The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gametes Collection, Maturation, and Fertilization In Vitro
2.2. Light Microscopy and Transmission Electron Microscopy (TEM)
2.3. Microinjection, Ca2+ Imaging, Fluorescent Labeling of F-Actin and Extracellular Matrix
2.4. Visualization of Sperm Inside the Fertilized Eggs
2.5. Statistical Analysis
3. Results
3.1. Structural Changes of Cortical F-Actin in Immature Starfish Oocytes Incubated at pH 6.8 and pH 9
3.2. Effect of the Acidic and Alkaline Seawater on the F-Actin-Dependent Maturation Process Induced in Vitro by the Hormone 1-MA
3.3. Effect of the Acidic or Alkaline Seawater on the Polyspermy Rate of Immature Oocytes and the Sperm Entry Following Oocytes Maturation in Altered Seawater pH
3.4. Insemination of the GV-Stage Oocytes in Seawater with Altered pH Significantly Affects the Sperm-Induced Ca2+ Response
3.5. A. aranciacus Oocytes Matured in Seawater at pH 6.8 and pH 9 Show an Altered Ca2+ Response at Fertilization as Compared to the Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanatani, H.; Shirai, H.; Nakanishi, K.; Kurokawa, T. Isolation and Identification of Meiosis Inducing Substance in Starfish Asterias amurensis. Nature 1969, 221, 273–274. [Google Scholar] [CrossRef]
- Meijer, L.; Guerrier, P. Maturation and Fertilization in Starfish Oocytes. Int. Rev. Cytol. 1984, 86, 129–196. [Google Scholar] [CrossRef]
- Kishimoto, T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. Proc. Jpn. Acad. Ser. B 2018, 94, 180–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, K. Oocyte Maturation in Starfish. Cells 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, E.E. The Biology of the Cell Surface; P. Blakiston’s Son & Co., Inc.: Philadelphia, PA, USA, 1939. [Google Scholar]
- Fujimori, T.; Hirai, S. Differences in starfish oocyte susceptibility to polyspermy during the course of maturation. Biol. Bull. 1979, 157, 249–257. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Chun, J.T. Actin Cytoskeleton and Fertilization in Starfish Eggs. In Sexual Reproduction in Animals and Plants—Part II: Gametogenesis, Gamete Recognition, Activation, and Evolution; Sawada, H., Inuoe, N., Iwano, M., Eds.; Springer Open: Tokyo, Japan, 2014; pp. 141–155. [Google Scholar] [CrossRef] [Green Version]
- Limatola, N.; Vasilev, F.; Chun, J.T.; Santella, L. Altered actin cytoskeleton in ageing eggs of starfish affects fertilization process. Exp. Cell Res. 2019, 381, 179–190. [Google Scholar] [CrossRef]
- Schroeder, T.E.; Stricker, S.A. Morphological changes during maturation of starfish oocytes: Surface ultrastructure and cortical actin. Dev. Biol. 1983, 98, 373–384. [Google Scholar] [CrossRef]
- Kyozuka, K.; Chun, J.T.; Puppo, A.; Gragnaniello, G.; Garante, E.; Santella, L. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev. Biol. 2008, 320, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Limatola, N.; Chun, J.T.; Kyozuka, K.; Santella, L. Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell Calcium 2015, 58, 500–510. [Google Scholar] [CrossRef]
- Lim, D.; Kyozuka, K.; Gragnaniello, G.; Carafoli, E.; Santella, L. NAADP+ initiates the Ca2+ response during fertilization of starfish oocytes. FASEB J. 2001, 15, 2257–2267. [Google Scholar] [CrossRef]
- Hirai, S.; Nagahama, Y.; Kishimoto, T.; Kanatani, H. Cytoplasmic Maturity Revealed by the Structural Changes in Incorporated Spermatozoon during the Course of Starfish Oocyte Maturation. Dev. Growth Differ. 1981, 23, 465–478. [Google Scholar] [CrossRef]
- Chiba, K.; Kado, R.T.; Jaffe, L.A. Development of calcium release mechanisms during starfish oocyte maturation. Dev. Biol. 1990, 140, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, L.A.; Terasaki, M. Structural changes in the endoplasmic reticulum of starfish oocytes during meiotic maturation and fertilization. Dev. Biol. 1994, 164, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Lange, K.; Santella, L. Activation of oocytes by latrunculin A. FASEB J. 2002, 16, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Ercolano, E.; Kyozuka, K.; Nusco, G.A.; Moccia, F.; Lange, K.; Santella, L. The M-phase-promoting Factor Modulates the Sensitivity of the Ca2+ Stores to Inositol 1,4,5-Trisphosphate via the Actin Cytoskeleton. J. Biol. Chem. 2003, 278, 42505–42514. [Google Scholar] [CrossRef] [Green Version]
- Vasilev, F.; Limatola, N.; Park, D.-R.; Kim, U.-H.; Santella, L.; Chun, J.T. Disassembly of Subplasmalemmal Actin Filaments Induces Cytosolic Ca2+ Increases in Astropecten aranciacus Eggs. Cell. Physiol. Biochem. 2018, 48, 2011–2034. [Google Scholar] [CrossRef]
- Longo, F.J.; Woerner, M.; Chiba, K.; Hoshi, M. Cortical changes in starfish (Asterina pectinifera) oocytes during 1-methyladenine-induced maturation and fertilisation/activation. Zygote 1995, 3, 225–239. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Vasilev, F.; Chun, J.T. Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem. Biophys. Res. Commun. 2018, 506, 361–371. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Chun, J.T. Cellular and molecular aspects of oocyte maturation and fertilization: A perspective from the actin cytoskeleton. Zool. Lett. 2020, 6, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, S.-I.; Hirai, S. Fast polyspermy block and activation potential: Correlated changes during oocyte maturation of a starfish. Dev. Biol. 1979, 70, 327–340. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Chun, J.T. Calcium and actin in the saga of awakening oocytes. Biochem. Biophys. Res. Commun. 2015, 460, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Lange, K. Microvillar Ca++ signaling: A new view of an old problem. J. Cell. Physiol. 1999, 180, 19–34. [Google Scholar] [CrossRef]
- Lange, K. Microvillar Ion Channels: Cytoskeletal Modulation of Ion Fluxes. J. Theor. Biol. 2000, 206, 561–584. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.C. Studies on the acrosome: VI. Fine structure of the starfish acrosome. Exp. Cell Res. 1960, 19, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.; Dan-Sohkawa, M.; De Santis, A.; Hoshi, M. Fertilization of the starfish Astropecten aurantiacus. Exp. Cell Res. 1981, 132, 505–510. [Google Scholar] [CrossRef]
- Puppo, A.; Chun, J.T.; Gragnaniello, G.; Garante, E.; Santella, L. Alteration of the Cortical Actin Cytoskeleton Deregulates Ca2+ Signaling, Monospermic Fertilization, and Sperm Entry. PLoS ONE 2008, 3, e3588. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, M.; Moriyama, H.; Matsumoto, M. Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: A mini review. Biochem. Biophys. Res. Commun. 2012, 425, 595–598. [Google Scholar] [CrossRef]
- Santella, L.; Lim, D.; Moccia, F. Calcium and fertilization: The beginning of life. Trends Biochem. Sci. 2004, 29, 400–408. [Google Scholar] [CrossRef]
- Santella, L.; Puppo, A.; Chun, J.T. The role of the actin cytoskeleton in calcium signaling in starfish oocytes. Int. J. Dev. Biol. 2008, 52, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Santella, L.; Vasilev, F.; Chun, J.T. Fertilization in echinoderms. Biochem. Biophys. Res. Commun. 2012, 425, 588–594. [Google Scholar] [CrossRef]
- Santella, L.; Chun, J.T. Structural actin dynamics during oocyte maturation and fertilization. Biochem. Biophys. Res. Commun. 2022, 633, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.T.; Limatola, N.; Vasilev, F.; Santella, L. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem. Biophys. Res. Commun. 2014, 450, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, F.; Limatola, N.; Chun, J.T.; Santella, L. Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca2+ increase in the sea urchin eggs at fertilization. Int. J. Biol. Sci. 2019, 15, 757–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limatola, N.; Chun, J.T.; Cherraben, S.; Schmitt, J.-L.; Lehn, J.-M.; Santella, L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021, 10, 3573. [Google Scholar] [CrossRef]
- Limatola, N.; Chun, J.T.; Santella, L. Species-Specific Gamete Interaction during Sea Urchin Fertilization: Roles of the Egg Jelly and Vitelline Layer. Cells 2022, 11, 2984. [Google Scholar] [CrossRef]
- Limatola, N.; Vasilev, F.; Chun, J.T.; Santella, L. Sodium-mediated fast electrical depolarization does not prevent polyspermic fertilization in Paracentrotus lividus eggs. Zygote 2019, 27, 241–249. [Google Scholar] [CrossRef]
- Limatola, N.; Chun, J.T.; Santella, L. Effects of Salinity and pH of Seawater on the Reproduction of the Sea Urchin Paracentrotus lividus. Biol. Bull. 2020, 239, 13–23. [Google Scholar] [CrossRef]
- Limatola, N.; Chun, J.T.; Santella, L. Regulation of the Actin Cytoskeleton-Linked Ca2+ Signaling by Intracellular pH in Fertilized Eggs of Sea Urchin. Cells 2022, 11, 1496. [Google Scholar] [CrossRef]
- Chun, J.T.; Puppo, A.; Vasilev, F.; Gragnaniello, G.; Garante, E.; Santella, L. The Biphasic Increase of PIP2 in the Fertilized Eggs of Starfish: New Roles in Actin Polymerization and Ca2+ Signaling. PLoS ONE 2010, 5, e14100. [Google Scholar] [CrossRef] [Green Version]
- Limatola, N.; Vasilev, F.; Santella, L.; Chun, J.T. Nicotine Induces Polyspermy in Sea Urchin Eggs through a Non-Cholinergic Pathway Modulating Actin Dynamics. Cells 2020, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.T.; Vasilev, F.; Limatola, N.; Santella, L. Fertilization in Starfish and Sea Urchin: Roles of Actin. Cell Differ. 2018, 65, 33–47. [Google Scholar] [CrossRef]
- Steinhardt, R.A.; Mazia, D. Development of K+-Conductance and Membrane Potentials in Unfertilized Sea Urchin Eggs after Exposure to NH4OH. Nature 1973, 241, 400–401. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, M. Actin filament translocations in sea urchin eggs. Cell Motil. Cytoskelet. 1996, 34, 48–56. [Google Scholar] [CrossRef]
- Limatola, N.; Chun, J.T.; Santella, L. Fertilization and development of Arbacia lixula eggs are affected by osmolality conditions. Biosystems 2021, 206, 104448. [Google Scholar] [CrossRef]
- Kyozuka, K.; Chun, J.T.; Puppo, A.; Gragnaniello, G.; Garante, E.; Santella, L. Guanine Nucleotides in the Meiotic Maturation of Starfish Oocytes: Regulation of the Actin Cytoskeleton and of Ca2+ Signaling. PLoS ONE 2009, 4, e6296. [Google Scholar] [CrossRef]
- Chun, J.T.; Santella, L. The actin cytoskeleton in meiotic maturation and fertilization of starfish eggs. Biochem. Biophys. Res. Commun. 2009, 384, 141–143. [Google Scholar] [CrossRef]
- A Begg, D.A.; I Rebhun, L. pH regulates the polymerization of actin in the sea urchin egg cortex. J. Cell Biol. 1979, 83, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Grandin, N.; Charbonneau, M. Changes in intracellular free calcium activity in Xenopus eggs following imposed intracellular pH changes using weak acids and weak bases. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 1991, 1091, 242–250. [Google Scholar] [CrossRef]
- Mori, M.; Somogyi, K.; Kondo, H.; Monnier, N.; Falk, H.J.; Machado, P.; Bathe, M.; Nédélec, F.; Lénárt, P. An Arp2/3 Nucleated F-Actin Shell Fragments Nuclear Membranes at Nuclear Envelope Breakdown in Starfish Oocytes. Curr. Biol. 2014, 24, 1421–1428. [Google Scholar] [CrossRef] [Green Version]
- Wesolowska, N.; Avilov, I.; Machado, P.; Geiss, C.; Kondo, H.; Mori, M.; Lenart, P. Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. elife 2020, 9, e49774. [Google Scholar] [CrossRef]
- Sugizaki, A.; Sato, K.; Chiba, K.; Saito, K.; Kawagishi, M.; Tomabechi, Y.; Mehta, S.B.; Ishii, H.; Sakai, N.; Shirouzu, M.; et al. POLArIS, a versatile probe for molecular orientation, revealed actin filaments associated with microtubule asters in early embryos. Proc. Natl. Acad. Sci. 2021, 11, 8e2019071118. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.; de Santis, A.; Hoshi, M. Membrane response to 1-methyladenine requires the presence of the nucleus. Nature 1979, 282, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Mohri, T.; Kyozuka, K. Starfish oocytes of A. pectinifera reveal marked differences in sperm-induced electrical and intracellular calcium changes during oocyte maturation and at fertilization. Mol. Reprod. Dev. 2022, 89, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, M.; Nishigaki, T.; Ushiyama, A.; Okinaga, T.; Chiba, K.; Matsumoto, M. Egg-jelly signal molecules for triggering the acrosome reaction in starfish spermatozoa. Int. J. Dev. Biol. 1994, 38, 167–174. [Google Scholar]
Experimental Conditions * | n. of Inseminated Oocytes/Eggs | n. of Oocytes/Eggs Successfully Penetrated by Sperm | Percentage of Monospermy | Percentage of Polyspermy |
---|---|---|---|---|
A | 80 | 80 | 0% | 100% |
B | 80 | 38 | 15.8% | 84.2% |
C | 80 | 80 | 0% | 100% |
D | 60 | 60 | 80% | 20% |
E | 60 | 6 | 100% | 0% |
F | 60 | 60 | 0% | 100% |
G | 60 | 60 | 56.7% | 43.3% |
Experimental Conditions | Morphology (Light and TEM Observations) | F-Actin Distribution Before and After Insemination | Ca2+ Changes | Sperm Incorporation | FE Elevation |
---|---|---|---|---|---|
A | Long MV CG dislodged from PM | Network of F-actin in the oocyte cytoplasm. Formation of fertilization cones after insemination. | CF after or together with multiple CW | Polyspermy | NO |
B | Long MV CG dislodged from PM | Altered distribution of the cortical F-actin before insemination. Reduced formation of the fertilization cones. | Failure of sperm- induced Ca2+ release. Delay and reduced amplitude of CF and CW | Reduced polyspermy | NO |
C | Long MV CG exocytosis at insemination | Altered F-actin redistribution. Increased formation of the fertilization cones. | Higher CW amplitude. Multiple CW Faster Ca2+ reuptake | Increased polyspermy | YES, but collapsed |
D | Shortened MV CG beneath PM | F-actin fibers perpendicularly oriented in the unfertilized egg cortex. Centripetal translocation of F-actin fibers following fertilization. One fertilization cone. | CF before CW Single CW | Monospermy | YES |
E | CG detached from egg surface Different length of MV | Lack of F-actin distribution in the unfertilized egg cortex following maturation. Inhibition of actin fibers translocation following fertilization. | Slower CW propagation | Inhibition of sperm entry | YES |
F | Longer MV GVBD inhibition | Altered F-actin organization in the cortex and cytoplasm following maturation and fertilization. Increased number of fertilization cones. | CF after multiple CW Reduced CW amplitude Faster CW propagation | Polyspermy | NO |
G | F-actin core of MV more evident | Alteration of the cortical F-actin organization following maturation and translocation upon fertilization. | Reduced CW amplitude | Monospermy | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limatola, N.; Chun, J.T.; Schneider, S.C.; Schmitt, J.-L.; Lehn, J.-M.; Santella, L. The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs. Cells 2023, 12, 740. https://doi.org/10.3390/cells12050740
Limatola N, Chun JT, Schneider SC, Schmitt J-L, Lehn J-M, Santella L. The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs. Cells. 2023; 12(5):740. https://doi.org/10.3390/cells12050740
Chicago/Turabian StyleLimatola, Nunzia, Jong Tai Chun, Suzanne C. Schneider, Jean-Louis Schmitt, Jean-Marie Lehn, and Luigia Santella. 2023. "The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs" Cells 12, no. 5: 740. https://doi.org/10.3390/cells12050740
APA StyleLimatola, N., Chun, J. T., Schneider, S. C., Schmitt, J.-L., Lehn, J.-M., & Santella, L. (2023). The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs. Cells, 12(5), 740. https://doi.org/10.3390/cells12050740