Linkage between Psychological Factors and Response to Immune Checkpoint Inhibitor Therapy: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Data Analysis
3. Results
3.1. Sample Characteristics and Means (SDs) of the Study Variables at T0
3.2. Differences in Response to Treatment by Psychological Variables
3.3. Associations between Psychological Variables and Blood Measures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basudan, A.M. The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 2022, 13, 22–40. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Hou, H.; Han, Z.; Liu, Y. Systemic therapies for metastatic renal cell carcinoma in the second-line setting: A systematic review and network meta-analysis. Medicine 2022, 101, e30333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, L.; Chen, K.; Chen, G. Efficacy and safety of nivolumab for advanced/recurrent non-small-cell lung cancer: An up-to-date meta-analysis of large-scale phase III randomized controlled trials. Future Oncol. 2022, 18, 3667–3675. [Google Scholar] [CrossRef] [PubMed]
- Brueckl, W.M.; Ficker, J.H.; Zeitler, G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020, 20, 1185. [Google Scholar] [CrossRef] [PubMed]
- Bullinger, M.; Quitmann, J. Quality of life as patient-reported outcomes: Principles of assessment. Dialogues Clin. Neurosci. 2014, 16, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Boutros, A.; Bruzzone, M.; Tanda, E.T.; Croce, E.; Arecco, L.; Cecchi, F.; Pronzato, P.; Ceppi, M.; Lambertini, M.; Spagnolo, F. Health-related quality of life in cancer patients treated with immune checkpoint inhibitors in randomised controlled trials: A systematic review and meta-analysis. Eur. J. Cancer 2021, 159, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Faury, S.; Foucaud, J. Health-related quality of life in cancer patients treated with immune checkpoint inhibitors: A systematic review on reporting of methods in randomized controlled trials. PLoS ONE 2020, 15, e0227344. [Google Scholar] [CrossRef] [PubMed]
- Abu Hejleh, T.; Furqan, M.; Ballas, Z.; Clamon, G. The clinical significance of soluble PD-1 and PD-L1 in lung cancer. Crit. Rev. Oncol. Hematol. 2019, 143, 148–152. [Google Scholar] [CrossRef]
- Khan, M.; Zhao, Z.; Arooj, S.; Fu, Y.; Liao, G. Soluble PD-1: Predictive, prognostic, and therapeutic value for cancer immunotherapy. Front. Immunol. 2020, 11, 587460. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Pang, G.; Wang, P. Emerging blood-based biomarkers for predicting response to checkpoint immunotherapy in non-small-cell lung cancer. Front. Immunol. 2020, 11, 603157. [Google Scholar] [CrossRef]
- Niu, M.; Liu, Y.; Yi, M.; Jiao, D.; Wu, K. Biological characteristics and clinical significance of soluble PD-1/PD-L1 and exosomal PD-L1 in cancer. Front. Immunol. 2022, 13, 827921. [Google Scholar] [CrossRef]
- Ohkuma, R.; Ieguchi, K.; Watanabe, M.; Takayanagi, D.; Goshima, T.; Onoue, R.; Hamada, K.; Kubota, Y.; Horiike, A.; Ishiguro, T.; et al. Increased plasma soluble PD-1 concentration correlates with disease progression in patients with cancer treated with anti-PD-1 antibodies. Biomedicines 2021, 9, 1929. [Google Scholar] [CrossRef] [PubMed]
- An, H.J.; Chon, H.J.; Kim, C. Peripheral blood-based biomarkers for immune checkpoint inhibitors. Int. J. Mol. Sci. 2021, 22, 9414. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.J.; Dahal, L.N.; Khanolkar, R.C.; Shankar, S.P.; Barker, R.N. Targeting the alternatively spliced soluble isoform of CTLA-4: Prospects for immunotherapy? Immunotherapy 2014, 6, 1073–1084. [Google Scholar] [CrossRef]
- Pistillo, M.P.; Fontana, V.; Morabito, A.; Dozin, B.; Laurent, S.; Carosio, R.; Banelli, B.; Ferrero, F.; Spano, L.; Tanda, E.; et al. Soluble CTLA-4 as a favorable predictive biomarker in metastatic melanoma patients treated with ipilimumab: An Italian melanoma intergroup study. Cancer Immunol. Immunother. 2019, 68, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.-C.; Yang, C.-C.; Yang, Y.-F.; Yan, L.-J.; Ding, Z.-N.; Liu, H.; Yan, Y.-C.; Dong, Z.-R.; Wang, D.-X.; Li, T. Peripheral cytokine levels as novel predictors of survival in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Immunol. 2022, 13, 884592. [Google Scholar] [CrossRef] [PubMed]
- Alfranca, Y.L.; Garcia, M.E.O.; Rueda, A.G.; Ballesteros, P.; Rodríguez, D.R.; Velasco, M.T. blood biomarkers of response to immune checkpoint inhibitors in non-small cell lung cancer. J. Clin. Med. 2022, 11, 3245. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.U.; Yoon, H.K. Potential predictive value of change in inflammatory cytokines levels subsequent to initiation of immune checkpoint inhibitor in patients with advanced non-small cell lung cancer. Cytokine 2021, 138, 155363. [Google Scholar] [CrossRef] [PubMed]
- Rossi, N.; Lee, K.A.; Bermudez, M.V.; Visconti, A.; Thomas, A.M.; Bolte, L.A.; Björk, J.R.; de Ruijter, L.K.; Newton-Bishop, J.; Harland, M.; et al. Circulating inflammatory proteins associate with response to immune checkpoint inhibition therapy in patients with advanced melanoma. eBioMedicine 2022, 83, 104235. [Google Scholar] [CrossRef]
- Ravindranathan, D.; Master, V.A.; Bilen, M.A. Inflammatory markers in cancer immunotherapy. Biology 2021, 10, 325. [Google Scholar] [CrossRef]
- Duchemann, B.; Remon, J.; Naigeon, M.; Mezquita, L.; Ferrara, R.; Cassard, L.; Jouniaux, J.M.; Boselli, L.; Grivel, J.; Auclin, E.; et al. Integrating circulating biomarkers in the immune checkpoint inhibitor treatment in lung cancer. Cancers 2020, 12, 3625. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.G.; Madsen, A.T.; Gammelgaard, K.R.; Aggerholm-Pedersen, N.; Sørensen, B.S.; Øllegaard, T.H.; Jakobsen, M.R. Inflammatory cytokines and ctDNA are biomarkers for progression in advanced-stage melanoma patients receiving checkpoint inhibitors. Cancers 2020, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, X.; Du, J.; Zhang, D.; Liu, J.; Chen, M.; Zhao, J.; Zhong, W.; Xu, Y.; Wang, M. Circulating cytokines associated with clinical outcomes in advanced non-small cell lung cancer patients who received chemoimmunotherapy. Thorac. Cancer 2022, 13, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Patel, C. A concise review of inflammatory biomarkers targeted cancer therapy. Folia Medica 2022, 64, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Kuhlman, K.R. Psychoneuroimmunology: An introduction to immune-to-brain communication and its implications for clinical psychology. Annu. Rev. Clin. Psychol. 2023, 19, 331–359. [Google Scholar] [CrossRef] [PubMed]
- McFarland, D.C.; Doherty, M.; Atkinson, T.M.; O’hanlon, R.; Breitbart, W.; Nelson, C.J.; Miller, A.H. Cancer-related inflammation and depressive symptoms: Systematic review and meta-analysis. Cancer 2022, 128, 2504–2519. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C. Mental health and immunity (Review). Exp. Ther. Med. 2020, 20, 211. [Google Scholar] [CrossRef]
- Cohen, M.; Meir, T.; Klein, E.; Volpin, G.; Assaf, M.; Pollack, S. cytokine levels as potential biomarkers for predicting the development of posttraumatic stress symptoms in casualties of accidents. Int. J. Psychiatry Med. 2011, 42, 117–131. [Google Scholar] [CrossRef]
- Roche, K.N.; Cooper, D.; Armstrong, T.S.; King, A.L. The link between psychological distress and survival in solid tumor patients: A systematic review. Cancer Med. 2023, 12, 3343–3364. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Zhong, L.; Wang, S.; Zheng, Y.; Yang, B.; Zhang, J.; Lin, Y.; Wang, Z. Prognostic value of depression and anxiety on breast cancer recurrence and mortality: A systematic review and meta-analysis of 282,203 patients. Mol. Psychiatry 2020, 25, 3186–3197. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152, Erratum in Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; De Haes, J.C.J.M.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. JNCI J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Zabora, J.; Brintzenhofeszoc, K.; Jacobsen, P.; Curbow, B.; Piantadosi, S.; Hooker, C.; Owens, A.; Derogatis, L. A new psychosocial screening instrument for use with cancer patients. Psychosomatics 2001, 42, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.C.; Motivala, S.J.; Buysse, D.J.; Oxman, M.N.; Levin, M.J.; Irwin, M.R. Validation of a 3-factor scoring model for the Pittsburgh Sleep Quality Index in older adults. Sleep 2006, 29, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Bardage, C.; Pluijm, S.M.F.; Pedersen, N.; Deeg, D.J.H.; Jylhä, M.; Noale, M.; Blumstein, T.; Otero, Á. Self-rated health among older adults: A cross-national comparison. Eur. J. Ageing 2005, 2, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Benyamini, Y.; Idler, E.L.; Leventhal, H.; Leventhal, E.A. Positive affect and function as influences on self-assessments of health: Expanding our view beyond illness and disability. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2000, 55, P107–P116. [Google Scholar] [CrossRef] [PubMed]
- Caramenti, M.; Castiglioni, I. Determinants of self-perceived health: The importance of physical well-being but also of mental health and cognitive functioning. Behav. Sci. 2022, 12, 498. [Google Scholar] [CrossRef]
- Shields, M.; Shooshtari, S. Determinants of self-perceived health. Health. Rep. 2001, 13, 35–52. [Google Scholar]
- Duntava, A.; Borisova, L.V.; Mäkinen, I.H. The structure of health in Europe: The relationships between morbidity, functional limitation, and subjective health. SSM Popul. Health. 2021, 16, 100911. [Google Scholar] [CrossRef]
- Fong, J.H.; Kok, Z.-C. Does subjective health matter? Predicting overall and specific ADL disability incidence. Arch. Gerontol. Geriatr. 2020, 90, 104169. [Google Scholar] [CrossRef]
- Jeon, M.-J.; Kim, J.-H.; Bae, S.-M. The long-term associations of objective and subjective health status on mortality. Iran. J. Public Health 2022, 51, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P.; Broström, A.; Dahlström, U.; Alehagen, U. Global perceived health and ten-year cardiovascular mortality in elderly primary care patients with possible heart failure. Eur. J. Hear. Fail. 2008, 10, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.M.; Martins, T.B.; Peterson, L.K.; Hill, H.R. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: A review. Cytokine 2021, 142, 155478. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.O.; Kim, H.-S.; Youn, J.-C.; Shin, E.-C.; Park, S. Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J. Transl. Med. 2011, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.Y.; Yoon, T.; Ahn, S.S.; Song, J.J.; Park, Y.-B.; Lee, S.-W. Soluble immune checkpoint molecules in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Sci. Rep. 2022, 12, 21319. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Levkovich, I.; Katz, R.; Fried, G.; Pollack, S. Low physical activity, fatigue and depression in breast cancer survivors: Moderation by levels of IL-6 and IL-8. Int. J. Psychophysiol. 2020, 158, 96–102. [Google Scholar] [CrossRef] [PubMed]
M or n | SD or % | Range | |
---|---|---|---|
Age (years, M, SD) | 69.58 | 13.63 | 37–97 |
Sex (n, %) | |||
Female | 19 | 30.6 | |
Male | 43 | 69.4 | |
Education (years, M, SD) | 12.60 | 2.98 | 7–20 |
Marital status (n, %) | |||
Married or partnered | 42 | 67.7 | |
Divorced | 11 | 17.8 | |
Widowed | 8 | 12.9 | |
Single | 1 | 1.6 | |
Income level a (n, %) | |||
High | 4 | 6.9 | |
Average | 35 | 60.3 | |
Low | 19 | 32.8 | |
Religion (n, %) | |||
Jewish | 51 | 82.3 | |
Arab (Muslim or Christian) | 9 | 14.5 | |
Other | 2 | 3.2 | |
Tumor type (n, %) | |||
Lung | 18 | 29.0 | |
Melanoma | 14 | 22.6 | |
Renal | 8 | 12.9 | |
Breast | 6 | 9.7 | |
Skin small-cell carcinoma | 6 | 9.7 | |
Urinary bladder | 4 | 6.5 | |
Colon | 3 | 4.8 | |
Gastric | 2 | 3.2 | |
Sarcoma | 1 | 1.6 | |
ECOG PS at T0 (n, %) | |||
0 | 29 | 46.8 | |
1 | 22 | 35.5 | |
2 | 11 | 17.7 | |
Type of ICI treatment (n, %) | |||
CTL4 + PD1 b | 23 | 37.1 | |
PD1/PDL1 c | 39 | 33.8 | |
Line of IT (n, %) | |||
1 | 40 | 64.5 | |
2 | 16 | 25.8 | |
3 | 6 | 9.7 | |
Best response to IT (n, %) | |||
Complete response | 6 | 9.7 | |
Partial response | 18 | 29.0 | |
Stable disease | 7 | 11.3 | |
Progressive disease | 31 | 50.0 | |
Overall survival time (deceased) d (months, M, SD) | 217.75 | 236.62 | 20–974 |
Overall survival (alive) e (Months, M, SD) | 573.91 | 274.14 | 141–1354 |
Variable | Unadjusted OR (95% CI) | p | Adjusted OR (95% CI) | p |
---|---|---|---|---|
Perceived health status (T0) | 0.67 (0.47, 0.97) | 0.03 | 0.65 (0.42, 0.99) | 0.04 |
Perceived health status (T1) | 0.85 (0.54, 1.32) | 0.46 | 0.63 (0.30, 1.31) | 0.21 |
Emotional distress (T0) | 1.44 (0.71, 2.87) | 0.31 | 1.58 (0.65, 3.85) | 0.31 |
Emotional distress (T1) | 1.53 (0.67, 3.52) | 0.31 | 2.15 (0.75, 6.11) | 0.15 |
HRQoL (T0) | 1.13 (0.55, 2.33) | 0.74 | 1.11 (0.45, 1.76) | 0.60 |
HRQoL (T1) | 0.95 (0.36, 1.48) | 0.81 | 1.16 (0.32, 4.30) | 0.83 |
Sleep difficulties (T0) | 1.10 (0.49, 2.44) | 0.82 | 1.11 (0.44, 2.77) | 0.40 |
Sleep difficulties (T1) | 1.38 (0.48, 3.99) | 0.56 | 1.93 (0.52, 7.08) | 0.32 |
Variables | TNFα | IL-2 | IL-6 | IL-10 | PD-1 | CTLA-4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadj. (p) | Adj. (p) | Unadj. (p) | Adj. (p) | Unadj. (p) | Adj. (p) | Unadj. (p) | Adj. (p) | Unadj. (p) | Adj. (p) | Unadj. (p) | Adj. (p) | |
Perceived health | −0.35 (0.04) | −0.43 (0.03) | −0.24 (0.23) | −0.12 (0.38) | −0.39 (0.02) | −0.39 (0.04) | −0.12 (0.31) | −0.10 (0.61) | 0.16 (0.38) | 0.13 (0.52) | 0.17 (0.34) | 0.21 (0.41) |
HRQoL | 0.32 (0.06) | 0.45 (0.02) | 0.27 (0.15) | 0.16 (0.45) | 0.48 (0.04) | 0.50 (0.00) | 0.08 (0.57) | 0.06 (0.80) | −0.26 (0.13) | −0.26 (0.19) | −0.36 (0.07) | −0.45 (0.04) |
Emotional distress | 0.23 (0.18) | 0.24 (0.20) | 0.06 (0.75) | 0.05 (0.80) | 0.24 (0.13) | 0.23 (0.12) | −0.01 (0.95) | −0.05 (0.81) | −0.17 (0.34) | −0.13 (0.50) | −0.35 (0.08) | −0.41 (0.06) |
Sleep difficulties | 0.07 (0.72) | 0.10 (0.62) | −0.04 (0.84) | −0.11 (0.60) | 0.20 (0.30) | 0.11 (0.66) | 0.31 (0.09) | 0.37 (0.07) | −0.24 (0.19) | −0.28 (0.19) | −0.50 (0.01) | −0.53 (0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, M.; Shamay, Y.; Czamanski-Cohen, J.; Shulman, K.; Keren Rosenberg, S.; Abu-Amna, M.; Turgeman, I.; Merkin Livshits, L.; Birenboim, R.; Dines, M.; et al. Linkage between Psychological Factors and Response to Immune Checkpoint Inhibitor Therapy: A Preliminary Study. Cells 2023, 12, 2471. https://doi.org/10.3390/cells12202471
Cohen M, Shamay Y, Czamanski-Cohen J, Shulman K, Keren Rosenberg S, Abu-Amna M, Turgeman I, Merkin Livshits L, Birenboim R, Dines M, et al. Linkage between Psychological Factors and Response to Immune Checkpoint Inhibitor Therapy: A Preliminary Study. Cells. 2023; 12(20):2471. https://doi.org/10.3390/cells12202471
Chicago/Turabian StyleCohen, Miri, Yosi Shamay, Johanna Czamanski-Cohen, Katerina Shulman, Shoshana Keren Rosenberg, Mahmoud Abu-Amna, Ilit Turgeman, Ludmila Merkin Livshits, Revital Birenboim, Monica Dines, and et al. 2023. "Linkage between Psychological Factors and Response to Immune Checkpoint Inhibitor Therapy: A Preliminary Study" Cells 12, no. 20: 2471. https://doi.org/10.3390/cells12202471
APA StyleCohen, M., Shamay, Y., Czamanski-Cohen, J., Shulman, K., Keren Rosenberg, S., Abu-Amna, M., Turgeman, I., Merkin Livshits, L., Birenboim, R., Dines, M., & Bar-Sela, G. (2023). Linkage between Psychological Factors and Response to Immune Checkpoint Inhibitor Therapy: A Preliminary Study. Cells, 12(20), 2471. https://doi.org/10.3390/cells12202471