Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Measurements and Biochemical Profile
2.2. Adipose Tissue Collection
- Normal weight (NW) −2 ≤ BMI-z score < 1 (n = 7),
- Overweight (OW) 1 ≤ BMI-z score < 2 (n = 3),
- Obesity (OB) 3 ≤ BMI-z score ≤ 2 (n = 8),
- Severe obesity (SV) BMI-z score > 3 (n = 2),
2.3. RNA Isolation and Library Preparation
2.4. Bioinformatic Analysis and Quality Assessment of Raw Data
3. Results
3.1. Clinical and Biochemical Features of Enrolled Subjects
3.2. RNA-Seq Data Analysis
3.2.1. Gene Expression Profiling
3.2.2. Functional Enrichment Analysis
3.3. Gene Set Enrichment Analysis
3.3.1. Regulation of Lipolysis in Adipocytes
3.3.2. Obesity-Associated Diseases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AT | Adipose tissue |
BAT | Brown adipose tissue |
BCAA | Branched-chain amino acid |
BeAT | Beige adipose tissue |
BMI | Body mass index |
CDC | Centers for Disease Control and Prevention |
CVD | Cardiovascular disease |
DEG | Differentially expressed gene |
ETC | Electron transport chain |
GSEA | Gene set enrichment analysis |
HDL | High-density lipoprotein |
HOMA-IR | Homeostatic model assessment for insulin resistance |
KEGG | Kyoto encyclopedia of genes and genomes |
lncRNA | Long non-coding RNA |
NAFLD | Non-alcoholic fatty liver disease |
NW | Normal weight |
OB | Obesity |
OW | Overweight |
PPI | Protein–protein interaction |
RNA-seq | RNA sequencing |
scAT | Subcutaneous adipose tissue |
snRNA | Small nuclear RNA |
snoRNA | Small nucleolar RNA |
SV | Severe obesity |
VAT | Visceral adipose tissue |
TCA | Tricarboxylic acid |
WAT | White adipose tissue |
WC | Waist circumference |
WHO | World Health Organization |
References
- Lee, M.-J.; Wu, Y.; Fried, S.K. Adipose Tissue Heterogeneity: Implication of Depot Differences in Adipose Tissue for Obesity Complications. Mol. Aspects Med. 2013, 34, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, B. Subcutaneous Adipose Tissue & Visceral Adipose Tissue. Indian J. Med. Res. 2019, 149, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Menendez, A.; Wanczyk, H.; Walker, J.; Zhou, B.; Santos, M.; Finck, C. Obesity and Adipose Tissue Dysfunction: From Pediatrics to Adults. Genes 2022, 13, 1866. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, A.-C.; Paz, H.A.; Wankhade, U.D. Beige Adipose Tissue Identification and Marker Specificity—Overview. Front. Endocrinol. 2021, 12, 599134. [Google Scholar] [CrossRef] [PubMed]
- Gesta, S.; Kahn, C.R. White Adipose Tissue. In Adipose Tissue Biology; Symonds, M.E., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 149–199. ISBN 978-3-319-52029-2. [Google Scholar]
- Leyvraz, C.; Verdumo, C.; Giusti, V. Localization of adipose tissue: Clinical implications. Rev. Med. Suisse 2008, 4, 844–847. [Google Scholar]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 17 January 2023).
- Chen, Y.Y.; Wang, J.P.; Jiang, Y.Y.; Li, H.; Hu, Y.H.; Lee, K.O.; Li, G.W. Fasting Plasma Insulin at 5 Years of Age Predicted Subsequent Weight Increase in Early Childhood over a 5-Year Period-The Da Qing Children Cohort Study. PLoS ONE 2015, 10, e0127389. [Google Scholar] [CrossRef]
- D’Agostino, N.; Li, W.; Wang, D. High-Throughput Transcriptomics. Sci. Rep. 2022, 12, 20313. [Google Scholar] [CrossRef]
- Armenise, C.; Lefebvre, G.; Carayol, J.; Bonnel, S.; Bolton, J.; Di Cara, A.; Gheldof, N.; Descombes, P.; Langin, D.; Saris, W.H.; et al. Transcriptome Profiling from Adipose Tissue during a Low-Calorie Diet Reveals Predictors of Weight and Glycemic Outcomes in Obese, Nondiabetic Subjects. Am. J. Clin. Nutr. 2017, 106, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.F.; Xue, C.; Hu, Y.; Li, M.; Reilly, M.P. Adipose Tissue RNASeq Reveals Novel Gene-Nutrient Interactions Following n-3 PUFA Supplementation and Evoked Inflammation in Humans. J. Nutr. Biochem. 2016, 30, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Krekmanov, L.; Nordenram, A. Postoperative Complications after Surgical Removal of Mandibular Third Molars. Effects of Penicillin V and Chlorhexidine. Int. J. Oral Maxillofac. Surg. 1986, 15, 25–29. [Google Scholar] [CrossRef]
- Rey, F.; Zuccotti, G.V.; Carelli, S. Long Non-Coding RNAs in Metabolic Diseases: From Bench to Bedside. Trends Endocrinol. Metab. TEM 2021, 32, 747–749. [Google Scholar] [CrossRef]
- Rey, F.; Messa, L.; Pandini, C.; Launi, R.; Barzaghini, B.; Micheletto, G.; Raimondi, M.T.; Bertoli, S.; Cereda, C.; Zuccotti, G.V.; et al. Transcriptome Analysis of Subcutaneous Adipose Tissue from Severely Obese Patients Highlights Deregulation Profiles in Coding and Non-Coding Oncogenes. Int. J. Mol. Sci. 2021, 22, 1989. [Google Scholar] [CrossRef]
- Rey, F.; Messa, L.; Pandini, C.; Barzaghini, B.; Micheletto, G.; Raimondi, M.T.; Bertoli, S.; Cereda, C.; Zuccotti, G.V.; Cancello, R.; et al. Transcriptional Characterization of Subcutaneous Adipose Tissue in Obesity Affected Women Highlights Metabolic Dysfunction and Implications for LncRNAs. Genomics 2021, 113, 3919–3934. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, Y.; Li, M.; Wang, M.; Yi, X.; Yin, C.; Wang, S.; Zhang, M.; Zhao, Z.; Xiao, Y. Integrated Analysis of Long Noncoding RNA and MRNA Expression Profile in Children with Obesity by Microarray Analysis. Sci. Rep. 2018, 8, 8750. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gong, B.; Bushel, P.R.; Thierry-Mieg, J.; Thierry-Mieg, D.; Xu, J.; Fang, H.; Hong, H.; Shen, J.; Su, Z.; et al. The Concordance between RNA-Seq and Microarray Data Depends on Chemical Treatment and Transcript Abundance. Nat. Biotechnol. 2014, 32, 926–932. [Google Scholar] [CrossRef]
- Calcaterra, V.; Montalbano, C.; de Silvestri, A.; Pelizzo, G.; Regalbuto, C.; Paganelli, V.; Albertini, R.; Cave, F.D.; Larizza, D.; Cena, H. Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in a Caucasian Pediatric Population. J. Clin. Res. Pediatr. Endocrinol. 2019. [Google Scholar] [CrossRef]
- CDC BMI for Children and Teens. Available online: https://www.cdc.gov/obesity/basics/childhood-defining.html (accessed on 17 January 2023).
- Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Messa, L.; Rey, F.; Pandini, C.; Barzaghini, B.; Micheletto, G.; Raimondi, M.T.; Bertoli, S.; Cereda, C.; Zuccotti, G.; Cancello, R.; et al. RNA-Seq Dataset of Subcutaneous Adipose Tissue: Transcriptional Differences between Obesity and Healthy Women. Data Brief 2021, 39, 107647. [Google Scholar] [CrossRef] [PubMed]
- Alexaki, V.I. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021, 10, 1584. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Reynés, B.; Konieczna, J.; Martín, M.; Fiol, M.; Palou, A.; Romaguera, D.; Oliver, P. Use of Human PBMC to Analyse the Impact of Obesity on Lipid Metabolism and Metabolic Status: A Proof-of-Concept Pilot Study. Sci. Rep. 2021, 11, 18329. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.D.; Kanosky, K.M.; Wells, K.D.; Miles, L.; Perfield, J.W.; Xanthakos, S.; Inge, T.H.; Rector, R.S. Transcriptomic Differences in Intra-Abdominal Adipose Tissue in Extremely Obese Adolescents with Different Stages of NAFLD. Physiol. Genomics 2016, 48, 897–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zingale, V.D.; D’Angiolini, S.; Chiricosta, L.; Calcaterra, V.; Selvaggio, G.G.O.; Zuccotti, G.; Destro, F.; Pelizzo, G.; Mazzon, E. Does Childhood Obesity Trigger Neuroinflammation? Biomedicines 2022, 10, 1953. [Google Scholar] [CrossRef]
- Loomba-Albrecht, L.A.; Styne, D.M. Effect of Puberty on Body Composition. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 10–15. [Google Scholar] [CrossRef]
- Adami, F.; Benedet, J.; Takahashi, L.A.R.; da Silva Lopes, A.; da Silva Paiva, L.; de Vasconcelos, F. de A.G. Association between Pubertal Development Stages and Body Adiposity in Children and Adolescents. Health Qual. Life Outcomes 2020, 18, 93. [Google Scholar] [CrossRef]
- Martos-Moreno, G.Á.; Martínez-Villanueva, J.; González-Leal, R.; Barrios, V.; Sirvent, S.; Hawkins, F.; Chowen, J.A.; Argente, J. Ethnicity Strongly Influences Body Fat Distribution Determining Serum Adipokine Profile and Metabolic Derangement in Childhood Obesity. Front. Pediatr. 2020, 8, 551103. [Google Scholar] [CrossRef]
- García, A.G.; Urbina Treviño, M.V.; Villalpando Sánchez, D.C.; Aguilar, C.A. Diagnostic Accuracy of Triglyceride/Glucose and Triglyceride/HDL Index as Predictors for Insulin Resistance in Children with and without Obesity. Diabetes Metab. Syndr. 2019, 13, 2329–2334. [Google Scholar] [CrossRef]
- Hong, S.M.; Ko, J.-K.; Moon, J.-J.; Kim, Y.-R. Oxytocin: A Potential Therapeutic for Obesity. J. Obes. Metab. Syndr. 2021, 30, 115–123. [Google Scholar] [CrossRef]
- Shen, H.; Huang, X.; Zhao, Y.; Wu, D.; Xue, K.; Yao, J.; Wang, Y.; Tang, N.; Qiu, Y. The Hippo Pathway Links Adipocyte Plasticity to Adipose Tissue Fibrosis. Nat. Commun. 2022, 13, 6030. [Google Scholar] [CrossRef]
- Gaspar, J.M.; Velloso, L.A. Hypoxia Inducible Factor as a Central Regulator of Metabolism—Implications for the Development of Obesity. Front. Neurosci. 2018, 12, 813. [Google Scholar] [CrossRef]
- Sentinelli, F.; Bertoccini, L.; Incani, M.; Pani, M.G.; David, F.; Bailett, D.; Boi, A.; Barchetta, I.; Cimini, F.A.; Mannino, A.C.; et al. Association of Apelin Levels in Overweight-Obese Children with Pubertal Development, but Not with Insulin Sensitivity: 6.5 Years Follow up Evaluation. Endocr. Res. 2020, 45, 233–240. [Google Scholar] [CrossRef]
- Wooten, S.; Smith, K.N. Long Non-Coding RNA OIP5-AS1 (Cyrano): A Context-Specific Regulator of Normal and Disease Processes. Clin. Transl. Med. 2022, 12, e706. [Google Scholar] [CrossRef]
- Orsso, C.E.; Colin-Ramirez, E.; Field, C.J.; Madsen, K.L.; Prado, C.M.; Haqq, A.M. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients 2020, 12, 2735. [Google Scholar] [CrossRef]
- Petridou, A.; Siopi, A.; Mougios, V. Exercise in the Management of Obesity. Metabolism 2019, 92, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, P.; Araújo, J.R.; Martel, F. Antipsychotics-Induced Metabolic Alterations: Focus on Adipose Tissue and Molecular Mechanisms. Eur. Neuropsychopharmacol. 2015, 25, 1–16. [Google Scholar] [CrossRef]
- Derrien, M.; Alvarez, A.-S.; de Vos, W.M. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019, 27, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Zaina, S.; Døssing, K.B.; Lindholm, M.W.; Lund, G. Chromatin Modification by Lipids and Lipoprotein Components: An Initiating Event in Atherogenesis? Curr. Opin. Lipidol. 2005, 16, 549–553. [Google Scholar] [CrossRef]
- Dekkers, K.F.; Slagboom, P.E.; Jukema, J.W.; Heijmans, B.T. The Multifaceted Interplay between Lipids and Epigenetics. Curr. Opin. Lipidol. 2016, 27, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Ngandiri, D.A.; Llerins Perez, M.; Wolf, A.; Wang, Y. The Molecular Brakes of Adipose Tissue Lipolysis. Front. Physiol. 2022, 13, 826314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wu, Y.; Rong, X.; Zheng, C.; Guo, J. Anti-Lipolysis Induced by Insulin in Diverse Pathophysiologic Conditions of Adipose Tissue. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Rittig, N.; Bach, E.; Thomsen, H.H.; Pedersen, S.B.; Nielsen, T.S.; Jørgensen, J.O.; Jessen, N.; Møller, N. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial. PLoS ONE 2016, 11, e0162167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagarde, D.; Jeanson, Y.; Portais, J.-C.; Galinier, A.; Ader, I.; Casteilla, L.; Carrière, A. Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective. Front. Physiol. 2021, 12, 689747. [Google Scholar] [CrossRef]
- Masschelin, P.M.; Cox, A.R.; Chernis, N.; Hartig, S.M. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Front. Physiol. 2020, 10, 1638. [Google Scholar] [CrossRef]
- Sohn, M.-J.; Chae, W.; Ko, J.-S.; Cho, J.-Y.; Kim, J.-E.; Choi, J.-Y.; Jang, H.-B.; Lee, H.-J.; Park, S.-I.; Park, K.-H.; et al. Metabolomic Signatures for the Effects of Weight Loss Interventions on Severe Obesity in Children and Adolescents. Metabolites 2021, 12, 27. [Google Scholar] [CrossRef]
- Green, C.R.; Wallace, M.; Divakaruni, A.S.; Phillips, S.A.; Murphy, A.N.; Ciaraldi, T.P.; Metallo, C.M. Branched-Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis. Nat. Chem. Biol. 2016, 12, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.-X.; Zhu, W.-Y.; Lu, X.-C.; Jiang, D.; Xu, F.; Li, J.-T.; Zhang, L.; Wu, Y.-L.; Chen, Z.-J.; Yin, M.; et al. BCAA-BCKA Axis Regulates WAT Browning through Acetylation of PRDM16. Nat. Metab. 2022, 4, 106–122. [Google Scholar] [CrossRef]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular Morbidity, Diabetes and Cancer Risk among Children and Adolescents with Severe Obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef]
- Katsa, M.E.; Ioannidis, A.; Sachlas, A.; Dimopoulos, I.; Chatzipanagiotou, S.; Rojas Gil, A.P. The Roles of Triglyceride/High-Density Lipoprotein Cholesterol Ratio and Uric Acid as Predisposing Factors for Metabolic Syndrome in Healthy Children. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M. Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- Liu, J.; Fox, C.S.; Hickson, D.A.; May, W.D.; Hairston, K.G.; Carr, J.J.; Taylor, H.A. Impact of Abdominal Visceral and Subcutaneous Adipose Tissue on Cardiometabolic Risk Factors: The Jackson Heart Study. J. Clin. Endocrinol. Metab. 2010, 95, 5419–5426. [Google Scholar] [CrossRef] [Green Version]
Feature | NW n = 5 | OW n = 3 | OB n = 6 | SV n = 2 |
---|---|---|---|---|
Age | 6.87 ± 4.77 | 10.05 ± 4.23 | 9.18 ± 2.35 | 9.90 ± 0.07 |
Weight (kg) | 22.90 ± 11.27 | 35.76 ± 14.13 | 47.32 ± 18.22 | 62.5 ± 0.70 |
Height (cm) | 118.20 ± 3.97 | 130.0 ± 20.88 | 134.06 ± 16.31 | 141.0 ± 1.41 |
Body mass index (BMI) | ||||
| 15.4 ± 2.27 0.11 ± 1.49 | 20.3 ± 2.5 1.68 ± 0.17 | 21.55 ± 2.19 2.63 ± 0.54 | 31.2 ± 0.56 3.4 ± 0.00 |
Fasting blood glycemia (mg/dL; nv < 100 mg/dL) | 79.0 ± 8.54 | 84.0 ± 1.81 | 98.33 ± 4.72 | 101.0 ± 1.41 |
Insulin | 7.50 ± 0.70 | 15.5 ± 0.70 | 16.93 ± 7.04 | 21.1 ± 0.007 |
Triglycerides (mg/dL) (nv ≥ 130 mg/dL if ≥ 10 years) | 57.33 ± 9.29 | 67.5 ± 3.53 | 118.33 ± 21.07 | 130.5 ± 0.70 |
HDL cholesterol (mg/dL) (nv > 50 in males) | 57.5 ± 3.53 | 47.0 ± 18.38 | 53.33 ± 6.65 | 49.5 ± 0.70 |
Triglycerides/HDL cholesterol ratio (nv < 2.2) | 1.09 ± 0.12 | 1.57 ± 0.68 | 2.27 ± 0.63 | 2.63 ± 0.02 |
Triglyceride–glucose index (nv < 7.88) | 7.75 ± 0.009 | 7.96 ± 0.03 | 8.65 ± 0.23 | 8.79 ± 0.008 |
HOMA-IR | 1.38 ± 0.22 | 3.25 ± 0.09 | 4.26 ± 1.85 | 5.23 ± 0.07 |
Comparison | ENSEMBL | Log2FoldChange |
---|---|---|
OW vs. NW | ENSG00000288900 | −5.149906832 |
SV vs. NW | ENSG00000285756 | −2.980591461 |
SV vs. OB | ENSG00000285756 ENSG00000260267 ENSG00000261468 ENSG00000235609 | −1.955798388 −1.111281536 1.348606443 1.747909824 |
SV vs. OW | ENSG00000282057 ENSG00000285756 ENSG00000272335 ENSG00000261468 ENSG00000235609 | −3.180240676 −2.327811635 1.388553119 1.990157997 2.196794819 |
SV vs. NW | SV vs. OB | SV vs. OW | |
---|---|---|---|
Regulation of lipolysis in adipocytes | up | ||
Fatty acid degradation | up | up | |
Fatty acid metabolism | up | up | |
PPAR signaling pathway | up | up | |
Pyruvate metabolism | up | up | |
Citrate cycle (TCA cycle) | up | up | |
Oxidative phosphorylation | up | up | up |
Valine, leucine, and isoleucine degradation | up | up | |
Non-alcoholic fatty liver disease | up | up | |
Dilated cardiomyopathy | down | down | |
Hypertrophic cardiomyopathy | down | down | |
Arrhythmogenic right ventricular cardiomyopathy | down | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berardo, C.; Calcaterra, V.; Mauri, A.; Carelli, S.; Messa, L.; Destro, F.; Rey, F.; Cordaro, E.; Pelizzo, G.; Zuccotti, G.; et al. Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study. Cells 2023, 12, 1105. https://doi.org/10.3390/cells12081105
Berardo C, Calcaterra V, Mauri A, Carelli S, Messa L, Destro F, Rey F, Cordaro E, Pelizzo G, Zuccotti G, et al. Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study. Cells. 2023; 12(8):1105. https://doi.org/10.3390/cells12081105
Chicago/Turabian StyleBerardo, Clarissa, Valeria Calcaterra, Alessia Mauri, Stephana Carelli, Letizia Messa, Francesca Destro, Federica Rey, Erika Cordaro, Gloria Pelizzo, Gianvincenzo Zuccotti, and et al. 2023. "Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study" Cells 12, no. 8: 1105. https://doi.org/10.3390/cells12081105
APA StyleBerardo, C., Calcaterra, V., Mauri, A., Carelli, S., Messa, L., Destro, F., Rey, F., Cordaro, E., Pelizzo, G., Zuccotti, G., & Cereda, C. (2023). Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study. Cells, 12(8), 1105. https://doi.org/10.3390/cells12081105