Osteometabolism: Metabolic Alterations in Bone Pathologies
Abstract
:1. Introduction
2. Osteometabolism: Metabolic Requirements of Bone Cells
2.1. Glucose Metabolism in Bone Cells
2.2. Lipid Metabolism in Bone Cells
2.3. Glutamine Metabolism in Bone Cells
2.4. Insulin Signaling
2.5. Role of Hypoxia in Bone Metabolism
3. Bone Cells and Global Energy Metabolism
4. Metabolism and Bone Related Diseases
4.1. Osteoporosis and Metabolism
4.1.1. Phospholipids (PL) Metabolism
4.1.2. Sphingolipids Metabolism
4.1.3. Bile Acid Metabolism
4.2. Metabolism in Rheumatoid Arthritis (RA)
4.3. Metabolism in Osteoarthritis
4.4. Metabolism in Spondylitis
4.5. Metabolism in Periodontitis
4.6. Metabolism in Osteogenesis Imperfecta
4.7. Metabolism in Diabetes Associated Bone Diseases
4.8. Obesity-Related Bone Loss and Metabolism
5. Gut Microbiota & Bone Metabolism
6. Therapeutic Interventions on Osteometabolism
6.1. Anti-Resorptive Drugs
6.2. Osteo-Anabolic Drugs
6.3. Steroidal Therapies
6.4. Vitamin D
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Robling, A.G.; Bonewald, L.F. The Osteocyte: New Insights. Annu. Rev. Physiol. 2020, 82, 485–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compton, J.T.; Lee, F.Y. A Review of Osteocyte Function and the Emerging Importance of Sclerostin. J. Bone Jt. Surg. 2014, 96, 1659–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jann, J.; Gascon, S.; Roux, S.; Faucheux, N. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int. J. Mol. Sci. 2020, 21, 7597. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Sapra, L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J. Inflamm. Res. 2022, 15, 1667–1698. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, A.; Aedo-Martín, D.; Obeso, D.; Erjavec, I.; Rodríguez-Coira, J.; Buendía, I.; Ardura, J.A.; Barbas, C.; Gortazar, A.R. Metabolomics Reveals Citric Acid Secretion in Mechanically Stimulated Osteocytes Is Inhibited by High Glucose. Sci. Rep. 2019, 9, 2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellissimo, M.P.; Roberts, J.L.; Jones, D.P.; Liu, K.H.; Taibl, K.R.; Uppal, K.; Weitzmann, M.N.; Pacifici, R.; Drissi, H.; Ziegler, T.R.; et al. Metabolomic Associations with Serum Bone Turnover Markers. Nutrients 2020, 12, 3161. [Google Scholar] [CrossRef] [PubMed]
- Karner, C.M.; Long, F. Wnt Signaling and Cellular Metabolism in Osteoblasts. Cell. Mol. Life Sci. 2017, 74, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
- Akune, T.; Ohba, S.; Kamekura, S.; Yamaguchi, M.; Chung, U.; Kubota, N.; Terauchi, Y.; Harada, Y.; Azuma, Y.; Nakamura, K.; et al. PPAR γ Insufficiency Enhances Osteogenesis through Osteoblast Formation from Bone Marrow Progenitors. J. Clin. Investig. 2004, 113, 846–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Chong, L.-W.; Evans, R.M. PPAR-γ Regulates Osteoclastogenesis in Mice. Nat. Med. 2007, 13, 1496–1503. [Google Scholar] [CrossRef]
- Wei, W.; Wang, X.; Yang, M.; Smith, L.C.; Dechow, P.C.; Wan, Y. PGC1β Mediates PPARγ Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss. Cell Metab. 2010, 11, 503–516. [Google Scholar] [CrossRef]
- Lai, L.; Leone, T.C.; Zechner, C.; Schaeffer, P.J.; Kelly, S.M.; Flanagan, D.P.; Medeiros, D.M.; Kovacs, A.; Kelly, D.P. Transcriptional Coactivators PGC-1α and PGC-Lβ Control Overlapping Programs Required for Perinatal Maturation of the Heart. Genes Dev. 2008, 22, 1948–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karner, C.M.; Long, F. Glucose Metabolism in Bone. Bone 2018, 115, 2–7. [Google Scholar] [CrossRef]
- Donat, A.; Knapstein, P.-R.; Jiang, S.; Baranowsky, A.; Ballhause, T.-M.; Frosch, K.-H.; Keller, J. Glucose Metabolism in Osteoblasts in Healthy and Pathophysiological Conditions. Int. J. Mol. Sci. 2021, 22, 4120. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Shimazu, J.; Makinistoglu, M.P.; Maurizi, A.; Kajimura, D.; Zong, H.; Takarada, T.; Iezaki, T.; Pessin, J.E.; Hinoi, E.; et al. Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell 2015, 161, 1576–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.-C.; Ji, X.; Nissim, I.; Long, F. Malic Enzyme Couples Mitochondria with Aerobic Glycolysis in Osteoblasts. Cell Rep. 2020, 32, 108108. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Hu, G.; Karner, C.M. Bioenergetic Metabolism in Osteoblast Differentiation. Curr. Osteoporos. Rep. 2022, 20, 53–64. [Google Scholar] [CrossRef]
- Park-Min, K.-H. Metabolic Reprogramming in Osteoclasts. Semin. Immunopathol. 2019, 41, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Taubmann, J.; Krishnacoumar, B.; Böhm, C.; Faas, M.; Müller, D.I.H.; Adam, S.; Stoll, C.; Böttcher, M.; Mougiakakos, D.; Sonnewald, U.; et al. Metabolic Reprogramming of Osteoclasts Represents a Therapeutic Target during the Treatment of Osteoporosis. Sci. Rep. 2020, 10, 21020. [Google Scholar] [CrossRef] [PubMed]
- Lemma, S.; Sboarina, M.; Porporato, P.E.; Zini, N.; Sonveaux, P.; Di Pompo, G.; Baldini, N.; Avnet, S. Energy Metabolism in Osteoclast Formation and Activity. Int. J. Biochem. Cell Biol. 2016, 79, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lee, W.; Song, C.; Ye, L.; Abel, E.D.; Long, F. Both Aerobic Glycolysis and Mitochondrial Respiration Are Required for Osteoclast Differentiation. FASEB J. 2020, 34, 11058–11067. [Google Scholar] [CrossRef]
- Kim, J.-M.; Jeong, D.; Kang, H.K.; Jung, S.Y.; Kang, S.S.; Min, B.-M. Osteoclast Precursors Display Dynamic Metabolic Shifts toward Accelerated Glucose Metabolism at an Early Stage of RANKL-Stimulated Osteoclast Differentiation. Cell. Physiol. Biochem. 2007, 20, 935–946. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, K.; Kim, J.M.; Kwon, S.H.; Lee, S.H.; Lee, S.Y.; Jeong, D. Accelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling. PLoS ONE 2016, 11, e0153886. [Google Scholar] [CrossRef] [Green Version]
- Indo, Y.; Takeshita, S.; Ishii, K.-A.; Hoshii, T.; Aburatani, H.; Hirao, A.; Ikeda, K. Metabolic Regulation of Osteoclast Differentiation and Function. J. Bone Miner. Res. 2013, 28, 2392–2399. [Google Scholar] [CrossRef]
- Karthik, V.; Guntur, A.R. Energy Metabolism of Osteocytes. Curr. Osteoporos. Rep. 2021, 19, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Mullen, C.A.; Haugh, M.G.; Schaffler, M.B.; Majeska, R.J.; McNamara, L.M. Osteocyte Differentiation Is Regulated by Extracellular Matrix Stiffness and Intercellular Separation. J. Mech. Behav. Biomed. Mater. 2013, 28, 183–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanger, L.F.; Robichon, J. Parathormone-Induced Osteolysis in Dogs. A Microradiographic And Alpharadiographic Survey. J. Bone Jt. Surg. Am. 1964, 46, 1008–1012. [Google Scholar] [CrossRef]
- Kim, H.; Oh, B.; Park-Min, K.-H. Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism. Cells 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J.A. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu. Rev. Physiol. 2016, 78, 23–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wu, J.; Xi, W.; Chen, X.; Wang, W.; Zhang, T.; Yang, A.; Wang, T. Ctrp4, a New Adipokine, Promotes the Differentiation of Osteoblasts. Biochem. Biophys. Res. Commun. 2019, 512, 224–229. [Google Scholar] [CrossRef]
- Alekos, N.S.; Moorer, M.C.; Riddle, R.C. Dual Effects of Lipid Metabolism on Osteoblast Function. Front. Endocrinol. 2020, 11, 578194. [Google Scholar] [CrossRef]
- Kim, S.P.; Li, Z.; Zoch, M.L.; Frey, J.L.; Bowman, C.E.; Kushwaha, P.; Ryan, K.A.; Goh, B.C.; Scafidi, S.; Pickett, J.E.; et al. Fatty Acid Oxidation by the Osteoblast Is Required for Normal Bone Acquisition in a Sex- and Diet-Dependent Manner. JCI Insight 2017, 2, e92704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevorkova, O.; Martineau, C.; Martin-Falstrault, L.; Sanchez-Dardon, J.; Brissette, L.; Moreau, R. Low-Bone-Mass Phenotype of Deficient Mice for the Cluster of Differentiation 36 (CD36). PLoS ONE 2013, 8, e77701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamek, G.; Felix, R.; Guenther, H.L.; Fleisch, H. Fatty Acid Oxidation in Bone Tissue and Bone Cells in Culture. Characterization and Hormonal Influences. Biochem. J. 1987, 248, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, B.M. Marrow Adipocytes Inhibit the Differentiation of Mesenchymal Stem Cells into Osteoblasts via Suppressing BMP-Signaling. J. Biomed. Sci. 2017, 24, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendina-Ruedy, E.; Guntur, A.R.; Rosen, C.J. Intracellular Lipid Droplets Support Osteoblast Function. Adipocyte 2017, 6, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parhami, F.; Mody, N.; Gharavi, N.; Ballard, A.J.; Tintut, Y.; Demer, L.L. Role of the Cholesterol Biosynthetic Pathway in Osteoblastic Differentiation of Marrow Stromal Cells. J. Bone Miner. Res. 2002, 17, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Morita, I.; Murota, S. Involvement of Cholesterol in Osteoclast-like Cell Formation via Cellular Fusion. Bone 1998, 23, 135–140. [Google Scholar] [CrossRef]
- Luegmayr, E.; Glantschnig, H.; Wesolowski, G.A.; Gentile, M.A.; Fisher, J.E.; Rodan, G.A.; Reszka, A.A. Osteoclast Formation, Survival and Morphology Are Highly Dependent on Exogenous Cholesterol/Lipoproteins. Cell Death Differ. 2004, 11 (Suppl. 1), S108–S118. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Kim, H.; Chang, E.-J.; Kim, H.J.; Lee, Y.; Kim, H.-H. Proteomic Analysis of Osteoclast Lipid Rafts: The Role of the Integrity of Lipid Rafts on V-ATPase Activity in Osteoclasts. J. Bone Miner. Metab. 2010, 28, 410–417. [Google Scholar] [CrossRef]
- Niu, Q.; Huang, Z.; Wu, X.; Jin, Y.; An, Y.; Li, Y.; Xu, H.; Yang, B.; Wang, L. Enhanced IL-6/Phosphorylated STAT3 Signaling Is Related to the Imbalance of Circulating T Follicular Helper/T Follicular Regulatory Cells in Patients with Rheumatoid Arthritis. Arthritis Res. Ther. 2018, 20, 200. [Google Scholar] [CrossRef]
- Kasonga, A.E.; Kruger, M.C.; Coetzee, M. Free Fatty Acid Receptor 4-β-Arrestin 2 Pathway Mediates the Effects of Different Classes of Unsaturated Fatty Acids in Osteoclasts and Osteoblasts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 281–289. [Google Scholar] [CrossRef]
- Abshirini, M.; Ilesanmi-Oyelere, B.L.; Kruger, M.C. Potential Modulatory Mechanisms of Action by Long-Chain Polyunsaturated Fatty Acids on Bone Cell and Chondrocyte Metabolism. Prog. Lipid Res. 2021, 83, 101113. [Google Scholar] [CrossRef] [PubMed]
- Karner, C.M.; Esen, E.; Okunade, A.L.; Patterson, B.W.; Long, F. Increased Glutamine Catabolism Mediates Bone Anabolism in Response to WNT Signaling. J. Clin. Investig. 2015, 125, 551–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Yu, Y.; Shen, L.; Zhang, G.-F.; Karner, C.M. SLC1A5 Provides Glutamine and Asparagine Necessary for Bone Development in Mice. eLife 2021, 10, e71595. [Google Scholar] [CrossRef]
- Shen, L.; Sharma, D.; Yu, Y.; Long, F.; Karner, C. Biphasic Regulation of Glutamine Consumption by WNT during Osteoblast Differentiation. J. Cell Sci. 2020, 134, jcs251645. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Newman, H.; Shen, L.; Sharma, D.; Hu, G.; Mirando, A.J.; Zhang, H.; Knudsen, E.; Zhang, G.-F.; Hilton, M.J.; et al. Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metab. 2019, 29, 966–978.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegen, S.; Devignes, C.; Torrekens, S.; Van Looveren, R.; Carmeliet, P.; Carmeliet, G. Glutamine Metabolism in Osteoprogenitors Is Required for Bone Mass Accrual and PTH-Induced Bone Anabolism in Male Mice. J. Bone Miner. Res. 2021, 36, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Gayatri, M.B.; Gajula, N.N.; Chava, S.; Reddy, A.B.M. High Glutamine Suppresses Osteogenesis through MTORC1-Mediated Inhibition of the MTORC2/AKT-473/RUNX2 Axis. Cell Death Discov. 2022, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, H.S.; Kim, M.J.; Min, K.Y.; Choi, W.S.; You, J.S. Glutamine Metabolite α-Ketoglutarate Acts as an Epigenetic Co-Factor to Interfere with Osteoclast Differentiation. Bone 2021, 145, 115836. [Google Scholar] [CrossRef]
- Dietrich, J.W.; Canalis, E.M.; Maina, D.M.; Raisz, L.G. Hormonal Control of Bone Collagen Synthesis in Vitro: Effects of Parathyroid Hormone and Calcitonin. Endocrinology 1976, 98, 943–949. [Google Scholar] [CrossRef]
- Hahn, T.J.; Westbrook, S.L.; Sullivan, T.L.; Goodman, W.G.; Halstead, L.R. Glucose Transport in Osteoblast-Enriched Bone Explants: Characterization and Insulin Regulation. J. Bone Miner. Res. 2009, 3, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Frey, J.L.; Wong, G.W.; Faugere, M.-C.; Wolfgang, M.J.; Kim, J.K.; Riddle, R.C.; Clemens, T.L. Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology 2016, 157, 4094–4103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Follak, N.; Klöting, I.; Merk, H. Influence of Diabetic Metabolic State on Fracture Healing in Spontaneously Diabetic Rats. Diabetes Metab. Res. Rev. 2005, 21, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Utting, J.C.; Robins, S.P.; Brandao-Burch, A.; Orriss, I.R.; Behar, J.; Arnett, T.R. Hypoxia Inhibits the Growth, Differentiation and Bone-Forming Capacity of Rat Osteoblasts. Exp. Cell Res. 2006, 312, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-H.; Chen, C.-T.; Wei, Y.-H. Inhibitory Effects of Hypoxia on Metabolic Switch and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells 2013, 31, 2779–2788. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.N.; Lim, J.; Shi, Y.; Joeng, K.S.; Arbeit, J.M.; Shohet, R.V.; Long, F. Up-Regulation of Glycolytic Metabolism Is Required for HIF1α-Driven Bone Formation. Proc. Natl. Acad. Sci. USA 2014, 111, 8673–8678. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.K.; Mohamad Hazir, N.S.; Alias, E. Impacts of Hypoxia on Osteoclast Formation and Activity: Systematic Review. Int. J. Mol. Sci. 2021, 22, 10146. [Google Scholar] [CrossRef] [PubMed]
- Arnett, T.R.; Gibbons, D.C.; Utting, J.C.; Orriss, I.R.; Hoebertz, A.; Rosendaal, M.; Meghji, S. Hypoxia Is a Major Stimulator of Osteoclast Formation and Bone Resorption. J. Cell. Physiol. 2003, 196, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Bozec, A.; Bakiri, L.; Hoebertz, A.; Eferl, R.; Schilling, A.F.; Komnenovic, V.; Scheuch, H.; Priemel, M.; Stewart, C.L.; Amling, M.; et al. Osteoclast Size Is Controlled by Fra-2 through LIF/LIF-Receptor Signalling and Hypoxia. Nature 2008, 454, 221–225. [Google Scholar] [CrossRef]
- Morten, K.J.; Badder, L.; Knowles, H.J. Differential Regulation of HIF-mediated Pathways Increases Mitochondrial Metabolism and ATP Production in Hypoxic Osteoclasts. J. Pathol. 2013, 229, 755–764. [Google Scholar] [CrossRef]
- Wu, C.; Rankin, E.B.; Castellini, L.; Fernandez-Alcudia, J.; LaGory, E.L.; Andersen, R.; Rhodes, S.D.; Wilson, T.L.S.; Mohammad, K.S.; Castillo, A.B.; et al. Oxygen-Sensing PHDs Regulate Bone Homeostasis through the Modulation of Osteoprotegerin. Genes Dev. 2015, 29, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Park, K.H.; Yu, H.-G.; Kook, E.; Song, W.-H.; Lee, G.; Koh, J.-T.; Shin, H.-I.; Choi, J.-Y.; Huh, Y.H.; et al. Controlling Hypoxia-Inducible Factor-2α Is Critical for Maintaining Bone Homeostasis in Mice. Bone Res. 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, K.; Fang, C.; Terao, C.; Giannopoulou, E.G.; Lee, Y.J.; Lee, M.J.; Mun, S.-H.; Bae, S.; Qiao, Y.; Yuan, R.; et al. Hypoxia-Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis. Immunity 2017, 47, 66–79.e5. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Guo, Q.; Xiao, Y.; Guo, Q.; Huang, Y.; Li, C.; Luo, X. Endocrine Role of Bone in the Regulation of Energy Metabolism. Bone Res. 2021, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Riddle, R.C.; Clemens, T.L. Insulin, Osteoblasts, and Energy Metabolism: Why Bone Counts Calories. J. Clin. Investig. 2014, 124, 1465–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilgir, O.; Yavuz, M.; Bilgir, F.; Akan, O.Y.; Bayindir, A.G.; Calan, M.; Bozkaya, G.; Yuksel, A. Relationship between Insulin Resistance, Hs-CRP, and Body Fat and Serum Osteoprotegerin/RANKL in Prediabetic Patients. Minerva Endocrinol. 2018, 43, 19–26. [Google Scholar] [CrossRef]
- Suliburska, J.; Bogdanski, P.; Gajewska, E.; Kalmus, G.; Sobieska, M.; Samborski, W. The Association of Insulin Resistance with Serum Osteoprotegerin in Obese Adolescents. J. Physiol. Biochem. 2013, 69, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Ruan, C.-C.; Ma, Y.; Tang, X.-F.; Wu, Q.-H.; Wang, J.-G.; Zhu, D.-L.; Gao, P.-J. Osteopontin Regulates Macrophage Activation and Osteoclast Formation in Hypertensive Patients with Vascular Calcification. Sci. Rep. 2017, 7, 40253. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zhang, L.; Xu, C.; Zheng, C.; Han, Y.; Li, W.; Huang, Y.; Zhang, X.; Shao, C.; et al. An Osteopontin-Integrin Interaction Plays a Critical Role in Directing Adipogenesis and Osteogenesis by Mesenchymal Stem Cells. Stem Cells 2014, 32, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.; Miles, P.D.; Ofrecio, J.M.; Neels, J.G.; Yu, J.G.; Resnik, J.L.; Wilkes, J.; Talukdar, S.; Thapar, D.; Johnson, K.; et al. Osteopontin Is Required for the Early Onset of High Fat Diet-Induced Insulin Resistance in Mice. PLoS ONE 2010, 5, e13959. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Leulier, F. A New Transkingdom Dimension to NO Signaling. Cell Metab. 2019, 29, 513–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, Y.; Tsuji, K.; Nifuji, A.; Noda, M. Inhibitory Helix-Loop-Helix Transcription Factors Id1/Id3 Promote Bone Formation in Vivo. J. Cell. Biochem. 2004, 93, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Asada, N.; Kawano, Y.; Wakahashi, K.; Minagawa, K.; Kawano, H.; Sada, A.; Ikeda, K.; Matsui, T.; Katayama, Y. Osteocytes Regulate Primary Lymphoid Organs and Fat Metabolism. Cell Metab. 2013, 18, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, O.; Tatsumi, S.; Ogata, M.; Arakaki, T.; Sakaguchi, H.; Nomura, K.; Miyagawa, A.; Ikuta, K.; Hanazaki, A.; Kaneko, I.; et al. Effect of Osteocyte-Ablation on Inorganic Phosphate Metabolism: Analysis of Bone–Kidney–Gut Axis. Front. Endocrinol. 2017, 8, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Sun, F.; Lu, J.; Zhang, J.; Wang, J.; Zhu, H.; Gu, M.; Ma, J. Osteoclasts May Affect Glucose Uptake-Related Insulin Resistance by Secreting Resistin. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 3461–3470. [Google Scholar] [CrossRef]
- Weivoda, M.M.; Chew, C.K.; Monroe, D.G.; Farr, J.N.; Atkinson, E.J.; Geske, J.R.; Eckhardt, B.; Thicke, B.; Ruan, M.; Tweed, A.J.; et al. Identification of Osteoclast-Osteoblast Coupling Factors in Humans Reveals Links between Bone and Energy Metabolism. Nat. Commun. 2020, 11, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T.; Iwasawa, M.; Nakashima, T.; Mori, S.; Shigemoto, K.; Nakamura, H.; Katagiri, H.; Takayanagi, H.; Tanaka, S. Intracellular and Extracellular ATP Coordinately Regulate the Inverse Correlation between Osteoclast Survival and Bone Resorption. J. Biol. Chem. 2012, 287, 37808–37823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moayyeri, A.; Cheung, C.-L.; Tan, K.C.; Morris, J.A.; Cerani, A.; Mohney, R.P.; Richards, J.B.; Hammond, C.; Spector, T.D.; Menni, C. Metabolomic Pathways to Osteoporosis in Middle-Aged Women: A Genome-Metabolome-Wide Mendelian Randomization Study. J. Bone Miner. Res. 2018, 33, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Anagnostis, P.; Florentin, M.; Livadas, S.; Lambrinoudaki, I.; Goulis, D.G. Bone Health in Patients with Dyslipidemias: An Underestimated Aspect. Int. J. Mol. Sci. 2022, 23, 1639. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Pan, C.; Wu, Z.; Sun, Y.; Liu, C.; Xiang, H.; Yin, P.; Shang, D. An Integrated Metabolomic Study of Osteoporosis: Discovery and Quantification of Hyocholic Acids as Candidate Markers. Front. Pharmacol. 2021, 12, 725341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, X.; Zhang, D.; Chen, H.; Chao, Y.; Wu, K.; Dong, X.; Su, J. Integrative Bone Metabolomics—Lipidomics Strategy for Pathological Mechanism of Postmenopausal Osteoporosis Mouse Model. Sci. Rep. 2018, 8, 16456. [Google Scholar] [CrossRef] [PubMed]
- Gerriets, V.A.; Rathmell, J.C. Metabolic Pathways in T Cell Fate and Function. Trends Immunol. 2012, 33, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, L.R.; Ahsan, F.M.; Wolf, D.M.; Shirihai, O.; Teitell, M.A. Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling. iScience 2018, 5, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galván-Peña, S.; O’Neill, L.A.J. Metabolic Reprograming in Macrophage Polarization. Front. Immunol. 2014, 5, 420. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wu, B.; Goodman, S.B.; Berry, G.J.; Goronzy, J.J.; Weyand, C.M. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 652771. [Google Scholar] [CrossRef] [PubMed]
- Kvacskay, P.; Yao, N.; Schnotz, J.-H.; Scarpone, R.; de Carvalho, R.A.; Klika, K.D.; Merkt, W.; Tretter, T.; Lorenz, H.-M.; Tykocinski, L.-O. Increase of Aerobic Glycolysis Mediated by Activated T Helper Cells Drives Synovial Fibroblasts towards an Inflammatory Phenotype: New Targets for Therapy? Arthritis Res. Ther. 2021, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cai, X.; Ouyang, H.; Yuan, S.; Wang, X.; Lin, L.; Chen, Z.; Huang, M. Increased EEF2K Promotes Glycolysis and Aggressive Behaviors of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. J. Inflamm. Res. 2022, 15, 1729–1744. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Sheng, P.; Mobasheri, A. The Role of Metabolism in Chondrocyte Dysfunction and the Progression of Osteoarthritis. Ageing Res. Rev. 2021, 66, 101249. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Rayman, M.P.; Gualillo, O.; Sellam, J.; van der Kraan, P.; Fearon, U. The Role of Metabolism in the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2017, 13, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Matta, C.; Zákány, R.; Musumeci, G. Chondrosenescence: Definition, Hallmarks and Potential Role in the Pathogenesis of Osteoarthritis. Maturitas 2015, 80, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Xiao, M.; Huang, Y.; Tu, L.; Chen, Z.; Cao, S.; Wei, Q.; Gu, J. Serum Metabolomics Signatures Associated with Ankylosing Spondylitis and TNF Inhibitor Therapy. Front. Immunol. 2021, 12, 630791. [Google Scholar] [CrossRef] [PubMed]
- Doğan, H.O.; Şenol, O.; Karadağ, A.; Yıldız, S.N. Metabolomic Profiling in Ankylosing Spondylitis Using Time-of-Flight Mass Spectrometry. Clin. Nutr. ESPEN 2022, 50, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xie, C.; Li, X.; Yang, J.; Yu, T.; Zhang, R.; Zhang, T.; Saxena, D.; Snyder, M.; Wu, Y.; et al. Succinate and Its G-Protein-Coupled Receptor Stimulates Osteoclastogenesis. Nat. Commun. 2017, 8, 15621. [Google Scholar] [CrossRef] [Green Version]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Xu, F.; Thomas, S.C.; Zhang, Y.; Paul, B.; Sakilam, S.; Chae, S.; Li, P.; Almeter, C.; Kamer, A.R.; et al. Targeting the Succinate Receptor Effectively Inhibits Periodontitis. Cell Rep. 2022, 40, 111389. [Google Scholar] [CrossRef] [PubMed]
- Boraschi-Diaz, I.; Tauer, J.T.; El-Rifai, O.; Guillemette, D.; Lefebvre, G.; Rauch, F.; Ferron, M.; Komarova, S.V. Metabolic Phenotype in the Mouse Model of Osteogenesis Imperfecta. J. Endocrinol. 2017, 234, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Gremminger, V.L.; Harrelson, E.N.; Crawford, T.K.; Ohler, A.; Schulz, L.C.; Rector, R.S.; Phillips, C.L. Skeletal Muscle Specific Mitochondrial Dysfunction and Altered Energy Metabolism in a Murine Model (Oim/Oim) of Severe Osteogenesis Imperfecta. Mol. Genet. Metab. 2021, 132, 244–253. [Google Scholar] [CrossRef]
- Liu, L.-F.; Shen, W.-J.; Zhang, Z.H.; Wang, L.J.; Kraemer, F.B. Adipocytes Decrease Runx2 Expression in Osteoblastic Cells: Roles of PPARγ and Adiponectin. J. Cell. Physiol. 2010, 225, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, V.; Romagnoli, E.; Del Fiacco, R.; Pepe, J.; Cipriani, C.; Piemonte, S.; Carlucci, L.; Minisola, S. Relationship between Bone Metabolism and Adipogenesis. J. Endocrinol. Investig. 2010, 33 (Suppl. 7), 4–8. [Google Scholar]
- Shu, L.; Beier, E.; Sheu, T.; Zhang, H.; Zuscik, M.J.; Puzas, E.J.; Boyce, B.F.; Mooney, R.A.; Xing, L. High-Fat Diet Causes Bone Loss in Young Mice by Promoting Osteoclastogenesis Through Alteration of the Bone Marrow Environment. Calcif. Tissue Int. 2015, 96, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Lucas, S.; Omata, Y.; Hofmann, J.; Böttcher, M.; Iljazovic, A.; Sarter, K.; Albrecht, O.; Schulz, O.; Krishnacoumar, B.; Krönke, G.; et al. Short-Chain Fatty Acids Regulate Systemic Bone Mass and Protect from Pathological Bone Loss. Nat. Commun. 2018, 9, 55. [Google Scholar] [CrossRef]
- Montalvany-Antonucci, C.C.; Duffles, L.F.; de Arruda, J.A.A.; Zicker, M.C.; de Oliveira, S.; Macari, S.; Garlet, G.P.; Madeira, M.F.M.; Fukada, S.Y.; Andrade, I.; et al. Short-Chain Fatty Acids and FFAR2 as Suppressors of Bone Resorption. Bone 2019, 125, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, L.; Ding, Y.; He, L.; Chang, M.; Shan, Y.; Siwko, S.; Chen, G.; Liu, Y.; Jin, Y.; et al. Fatty Acid Sensing GPCR (GPR84) Signaling Safeguards Cartilage Homeostasis and Protects against Osteoarthritis. Pharmacol. Res. 2021, 164, 105406. [Google Scholar] [CrossRef]
- Park, E.-J.; Kim, S.A.; Choi, Y.-M.; Kwon, H.-K.; Shim, W.; Lee, G.; Choi, S. Capric Acid Inhibits NO Production and STAT3 Activation during LPS-Induced Osteoclastogenesis. PLoS ONE 2011, 6, e27739. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Park, J.-W.; Lee, J.-M.; Suh, J.-Y.; Lee, J.-K.; Chang, B.-S.; Um, H.-S.; Kim, J.-Y.; Lee, Y. IL-17 Inhibits Osteoblast Differentiation and Bone Regeneration in Rat. Arch. Oral Biol. 2014, 59, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; An, J.H.; Park, H.; Yang, J.-Y.; Choi, H.J.; Kim, S.W.; Park, Y.J.; Kim, S.Y.; Yim, M.; Baek, W.-Y.; et al. Positive Regulation of Osteogenesis by Bile Acid through FXR. J. Bone Miner. Res. 2013, 28, 2109–2121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-X.; Song, Y.-W.; Zhang, L.; Zheng, F.-J.; Wang, X.-M.; Zhuang, X.-H.; Wu, F.; Liu, J. Association between Bile Acid Metabolism and Bone Mineral Density in Postmenopausal Women. Clinics 2020, 75, e1486. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Chiba, T.; Tousen, Y. Short-Chain Fatty Acids, Acetate and Propionate, Directly Upregulate Osteoblastic Differentiation. Int. J. Food Sci. Nutr. 2022, 73, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Martinsson, K.; Dürholz, K.; Schett, G.; Zaiss, M.M.; Kastbom, A. Higher Serum Levels of Short-Chain Fatty Acids Are Associated with Non-Progression to Arthritis in Individuals at Increased Risk of RA. Ann. Rheum. Dis. 2022, 81, 445–447. [Google Scholar] [CrossRef]
- Fan, Z.; Yang, B.; Paul Ross, R.; Stanton, C.; Zhang, F.; Sun, J.; Zhao, J.; Zhang, H.; Chen, W. Propionate Restores Disturbed Gut Microbiota Induced by Methotrexate in Rheumatoid Arthritis: From Clinic to Experiments. J. King Saud Univ. Sci. 2021, 33, 101545. [Google Scholar] [CrossRef]
- Rosser, E.C.; Piper, C.J.M.; Matei, D.E.; Blair, P.A.; Rendeiro, A.F.; Orford, M.; Alber, D.G.; Krausgruber, T.; Catalan, D.; Klein, N.; et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metab. 2020, 31, 837–851.e10. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xiao, H.-M.; Liu, H.-M.; Lv, W.-Q.; Greenbaum, J.; Yuan, S.-J.; Gong, R.; Zhang, Q.; Chen, Y.-C.; Peng, C.; et al. Gut Microbiota Impacts Bone via B.Vulgatus-Valeric Acid-Related Pathways. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; de Guimarães, R.C.A.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; de Oliveira, L.C.S.; Pott, A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int. J. Mol. Sci. 2020, 21, 4093. [Google Scholar] [CrossRef] [PubMed]
- Pujo, J.; Petitfils, C.; Le Faouder, P.; Eeckhaut, V.; Payros, G.; Maurel, S.; Perez-Berezo, T.; Van Hul, M.; Barreau, F.; Blanpied, C.; et al. Bacteria-Derived Long Chain Fatty Acid Exhibits Anti-Inflammatory Properties in Colitis. Gut 2021, 70, 1088–1097. [Google Scholar] [CrossRef]
- Kwon, J.-O.; Jin, W.J.; Kim, B.; Kim, H.-H.; Lee, Z.H. Myristoleic Acid Inhibits Osteoclast Formation and Bone Resorption by Suppressing the RANKL Activation of Src and Pyk2. Eur. J. Pharmacol. 2015, 768, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Frommer, K.W.; Hasseli, R.; Schäffler, A.; Lange, U.; Rehart, S.; Steinmeyer, J.; Rickert, M.; Sarter, K.; Zaiss, M.M.; Culmsee, C.; et al. Free Fatty Acids in Bone Pathophysiology of Rheumatic Diseases. Front. Immunol. 2019, 10, 2757. [Google Scholar] [CrossRef] [Green Version]
- Winston, J.A.; Theriot, C.M. Diversification of Host Bile Acids by Members of the Gut Microbiota. Gut Microbes 2020, 11, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Ahn, T.-K.; Kim, K.-T.; Joshi, H.P.; Park, K.H.; Kyung, J.W.; Choi, U.-Y.; Sohn, S.; Sheen, S.-H.; Shin, D.-E.; Lee, S.-H.; et al. Therapeutic Potential of Tauroursodeoxycholic Acid for the Treatment of Osteoporosis. Int. J. Mol. Sci. 2020, 21, 4274. [Google Scholar] [CrossRef]
- Jurado, S.; Parés, A.; Peris, P.; Combalia, A.; Monegal, A.; Guañabens, N. Bilirubin Increases Viability and Decreases Osteoclast Apoptosis Contributing to Osteoporosis in Advanced Liver Diseases. Bone 2022, 162, 116483. [Google Scholar] [CrossRef] [PubMed]
- Laursen, M.F.; Sakanaka, M.; von Burg, N.; Mörbe, U.; Andersen, D.; Moll, J.M.; Pekmez, C.T.; Rivollier, A.; Michaelsen, K.F.; Mølgaard, C.; et al. Bifidobacterium Species Associated with Breastfeeding Produce Aromatic Lactic Acids in the Infant Gut. Nat. Microbiol. 2021, 6, 1367–1382. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzo, G.; De Filippo, G.; Merlotti, D.; Abate, V.; Buonaiuto, A.; Evangelista, M.; Gentile, M.; Giaquinto, A.; Picchioni, T.; Di Minno, M.N.D.; et al. Effects of Bisphosphonate Treatment on Circulating Lipid and Glucose Levels in Patients with Metabolic Bone Disorders. Calcif. Tissue Int. 2021, 108, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Kitami, A.; Takao-Kawabata, R.; Takakura, A.; Nakatsugawa, M.; Kono, R.; Maeno, A.; Tokuda, A.; Isogai, Y.; Ishizuya, T.; et al. Teriparatide Improves Bone and Lipid Metabolism in a Male Rat Model of Type 2 Diabetes Mellitus. Endocrinology 2019, 160, 2339–2352. [Google Scholar] [CrossRef] [PubMed]
- Anastasilakis, A.; Goulis, D.; Koukoulis, G.; Kita, M.; Slavakis, A.; Avramidis, A. Acute and Chronic Effect of Teriparatide on Glucose Metabolism in Women with Established Osteoporosis. Exp. Clin. Endocrinol. Diabetes 2007, 115, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Esen, E.; Lee, S.-Y.; Wice, B.M.; Long, F. PTH Promotes Bone Anabolism by Stimulating Aerobic Glycolysis via IGF Signaling. J. Bone Miner. Res. 2015, 30, 2137. [Google Scholar] [CrossRef]
- Martin, C.S.; Cooper, M.S.; Hardy, R.S. Endogenous Glucocorticoid Metabolism in Bone: Friend or Foe. Front. Endocrinol. 2021, 12, 733611. [Google Scholar] [CrossRef]
- Ilias, I.; Milionis, C.; Zoumakis, E. An Overview of Glucocorticoid-Induced Osteoporosis; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Zhou, H.; Cooper, M.S.; Seibel, M.J. Endogenous Glucocorticoids and Bone. Bone Res. 2013, 1, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.; McQueen, A.; Chen, T.-C.; Wang, J.-C. Regulation of Glucose Homeostasis by Glucocorticoids. In Advances in Experimental Medicine and Biology; Springer: Berlin, Germany, 2015; Volume 872, pp. 99–126. [Google Scholar] [CrossRef]
- Van de Peppel, J.; van Leeuwen, J.P.T.M. Vitamin D and Gene Networks in Human Osteoblasts. Front. Physiol. 2014, 5, 137. [Google Scholar] [CrossRef] [Green Version]
- Atkins, G.J.; Anderson, P.H.; Findlay, D.M.; Welldon, K.J.; Vincent, C.; Zannettino, A.C.W.; O’Loughlin, P.D.; Morris, H.A. Metabolism of Vitamin D3 in Human Osteoblasts: Evidence for Autocrine and Paracrine Activities of 1α,25-Dihydroxyvitamin D3. Bone 2007, 40, 1517–1528. [Google Scholar] [CrossRef]
- Zarei, A.; Morovat, A.; Javaid, K.; Brown, C.P. Vitamin D Receptor Expression in Human Bone Tissue and Dose-Dependent Activation in Resorbing Osteoclasts. Bone Res. 2016, 4, 16030. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Dar, H.Y.; Mishra, P.K. Immunoporosis: Immunology of Osteoporosis—Role of T Cells. Front. Immunol. 2018, 9, 657. [Google Scholar] [CrossRef]
S.no. | GAMs | Classification | Effect on Bone Cells | Role in Bone Pathologies | Ref. |
---|---|---|---|---|---|
1. | SCFAs | Acetate (C2) | Enhance osteoblast differentiation via inducing alkaline phosphatase (ALP) activity and suppress osteoclast differentiation by altering the osteoclast metabolism | Lower levels are associated with osteoporosis and RA progression | [101,108,109] |
Propionate (C3) | Enhance ALP activity in osteoblast and reduce NFAT1 and TRAF6 expression in osteoclast | Lower levels are associated with osteoporosis and RA progression by restoring the GM | [101,108,110] | ||
Butyrate (C4) | Reduce osteoclast differentiation via downregulating the expression of TRAF6 and NFAT1 along with enhancing the glycolysis | Suppress arthritis via enhancing the aryl hydrocarbon receptor activation in regulatory B cells (Bregs) | [101,111] | ||
Pentanoate (C5) | Suppress osteoclastogenesis via downregulating the expression of NF-κB in osteoclasts and enhancing the osteoblasts differentiation via increasing the ALP and mineralization potential in osteoblast cells | N.D. | [112] | ||
2. | MCFAs | Caprylic acid (C8:0) | N.D. | N.D. | [113] |
Capric acid (C10:0) | Suppress LPS-induced osteoclastogenesis by inhibiting NO production in a STAT3-dependent manner. In addition, inhibits osteoclastogenesis via suppressing NF-κB signaling | N.D. | [104] | ||
Lauric acid (C12:0) | N.D. | N.D. | [113] | ||
3. | LCFAs | Myristic acid (C14:0) | Block osteoclastogenesis via suppressing the activation of tyrosine kinases such as Src and Pyk2 | N.D. | [114,115] |
Palmitic acid C16:0) | Enhance RANKL induced osteoclastogenesis | N.D. | [116] | ||
Stearic acid (C18:0) | Enhance RANKL-induced osteoclastogenesis | N.D. | [116] | ||
4. | Primary Bile Acids | Cholic acid (CA) | N.D. | Bile acid positively correlated with the BMD and negatively correlated with the CTX-1 bone turnover marker in osteoporosis | [107,117] |
Chenodeoxycholic acid (CDCA) | Enhance osteoblastogenesis via upregulating the expression of Runx2, ERK, and β-catenin signaling pathways. Also, suppress osteoclast differentiation | N.D. | [106,117] | ||
5. | Secondary Bile Acids | Tauroursodeoxycholic acid (TUDCA) | Increase proliferation and differentiation of osteoblasts | Treatment with TUDCA enhanced the PINP level and lowered the levels of CTX-1 in osteoporotic mice and turn, increase the BMD in osteoporotic mice model | [118] |
Deoxycholic acid (DCA) | N.D. | N.D. | [117] | ||
Lithocholic acid (LCA) | Decrease the viability of osteoclasts by downregulating the expression of microRNAs such as miR-21a, miR-29b | N.D. | [117] | ||
Ursodeoxycholic acid (UDCA) | Decrease the viability of osteoclasts by downregulating the expression of microRNAs such as miR-21a, miR-29b | N.D. | [117,119] | ||
6. | Indole Derivatives | Indole-acetic acid (IAA) | N.D. | N.D. | [120] |
Indole-propionic acid (IPA) | N.D. | N.D. | [120] | ||
Indole-3-aldehyde (IAId) | N.D. | N.D. | [120] | ||
Indole-3-lactic acid (ILA) | N.D. | N.D. | [120] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, R.K.; Sapra, L.; Mishra, P.K. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells 2022, 11, 3943. https://doi.org/10.3390/cells11233943
Srivastava RK, Sapra L, Mishra PK. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells. 2022; 11(23):3943. https://doi.org/10.3390/cells11233943
Chicago/Turabian StyleSrivastava, Rupesh K., Leena Sapra, and Pradyumna K. Mishra. 2022. "Osteometabolism: Metabolic Alterations in Bone Pathologies" Cells 11, no. 23: 3943. https://doi.org/10.3390/cells11233943