, P. Mazindol attenuates ketamine-induced cognitive deficit in the attentional set shifting task in rats. Eur. Neuropsychopharmacol. 2010, 20, 37–48. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Fendt, M. D-cycloserine rescues scopolamine-induced deficits in cognitive flexibility in rats measured by the attentional set-shifting task. Behav. Brain Res. 2022, 431, 113961. [Google Scholar] [CrossRef] [PubMed]
- McQuail, J.A.; Beas, B.S.; Kelly, K.B.; Hernandez, C.M., 3rd; Bizon, J.L.; Frazier, C.J. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. Neuropharmacology 2021, 197, 108720. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.L.; Yang, J.; Lau, B.; Liu, S.; Baimel, C.; Kerr, L.E.; Liu, F.; Borgland, S.L. Age-dependent D1-D2 receptor coactivation in the lateral orbitofrontal cortex potentiates NMDA receptors and facilitates cognitive flexibility. Cereb. Cortex 2016, 26, 4524–4539. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Clemente, A.; Nicoll, R.A.; Roche, K.W. Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist 2013, 19, 62–75. [Google Scholar] [CrossRef]
- Marquardt, K.; Saha, M.; Mishina, M.; Young, J.W.; Brigman, J.L. Loss of GluN2A-containing NMDA receptors impairs extra-dimensional set-shifting. Genes Brain Behav. 2014, 13, 611–617. [Google Scholar] [CrossRef]
- Marquardt, K.; Josey, M.; Kenton, J.A.; Cavanagh, J.F.; Holmes, A.; Brigman, J.L. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2021, 475, 230–245. [Google Scholar] [CrossRef]
- Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K. Specific roles of NMDA receptor subunits in mental disorders. Curr. Mol. Med. 2015, 15, 193–205. [Google Scholar] [CrossRef]
- Gopnik, A.; O’Grady, S.; Lucas, C.G.; Griffiths, T.L.; Wente, A.; Bridgers, S.; Aboody, R.; Fung, H.; Dahl, R.E. Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proc. Natl. Acad. Sci. USA 2017, 114, 7892–7899. [Google Scholar] [CrossRef]
- Crone, E.A.; Dahl, R.E. Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat. Rev. Neurosci. 2012, 13, 636–650. [Google Scholar] [CrossRef]
- Lin, W.C.; Wilbrecht, L. Making sense of strengths and weaknesses observed in adolescent laboratory rodents. Curr. Opin. Psychol. 2022, 45, 101297. [Google Scholar] [CrossRef]
- Johnson, C.; Wilbrecht, L. Juvenile mice show greater flexibility in multiple choice reversal learning than adults. Dev. Cogn. Neurosci. 2011, 1, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, S.R.; Hankosky, E.R.; Dwyer, M.R.; Gulley, J.M. Age and sex differences in behavioral flexibility, sensitivity to reward value, and risky decision-making. Behav. Neurosci. 2018, 132, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Shepard, R.; Beckett, E.; Coutellier, L. Assessment of the acquisition of executive function during the transition from adolescence to adulthood in male and female mice. Dev. Cogn. Neurosci. 2017, 28, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Ciampoli, M.; Scheggia, D.; Papaleo, F. Automatic intra-/extra-dimensional attentional set-shifting task in adolescent mice. Front. Behav. Neurosci. 2021, 15, 704684. [Google Scholar] [CrossRef]
- Newman, L.A.; McGaughy, J. Adolescent rats show cognitive rigidity in a test of attentional set shifting. Dev. Psychobiol. 2011, 53, 391–401. [Google Scholar] [CrossRef]
- Wenzel, A.; Fritschy, J.M.; Mohler, H.; Benke, D. NMDA receptor heterogeneity during postnatal development of the rat brain: Differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 1997, 68, 469–478. [Google Scholar] [CrossRef] [PubMed]
- McAlonan, K.; Brown, V.J. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav. Brain Res. 2003, 146, 97–103. [Google Scholar] [CrossRef]
- Auberson, Y.P.; Allgeier, H.; Bischoff, S.; Lingenhöhl, K.; Moretti, R.; Schmutz, M. 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorganic Med. Chem. Lett. 2002, 12, 1099–1102. [Google Scholar] [CrossRef]
- Green, T.L.; Burket, J.A.; Deutsch, S.I. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism. Brain Res. Bull. 2016, 125, 159–167. [Google Scholar] [CrossRef]
- Hu, M.; Sun, Y.-J.; Zhou, Q.-G.; Auberson, Y.P.; Chen, L.; Hu, Y.; Luo, C.-X.; Wu, J.-Y.; Zhu, D.-Y.; Li, L.-X. Reduced spatial learning in mice treated with NVP-AAM077 through down-regulating neurogenesis. Eur. J. Pharmacol. 2009, 622, 37–44. [Google Scholar] [CrossRef]
- Mares, P.; Tsenov, G.; Kubova, H. Anticonvulsant action of GluN2A-preferring antagonist PEAQX in developing rats. Pharmaceutics 2021, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Snyder, K.P.; Barry, M.; Valentino, R.J. Cognitive impact of social stress and coping strategy throughout development. Psychopharmacology 2015, 232, 185–195. [Google Scholar] [CrossRef]
- Gilmour, G.; Dix, S.; Fellini, L.; Gastambide, F.; Plath, N.; Steckler, T.; Talpos, J.; Tricklebank, M. NMDA receptors, cognition and schizophrenia--testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 2012, 62, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.; Llorens-Martín, M.; Pallas-Bazarra, N.; Bolós, M.; Perea, J.R.; Rodríguez-Matellán, A.; Hernández, F. Cognitive decline in neuronal aging and Alzheimer’s disease: Role of NMDA receptors and associated proteins. Front. Neurosci. 2017, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G.L.; Volianskis, A.; Bannister, N.; France, G.; Hanna, L.; Mercier, M.; Tidball, P.; Fang, G.; Irvine, M.W.; Costa, B.M.; et al. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2013, 64, 13–26. [Google Scholar] [CrossRef]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M. Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res. 2013, 354, 99–106. [Google Scholar] [CrossRef]
- Pope, D.A.; Boomhower, S.R.; Hutsell, B.A.; Teixeira, K.M.; Newland, M.C. Chronic cocaine exposure in adolescence: Effects on spatial discrimination reversal, delay discounting, and performance on fixed-ratio schedules in mice. Neurobiol. Learn. Mem. 2016, 130, 93–104. [Google Scholar] [CrossRef]
- McMurray, M.S.; Amodeo, L.R.; Roitman, J.D. Effects of voluntary alcohol intake on risk preference and behavioral flexibility during rat adolescence. PLoS ONE 2014, 9, e100697. [Google Scholar] [CrossRef]
- Delevich, K.; Hall, C.D.; Piekarski, D.; Zhang, Y.; Wilbrecht, L. Prepubertal gonadectomy reveals sex differences in approach-avoidance behavior in adult mice. Horm. Behav. 2020, 118, 104641. [Google Scholar] [CrossRef]
- Overman, W.H. Sex differences in early childhood, adolescence, and adulthood on cognitive tasks that rely on orbital prefrontal cortex. Brain Cogn. 2004, 55, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Grafe, L.A.; Geng, E.; Corbett, B.; Urban, K.; Bhatnagar, S. Sex- and stress-dependent effects on dendritic morphology and spine densities in putative orexin neurons. Neuroscience 2019, 418, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Lück, C.; Haitjema, C.; Heger, C. Simple Western: Bringing the Western blot into the twenty-first century. In Proteomic Profiling: Methods and Protocols; Posch, A., Ed.; Springer: New York, NY, USA, 2021; pp. 481–488. [Google Scholar] [CrossRef]
- Kennard, J.T.T.; Guévremont, D.; Mason-Parker, S.E.; Abraham, W.C.; Williams, J.M. Increased expression, but not postsynaptic localisation, of ionotropic glutamate receptors during the late-phase of long-term potentiation in the dentate gyrus in vivo. Neuropharmacology 2009, 56, 66–72. [Google Scholar] [CrossRef]
- Baez, M.V.; Oberholzer, M.V.; Cercato, M.C.; Snitcofsky, M.; Aguirre, A.I.; Jerusalinsky, D.A. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction. PLoS ONE 2013, 8, e55244. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A.; Toutountzi, E.; Fragioudaki, K.; Kouvelas, E.D.; Stylianopoulou, F.; Mitsacos, A. Selective effects of neonatal handling on rat brain N-methyl-D-aspartate receptors. Neuroscience 2009, 164, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Mottarlini, F.; Bottan, G.; Tarenzi, B.; Colciago, A.; Fumagalli, F.; Caffino, L. Activity-based anorexia dynamically dysregulates the glutamatergic synapse in the nucleus accumbens of female adolescent rats. Nutrients 2020, 12, 3661. [Google Scholar] [CrossRef]
- Zamzow, D.R.; Elias, V.; Shumaker, M.; Larson, C.; Magnusson, K.R. An increase in the association of GluN2B containing NMDA receptors with membrane scaffolding proteins was related to memory declines during aging. J. Neurosci. 2013, 33, 12300. [Google Scholar] [CrossRef]
- Durairaja, A.; Fendt, M. Orexin deficiency modulates cognitive flexibility in a sex-dependent manner. Genes Brain Behav. 2021, 20, e12707. [Google Scholar] [CrossRef]
- Durairaja, A.; Steinecke, C.S.; Fendt, M. Intracerebroventricular infusion of the selective orexin 1 receptor antagonist SB-334867 impairs cognitive flexibility in a sex-dependent manner. Behav. Brain Res. 2022, 424, 113791. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Olley, J.; Steckler, T.; Talpos, J. Dissociable effects of NR2A and NR2B NMDA receptor antagonism on cognitive flexibility but not pattern separation. Psychopharmacology 2015, 232, 3991–4003. [Google Scholar] [CrossRef]
- Cadinu, D.; Grayson, B.; Podda, G.; Harte, M.K.; Doostdar, N.; Neill, J.C. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018, 142, 41–62. [Google Scholar] [CrossRef] [PubMed]
- George, S.A.; Rodriguez-Santiago, M.; Riley, J.; Abelson, J.L.; Floresco, S.B.; Liberzon, I. D-cycloserine facilitates reversal in an animal model of post-traumatic stress disorder. Behav. Brain Res. 2018, 347, 332–338. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifried, L.; Soleimanpour, E.; Dieterich, D.C.; Fendt, M. Cognitive Flexibility in Mice: Effects of Puberty and Role of NMDA Receptor Subunits. Cells 2023, 12, 1212. https://doi.org/10.3390/cells12091212
Seifried L, Soleimanpour E, Dieterich DC, Fendt M. Cognitive Flexibility in Mice: Effects of Puberty and Role of NMDA Receptor Subunits. Cells. 2023; 12(9):1212. https://doi.org/10.3390/cells12091212
Chicago/Turabian StyleSeifried, Lisa, Elaheh Soleimanpour, Daniela C. Dieterich, and Markus Fendt. 2023. "Cognitive Flexibility in Mice: Effects of Puberty and Role of NMDA Receptor Subunits" Cells 12, no. 9: 1212. https://doi.org/10.3390/cells12091212