Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer
Abstract
:1. Introduction
2. Cell Lines and Mouse Models of Prostate Cancer Disease
2.1. Two-Dimensional and 3-D Cell Culture for Deciphering Molecular Mechanisms
2.2. Mouse Models of Prostate Cancer
2.2.1. Xenograft Mouse Models
2.2.2. Genetic Models in Mice
3. Drosophila, a Model for Human Pathologies and Prostate Cancer
3.1. Drosophila Genetic Tools and Their Use in Tumorigenesis Studies
3.2. Drosophila, the Origin of Signaling Pathways and Gene Discoveries Relevant for Prostate Cancer
3.3. Drosophila Tissues Used as Models for Studying Fundamental Tumorigenic Processes
3.3.1. The Imaginal Discs
3.3.2. The Tracheal System
3.3.3. Use of Drosophila for Organotypic Models
4. Accessory Glands as a Model of Epithelial Prostate Carcinogenesis
4.1. The Drosophila Accessory Glands, Functional Equivalents of the Prostate
4.2. Secondary Cells to Model Tumor Migration and Progression
4.3. The Drosophila Accessory Glands as a Model for Basal Epithelial Cell Extrusion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Rebello, R.J.; Oing, C.; Knudsen, K.E.; Loeb, S.; Johnson, D.C.; Reiter, R.E.; Gillessen, S.; Van der Kwast, T.; Bristow, R.G. Prostate Cancer. Nat. Rev. Dis. Primer. 2021, 7, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Grignon, D.J. Unusual Subtypes of Prostate Cancer. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2004, 17, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Bethel, C.R.; Faith, D.; Li, X.; Guan, B.; Hicks, J.L.; Lan, F.; Jenkins, R.B.; Bieberich, C.J.; De Marzo, A.M. Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion. Cancer. Res. 2006, 66, 10683–10690. [Google Scholar] [CrossRef] [Green Version]
- Abate-Shen, C.; Shen, M.M.; Gelmann, E. Integrating Differentiation and Cancer: The Nkx3.1 Homeobox Gene in Prostate Organogenesis and Carcinogenesis. Differ. Res. Biol. Divers. 2008, 76, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Asatiani, E.; Huang, W.-X.; Wang, A.; Rodriguez Ortner, E.; Cavalli, L.R.; Haddad, B.R.; Gelmann, E.P. Deletion, Methylation, and Expression of the NKX3.1 Suppressor Gene in Primary Human Prostate Cancer. Cancer. Res. 2005, 65, 1164–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albadine, R.; Latour, M.; Toubaji, A.; Haffner, M.; Isaacs, W.B.; Platz, E.A.; Meeker, A.K.; Demarzo, A.M.; Epstein, J.I.; Netto, G.J. TMPRSS2-ERG Gene Fusion Status in Minute (Minimal) Prostatic Adenocarcinoma. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2009, 22, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Baca, S.C.; Prandi, D.; Lawrence, M.S.; Mosquera, J.M.; Romanel, A.; Drier, Y.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Ghandi, M.; et al. Punctuated Evolution of Prostate Cancer Genomes. Cell 2013, 153, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; et al. Integrative Genomic Profiling of Human Prostate Cancer. Cancer. Cell. 2010, 18, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmena, L.; Carracedo, A.; Pandolfi, P.P. Tenets of PTEN Tumor Suppression. Cell 2008, 133, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Ruscetti, M.; Wu, H.-X. PTEN in prostate cancer. In Prostate Cancer: Biochemistry, Molecular Biology and Genetics; Dehm, S., Tindall, D.J., Eds.; Springer International Publishing: Cham, Switzerland, 2013; pp. 87–137. ISBN ISBN 978-1-4614-6827-1. [Google Scholar]
- van Dessel, L.F.; van Riet, J.; Smits, M.; Zhu, Y.; Hamberg, P.; van der Heijden, M.S.; Bergman, A.M.; van Oort, I.M.; de Wit, R.; Voest, E.E.; et al. The Genomic Landscape of Metastatic Castration-Resistant Prostate Cancers Reveals Multiple Distinct Genotypes with Potential Clinical Impact. Nat. Commun. 2019, 10, 5251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, M.A.; Girelli, G.; Demichelis, F. Genomic Correlates to the Newly Proposed Grading Prognostic Groups for Prostate Cancer. Eur. Urol. 2016, 69, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobel, R.E.; Sadar, M.D. CELL LINES USED IN PROSTATE CANCER RESEARCH: A COMPENDIUM OF OLD AND NEW LINES—PART 1. J. Urol. 2005, 173, 342–359. [Google Scholar] [CrossRef] [PubMed]
- Sobel, R.E.; Sadar, M.D. Cell Lines Used in Prostate Cancer Research: A Compendium of Old and New Lines--Part 2. J. Urol. 2005, 173, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Plymate, S.R.; Tennant, M.; Birnbaum, R.S.; Thrasher, J.B.; Chatta, G.; Ware, J.L. The Effect on the Insulin-like Growth Factor System in Human Prostate Epithelial Cells of Immortalization and Transformation by Simian Virus-40 T Antigen. J. Clin. Endocrinol. Metab. 1996, 81, 3709–3716. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.M. Normal and Benign Human Prostatic Epithelium in Culture. I. Isolation. In Vitro 1979, 15, 967–982. [Google Scholar] [CrossRef]
- Hayward, S.W.; Dahiya, R.; Cunha, G.R.; Bartek, J.; Deshpande, N.; Narayan, P. Establishment and Characterization of an Immortalized but Non-Transformed Human Prostate Epithelial Cell Line: BPH-1. In Vitro Cell. Dev. Biol. Anim. 1995, 31, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Garkovenko, E.; Yun, J.; Weijerman, P.; Peehl, D.; Chen, L.; Rhim, J. Characterization of Adult Human Prostatic Epithelial-Cells Immortalized by Polybrene-Induced DNA Transfection with a Plasmid Containing an Origin-Defective Sv40-Genome. Int. J. Oncol. 1994, 4, 821–830. [Google Scholar] [CrossRef]
- Dent, M.P.; Madnick, S.J.; Hall, S.; Vantangoli Policelli, M.; Bars, C.; Li, H.; Amin, A.; Carmichael, P.L.; Martin, F.L.; Boekelheide, K. A Human-Derived Prostate Co-Culture Microtissue Model Using Epithelial (RWPE-1) and Stromal (WPMY-1) Cell Lines. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2019, 60, 203–211. [Google Scholar] [CrossRef] [PubMed]
- McNeal, J.E. Origin and Evolution of Benign Prostatic Enlargement. Invest. Urol. 1978, 15, 340–345. [Google Scholar] [PubMed]
- Williams, R.D. Human Urologic Cancer Cell Lines. Invest. Urol. 1980, 17, 359–363. [Google Scholar]
- Koochekpour, S.; Maresh, G.A.; Katner, A.; Parker-Johnson, K.; Lee, T.-J.; Hebert, F.E.; Kao, Y.S.; Skinner, J.; Rayford, W. Establishment and Characterization of a Primary Androgen-Responsive African-American Prostate Cancer Cell Line, E006AA. Prostate 2004, 60, 141–152. [Google Scholar] [CrossRef]
- Veldscholte, J.; Ris-Stalpers, C.; Kuiper, G.G.; Jenster, G.; Berrevoets, C.; Claassen, E.; van Rooij, H.C.; Trapman, J.; Brinkmann, A.O.; Mulder, E. A Mutation in the Ligand Binding Domain of the Androgen Receptor of Human LNCaP Cells Affects Steroid Binding Characteristics and Response to Anti-Androgens. Biochem. Biophys. Res. Commun. 1990, 173, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Klein, K.A.; Reiter, R.E.; Redula, J.; Moradi, H.; Zhu, X.L.; Brothman, A.R.; Lamb, D.J.; Marcelli, M.; Belldegrun, A.; Witte, O.N.; et al. Progression of Metastatic Human Prostate Cancer to Androgen Independence in Immunodeficient SCID Mice. Nat. Med. 1997, 3, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Craft, N.; Chhor, C.; Tran, C.; Belldegrun, A.; DeKernion, J.; Witte, O.N.; Said, J.; Reiter, R.E.; Sawyers, C.L. Evidence for Clonal Outgrowth of Androgen-Independent Prostate Cancer Cells from Androgen-Dependent Tumors through a Two-Step Process. Cancer. Res. 1999, 59, 5030–5036. [Google Scholar] [PubMed]
- Whang, Y.E.; Wu, X.; Suzuki, H.; Reiter, R.E.; Tran, C.; Vessella, R.L.; Said, J.W.; Isaacs, W.B.; Sawyers, C.L. Inactivation of the Tumor Suppressor PTEN/MMAC1 in Advanced Human Prostate Cancer through Loss of Expression. Proc. Natl. Acad. Sci. USA 1998, 95, 5246–5250. [Google Scholar] [CrossRef] [Green Version]
- Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Establishment and Characterization of a Human Prostatic Carcinoma Cell Line (PC-3). Invest. Urol. 1979, 17, 16–23. [Google Scholar]
- Stone, K.R.; Mickey, D.D.; Wunderli, H.; Mickey, G.H.; Paulson, D.F. Isolation of a Human Prostate Carcinoma Cell Line (DU 145). Int. J. Cancer. 1978, 21, 274–281. [Google Scholar] [CrossRef]
- Mickey, D.D.; Stone, K.R.; Wunderli, H.; Mickey, G.H.; Vollmer, R.T.; Paulson, D.F. Heterotransplantation of a Human Prostatic Adenocarcinoma Cell Line in Nude Mice. Cancer. Res. 1977, 37, 4049–4058. [Google Scholar] [PubMed]
- Lange, T.; Ullrich, S.; Müller, I.; Nentwich, M.F.; Stübke, K.; Feldhaus, S.; Knies, C.; Hellwinkel, O.J.C.; Vessella, R.L.; Abramjuk, C.; et al. Human Prostate Cancer in a Clinically Relevant Xenograft Mouse Model: Identification of β(1,6)-Branched Oligosaccharides as a Marker of Tumor Progression. Clin. Cancer Res. Off. J. Am. Assoc. Cancer. Res. 2012, 18, 1364–1373. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, G.; Greenberg, N.M.; Scher, H.I.; Harris, J.M.; Marshall, V.R.; Tilley, W.D. Collocation of Androgen Receptor Gene Mutations in Prostate Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer. Res. 2001, 7, 1273–1281. [Google Scholar]
- Sharifi, N. Mechanisms of Androgen Receptor Activation in Castration-Resistant Prostate Cancer. Endocrinology 2013, 154, 4010–4017. [Google Scholar] [CrossRef] [Green Version]
- Pfitzenmaier, J.; Quinn, J.E.; Odman, A.M.; Zhang, J.; Keller, E.T.; Vessella, R.L.; Corey, E. Characterization of C4-2 Prostate Cancer Bone Metastases and Their Response to Castration. J. Bone Miner. Res. Off. J. Am. Soc. Bone. Miner. Res. 2003, 18, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, G.N.; Anezinis, P.E.; Chang, S.M.; Zhau, H.E.; Kim, E.E.; Hopwood, V.L.; Pathak, S.; von Eschenbach, A.C.; Chung, L.W. Androgen-Independent Cancer Progression and Bone Metastasis in the LNCaP Model of Human Prostate Cancer. Cancer. Res. 1994, 54, 2577–2581. [Google Scholar] [PubMed]
- Wu, H.C.; Hsieh, J.T.; Gleave, M.E.; Brown, N.M.; Pathak, S.; Chung, L.W. Derivation of Androgen-Independent Human LNCaP Prostatic Cancer Cell Sublines: Role of Bone Stromal Cells. Int. J. Cancer. 1994, 57, 406–412. [Google Scholar] [CrossRef]
- Thalmann, G.N.; Sikes, R.A.; Wu, T.T.; Degeorges, A.; Chang, S.-M.; Ozen, M.; Pathak, S.; Chung, L.W.K. LNCaP Progression Model of Human Prostate Cancer: Androgen-Independence and Osseous Metastasis. Prostate 2000, 44, 91–103. [Google Scholar] [CrossRef]
- Pijuan, J.; Barceló, C.; Moreno, D.F.; Maiques, O.; Sisó, P.; Marti, R.M.; Macià, A.; Panosa, A. In Vitro Cell Migration, Invasion, and Adhesion Assays: From Cell Imaging to Data Analysis. Front. Cell. Dev. Biol. 2019, 0. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thienger, P.; Rubin, M.A. Prostate Cancer Hijacks the Microenvironment. Nat. Cell. Biol. 2021, 23, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Bahmad, H.F.; Jalloul, M.; Azar, J.; Moubarak, M.M.; Samad, T.A.; Mukherji, D.; Al-Sayegh, M.; Abou-Kheir, W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front. Genet. 2021, 0. [Google Scholar] [CrossRef] [PubMed]
- Gunti, S.; Hoke, A.T.K.; Vu, K.P.; London, N.R. Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers 2021, 13, 874. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; Van Es, J.H.; Van den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-Term Expansion of Epithelial Organoids from Human Colon, Adenoma, Adenocarcinoma, and Barrett’s Epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boj, S.F.; Hwang, C.-I.; Baker, L.A.; Chio, I.I.C.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; et al. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell 2015, 160, 324–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e10. [Google Scholar] [CrossRef] [Green Version]
- Sachs, N.; Papaspyropoulos, A.; Zomer-van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; et al. Long-Term Expanding Human Airway Organoids for Disease Modeling. EMBO J. 2019, 38. [Google Scholar] [CrossRef]
- Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; et al. Organoid Cultures Derived from Patients with Advanced Prostate Cancer. Cell 2014, 159, 176–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puca, L.; Bareja, R.; Prandi, D.; Shaw, R.; Benelli, M.; Karthaus, W.R.; Hess, J.; Sigouros, M.; Donoghue, A.; Kossai, M.; et al. Patient Derived Organoids to Model Rare Prostate Cancer Phenotypes. Nat. Commun. 2018, 9, 2404. [Google Scholar] [CrossRef] [Green Version]
- van Weerden, W.M.; Romijn, J.C. Use of Nude Mouse Xenograft Models in Prostate Cancer Research. Prostate 2000, 43, 263–271. [Google Scholar] [CrossRef]
- Staack, A.; Kassis, A.P.; Olshen, A.; Wang, Y.; Wu, D.; Carroll, P.R.; Grossfeld, G.D.; Cunha, G.R.; Hayward, S.W. Quantitation of Apoptotic Activity Following Castration in Human Prostatic Tissue in Vivo. Prostate 2003, 54, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Revelo, M.P.; Sudilovsky, D.; Cao, M.; Chen, W.G.; Goetz, L.; Xue, H.; Sadar, M.; Shappell, S.B.; Cunha, G.R.; et al. Development and Characterization of Efficient Xenograft Models for Benign and Malignant Human Prostate Tissue. Prostate 2005, 64, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Rembrink, K.; Romijn, J.C.; van der Kwast, T.H.; Rübben, H.; Schröder, F.H. Orthotopic Implantation of Human Prostate Cancer Cell Lines: A Clinically Relevant Animal Model for Metastatic Prostate Cancer. Prostate 1997, 31, 168–174. [Google Scholar] [CrossRef]
- An, Z.; Wang, X.; Geller, J.; Moossa, A.R.; Hoffman, R.M. Surgical Orthotopic Implantation Allows High Lung and Lymph Node Metastatic Expression of Human Prostate Carcinoma Cell Line PC-3 in Nude Mice. Prostate 1998, 34, 169–174. [Google Scholar] [CrossRef]
- Zhao, S.G.; Lehrer, J.; Chang, S.L.; Das, R.; Erho, N.; Liu, Y.; Sjöström, M.; Den, R.B.; Freedland, S.J.; Klein, E.A.; et al. The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. JNCI J. Natl. Cancer. Inst. 2019, 111, 301–310. [Google Scholar] [CrossRef]
- Stultz, J.; Fong, L. How to Turn up the Heat on the Cold Immune Microenvironment of Metastatic Prostate Cancer. Prostate. Cancer. Prostatic. Dis. 2021, 1–21. [Google Scholar] [CrossRef]
- Bousset, L.; Septier, A.; Bunay, J.; Voisin, A.; Guiton, R.; Damon-Soubeyrant, C.; Renaud, Y.; Haze, A.D.; Sapin, V.; Fogli, A.; et al. Absence of Nuclear Receptors LXRs Impairs Immune Response to Androgen Deprivation and Leads to Prostate Neoplasia. PLoS. Biol. 2020, 18, e3000948. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes. Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.M.; Vessella, R.L.; Morrissey, C.; Brown, L.G.; Coleman, I.M.; Higano, C.S.; Mostaghel, E.A.; Zhang, X.; True, L.D.; Lam, H.-M.; et al. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics. Prostate 2017, 77, 654–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navone, N.M.; van Weerden, W.M.; Vessella, R.L.; Williams, E.D.; Wang, Y.; Isaacs, J.T.; Nguyen, H.M.; Culig, Z.; van der Pluijm, G.; Rentsch, C.A.; et al. Movember GAP1 PDX Project: An International Collection of Serially Transplantable Prostate Cancer Patient-Derived Xenograft (PDX) Models. Prostate 2018, 78, 1262–1282. [Google Scholar] [CrossRef] [PubMed]
- McNeal, J.E. Normal Histology of the Prostate. Am. J. Surg. Pathol. 1988, 12, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Shappell, S.B.; Thomas, G.V.; Roberts, R.L.; Herbert, R.; Ittmann, M.M.; Rubin, M.A.; Humphrey, P.A.; Sundberg, J.P.; Rozengurt, N.; Barrios, R.; et al. Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer. Res. 2004, 64, 2270–2305. [Google Scholar] [CrossRef] [Green Version]
- Berquin, I.M.; Min, Y.; Wu, R.; Wu, H.; Chen, Y.Q. Expression Signature of the Mouse Prostate*. J. Biol. Chem. 2005, 280, 36442–36451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, D.E.; Pritchard, C.; Clegg, N.J.; Ferguson, C.; Dumpit, R.; Sikes, R.A.; Nelson, P.S. Expressed Sequence Tag Profiling Identifies Developmental and Anatomic Partitioning of Gene Expression in the Mouse Prostate. Genome. Biol. 2003, 4, R79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy-Burman, P.; Wu, H.; Powell, W.C.; Hagenkord, J.; Cohen, M.B. Genetically Defined Mouse Models That Mimic Natural Aspects of Human Prostate Cancer Development. Endocr. Relat. Cancer. 2004, 11, 225–254. [Google Scholar] [CrossRef] [PubMed]
- Abremski, K.; Hoess, R. Bacteriophage P1 Site-Specific Recombination. Purification and Properties of the Cre Recombinase Protein. J. Biol. Chem. 1984, 259, 1509–1514. [Google Scholar] [CrossRef]
- Wang, S.; Gao, J.; Lei, Q.; Rozengurt, N.; Pritchard, C.; Jiao, J.; Thomas, G.V.; Li, G.; Roy-Burman, P.; Nelson, P.S.; et al. Prostate-Specific Deletion of the Murine Pten Tumor Suppressor Gene Leads to Metastatic Prostate Cancer. Cancer. Cell 2003, 4, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.K.; Johnson, D.T.; Zhu, C.; Lee, S.H.; Ye, D.-W.; Luong, R.; Sun, Z. Conditional Deletion of the Pten Gene in the Mouse Prostate Induces Prostatic Intraepithelial Neoplasms at Early Ages but a Slow Progression to Prostate Tumors. PLoS ONE 2013, 8, e53476. [Google Scholar] [CrossRef] [PubMed]
- Di Cristofano, A.; De Acetis, M.; Koff, A.; Cordon-Cardo, C.; Pandolfi, P.P. Pten and P27KIP1 Cooperate in Prostate Cancer Tumor Suppression in the Mouse. Nat. Genet. 2001, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Cardiff, R.D.; Desai, N.; Banach-Petrosky, W.A.; Parsons, R.; Shen, M.M.; Abate-Shen, C. Cooperativity of Nkx3.1 and Pten Loss of Function in a Mouse Model of Prostate Carcinogenesis. Proc. Natl. Acad. Sci. USA. 2002, 99, 2884–2889. [Google Scholar] [CrossRef] [Green Version]
- Mulholland, D.J.; Kobayashi, N.; Ruscetti, M.; Zhi, A.; Tran, L.M.; Huang, J.; Gleave, M.; Wu, H. Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells. Cancer. Res. 2012, 72, 1878–1889. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, G.K.; Mutton, L.N.; Khalili, M.; McMullin, R.P.; Hicks, J.L.; Bianchi-Frias, D.; Horn, L.A.; Kulac, I.; Moubarek, M.S.; Nelson, P.S.; et al. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer. Cancer. Res. 2016, 76, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurwitz, A.A.; Foster, B.A.; Allison, J.P.; Greenberg, N.M.; Kwon, E.D. The TRAMP Mouse as a Model for Prostate Cancer. Curr. Protoc. Immunol. 2001, 45, 20.5. [Google Scholar] [CrossRef] [PubMed]
- Bernards, A.; Hariharan, I.K. Of Flies and Men—Studying Human Disease in Drosophila. Curr. Opin. Genet. Dev. 2001, 11, 274–278. [Google Scholar] [CrossRef]
- Bier, E. Drosophila, the Golden Bug, Emerges as a Tool for Human Genetics. Nat. Rev. Genet. 2005, 6, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Millburn, G.H.; Crosby, M.A.; Gramates, L.S.; Tweedie, S. FlyBase Consortium FlyBase Portals to Human Disease Research Using Drosophila Models. Dis. Model. Mech. 2016, 9, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrimon, N.; Pitsouli, C.; Shilo, B.-Z. Signaling Mechanisms Controlling Cell Fate and Embryonic Patterning. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.H.; Edgar, B.A. Tissue Design: How Drosophila Tumors Remodel Their Neighborhood. Semin. Cell Dev. Biol. 2014, 28, 86–95. [Google Scholar] [CrossRef]
- Gateff, E. Malignant Neoplasms of Genetic Origin in Drosophila Melanogaster. Science 1978, 200, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Gateff, E.; Schneiderman, H.A. Neoplasms in Mutant and Cultured Wild-Tupe Tissues of Drosophila. Natl. Cancer. Inst. Monogr. 1969, 31, 365–397. [Google Scholar]
- Bilder, D.; Li, M.; Perrimon, N. Cooperative Regulation of Cell Polarity and Growth by Drosophila Tumor Suppressors. Science 2000, 289, 113–116. [Google Scholar] [CrossRef] [Green Version]
- McCartney, B.M.; Kulikauskas, R.M.; LaJeunesse, D.R.; Fehon, R.G. The Neurofibromatosis-2 Homologue, Merlin, and the Tumor Suppressor Expanded Function Together in Drosophila to Regulate Cell Proliferation and Differentiation. Dev. Camb. Engl. 2000, 127, 1315–1324. [Google Scholar]
- Gardiol, D.; Zacchi, A.; Petrera, F.; Stanta, G.; Banks, L. Human Discs Large and Scrib Are Localized at the Same Regions in Colon Mucosa and Changes in Their Expression Patterns Are Correlated with Loss of Tissue Architecture during Malignant Progression. Int. J. Cancer 2006, 119, 1285–1290. [Google Scholar] [CrossRef]
- Hay, B.A.; Guo, M. Coupling Cell Growth, Proliferation, and Death. Hippo Weighs In. Dev. Cell 2003, 5, 361–363. [Google Scholar] [CrossRef] [Green Version]
- Sogame, N.; Kim, M.; Abrams, J.M. Drosophila P53 Preserves Genomic Stability by Regulating Cell Death. Proc. Natl. Acad. Sci. USA 2003, 100, 4696–4701. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Brand, A.H.; Perrimon, N. Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Dev. Camb. Engl. 1993, 118, 401–415. [Google Scholar]
- McGuire, S.E.; Mao, Z.; Davis, R.L. Spatiotemporal Gene Expression Targeting with the TARGET and Gene-Switch Systems in Drosophila. Sci. STKE 2004, 2004, pl6. [Google Scholar] [CrossRef] [PubMed]
- Golic, K.G.; Lindquist, S. The FLP Recombinase of Yeast Catalyzes Site-Specific Recombination in the Drosophila Genome. Cell 1989, 59, 499–509. [Google Scholar] [CrossRef]
- Xu, T.; Rubin, G.M. Analysis of Genetic Mosaics in Developing and Adult Drosophila Tissues. Dev. Camb. Engl. 1993, 117, 1223–1237. [Google Scholar]
- Lee, T.; Luo, L. Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron 1999, 22, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Brumby, A.M.; Richardson, H.E. Scribble Mutants Cooperate with Oncogenic Ras or Notch to Cause Neoplastic Overgrowth in Drosophila. EMBO J. 2003, 22, 5769–5779. [Google Scholar] [CrossRef]
- Wu, M.; Pastor-Pareja, J.C.; Xu, T. Interaction between Ras(V12) and Scribbled Clones Induces Tumour Growth and Invasion. Nature 2010, 463, 545–548. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.B. A Gene Complex Controlling Segmentation in Drosophila. Nature 1978, 276, 565–570. [Google Scholar] [CrossRef]
- Nüsslein-Volhard, C.; Wieschaus, E. Mutations Affecting Segment Number and Polarity in Drosophila. Nature 1980, 287, 795–801. [Google Scholar] [CrossRef]
- Ugur, B.; Chen, K.; Bellen, H.J. Drosophila Tools and Assays for the Study of Human Diseases. Dis. Model. Mech. 2016, 9, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Poulson, D.F. Chromosomal Control of Embryogenesis in Drosophila. Am. Nat. 1945, 79, 340–363. [Google Scholar] [CrossRef]
- Poulson, D.F. Histogenesis, Organogenesis, and Differentiation in the Embryo of Drosophila Melanogaster Meigen. Biol Drosoph 1950, 168–274. [Google Scholar]
- Alaña, L.; Sesé, M.; Cánovas, V.; Punyal, Y.; Fernández, Y.; Abasolo, I.; de Torres, I.; Ruiz, C.; Espinosa, L.; Bigas, A.; et al. Prostate Tumor OVerexpressed-1 (PTOV1) down-Regulates HES1 and HEY1 Notch Targets Genes and Promotes Prostate Cancer Progression. Mol. Cancer 2014, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- de Celis, J.F.; García-Bellido, A. Roles of the Notch Gene in Drosophila Wing Morphogenesis. Mech. Dev. 1994, 46, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Zacharioudaki, E.; Bray, S.J. Tools and Methods for Studying Notch Signaling in Drosophila Melanogaster. Methods 2014, 68, 173–182. [Google Scholar] [CrossRef]
- Coffey, K. Targeting the Hippo Pathway in Prostate Cancer: What’s New? Cancers 2021, 13, 611. [Google Scholar] [CrossRef]
- Neto-Silva, R.M.; de Beco, S.; Johnston, L.A. Evidence for a Growth-Stabilizing Regulatory Feedback Mechanism between Myc and Yorkie, the Drosophila Homolog of Yap. Dev. Cell 2010, 19, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Gurel, B.; Iwata, T.; Koh, C.M.; Jenkins, R.B.; Lan, F.; Van Dang, C.; Hicks, J.L.; Morgan, J.; Cornish, T.C.; Sutcliffe, S.; et al. Nuclear MYC Protein Overexpression Is an Early Alteration in Human Prostate Carcinogenesis. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc 2008, 21, 1156–1167. [Google Scholar] [CrossRef]
- Woodhouse, E.; Hersperger, E.; Shearn, A. Growth, Metastasis, and Invasiveness of Drosophila Tumors Caused by Mutations in Specific Tumor Suppressor Genes. Dev. Genes Evol. 1998, 207, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Grzeschik, N.A.; Parsons, L.M.; Allott, M.L.; Harvey, K.F.; Richardson, H.E. Lgl, APKC, and Crumbs Regulate the Salvador/Warts/Hippo Pathway through Two Distinct Mechanisms. Curr. Biol. CB 2010, 20, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Parsons, L.M.; Grzeschik, N.A.; Richardson, H.E. Lgl Regulates the Hippo Pathway Independently of Fat/Dachs, Kibra/Expanded/Merlin and DRASSF/DSTRIPAK. Cancers 2014, 6, 879–896. [Google Scholar] [CrossRef] [Green Version]
- Grifoni, D.; Garoia, F.; Schimanski, C.C.; Schmitz, G.; Laurenti, E.; Galle, P.R.; Pession, A.; Cavicchi, S.; Strand, D. The Human Protein Hugl-1 Substitutes for Drosophila Lethal Giant Larvae Tumour Suppressor Function in Vivo. Oncogene 2004, 23, 8688–8694. [Google Scholar] [CrossRef] [Green Version]
- Bowers, A.J.; Scully, S.; Boylan, J.F. SKIP3, a Novel Drosophila Tribbles Ortholog, Is Overexpressed in Human Tumors and Is Regulated by Hypoxia. Oncogene 2003, 22, 2823–2835. [Google Scholar] [CrossRef] [Green Version]
- Datta, M.W.; Hernandez, A.M.; Schlicht, M.J.; Kahler, A.J.; DeGueme, A.M.; Dhir, R.; Shah, R.B.; Farach-Carson, C.; Barrett, A.; Datta, S. Perlecan, a Candidate Gene for the CAPB Locus, Regulates Prostate Cancer Cell Growth via the Sonic Hedgehog Pathway. Mol. Cancer. 2006, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imberg-Kazdan, K.; Ha, S.; Greenfield, A.; Poultney, C.S.; Bonneau, R.; Logan, S.K.; Garabedian, M.J. A Genome-Wide RNA Interference Screen Identifies New Regulators of Androgen Receptor Function in Prostate Cancer Cells. Genome. Res. 2013, 23, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Herranz, H.; Eichenlaub, T.; Cohen, S.M. Cancer in Drosophila: Imaginal Discs as a Model for Epithelial Tumor Formation. Curr. Top. Dev. Biol. 2016, 116, 181–199. [Google Scholar] [CrossRef]
- Muzzopappa, M.; Murcia, L.; Milán, M. Feedback Amplification Loop Drives Malignant Growth in Epithelial Tissues. Proc. Natl. Acad. Sci. USA 2017, 114, E7291–E7300. [Google Scholar] [CrossRef] [Green Version]
- Hadorn, E. Transdetermination in Cells. Sci. Am. 1968, 219, 110–114. [Google Scholar] [CrossRef]
- Hadorn, E.; Gsell, R.; Schultz, J. Stability of a Position-Effect Variegation in Normal and Transdetermined Larval Blastemas from Drosophila Melanogaster. Proc. Natl. Acad. Sci. USA 1970, 65, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Gladstone, M.; Su, T.T. Chemical Genetics and Drug Screening in Drosophila Cancer Models. J. Genet. Genom. Yi Chuan Xue Bao 2011, 38, 497–504. [Google Scholar] [CrossRef]
- Gao, G.; Chen, L.; Huang, C. Anti-Cancer Drug Discovery: Update and Comparisons in Yeast, Drosophila, and Zebrafish. Curr. Mol. Pharmacol. 2014, 7, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Alajati, A.; D’Ambrosio, M.; Troiani, M.; Mosole, S.; Pellegrini, L.; Chen, J.; Revandkar, A.; Bolis, M.; Theurillat, J.-P.; Guccini, I.; et al. CDCP1 Overexpression Drives Prostate Cancer Progression and Can Be Targeted in Vivo. J. Clin. Invest. 2020, 130, 2435–2450. [Google Scholar] [CrossRef]
- Tipping, M.; Perrimon, N. Drosophila as a Model for Context-Dependent Tumorigenesis. J. Cell. Physiol. 2014, 229, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Pagliarini, R.A.; Xu, T. A Genetic Screen in Drosophila for Metastatic Behavior. Science 2003, 302, 1227–1231. [Google Scholar] [CrossRef]
- Fu, S.; Yang, Y.; Tirtha, D.; Yen, Y.; Zhou, B.; Zhou, M.-M.; Ohlmeyer, M.; Ko, E.C.; Cagan, R.; Rosenstein, B.S.; et al. γ-H2AX Kinetics as a Novel Approach to High Content Screening for Small Molecule Radiosensitizers. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Gabriel, K.C.; Dihl, R.R.; Lehmann, M.; Reguly, M.L.; Richter, M.F.; de Andrade, H.H.R. Homologous Recombination Induced by Doxazosin Mesylate and Saw Palmetto in the Drosophila Wing-Spot Test. J. Appl. Toxicol. 2013, 33, 209–213. [Google Scholar] [CrossRef]
- Hanahan, D.; Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Medioni, C.; Sénatore, S.; Salmand, P.-A.; Lalevée, N.; Perrin, L.; Sémériva, M. The Fabulous Destiny of the Drosophila Heart. Curr. Opin. Genet. Dev. 2009, 19, 518–525. [Google Scholar] [CrossRef]
- Affolter, M.; Zeller, R.; Caussinus, E. Tissue Remodelling through Branching Morphogenesis. Nat. Rev. Mol. Cell. Biol. 2009, 10, 831–842. [Google Scholar] [CrossRef]
- Mortimer, N.T.; Moberg, K.H. Regulation of Drosophila Embryonic Tracheogenesis by DVHL and Hypoxia. Dev. Biol. 2009, 329, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Liang, N.; Zhang, J.; Xie, J.; Liu, F.; Xu, D.; Yu, X.; Tian, Y. Advanced Research on Vasculogenic Mimicry in Cancer. J. Cell. Mol. Med. 2015, 19, 315–326. [Google Scholar] [CrossRef]
- Grifoni, D.; Sollazzo, M.; Fontana, E.; Froldi, F.; Pession, A. Multiple Strategies of Oxygen Supply in Drosophila Malignancies Identify Tracheogenesis as a Novel Cancer Hallmark. Sci. Rep. 2015, 5, 9061. [Google Scholar] [CrossRef] [Green Version]
- Rambur, A.; Lours-Calet, C.; Beaudoin, C.; Buñay, J.; Vialat, M.; Mirouse, V.; Trousson, A.; Renaud, Y.; Lobaccaro, J.-M.A.; Baron, S.; et al. Sequential Ras/MAPK and PI3K/AKT/MTOR Pathways Recruitment Drives Basal Extrusion in the Prostate-like Gland of Drosophila. Nat. Commun. 2020, 11, 2300. [Google Scholar] [CrossRef]
- Levine, B.D.; Cagan, R.L. Drosophila Lung Cancer Models Identify Trametinib plus Statin as Candidate Therapeutic. Cell. Rep. 2016, 14, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Andrew, D.J.; Ewald, A.J. Morphogenesis of Epithelial Tubes: Insights into Tube Formation, Elongation, and Elaboration. Dev. Biol. 2010, 341, 34–55. [Google Scholar] [CrossRef] [Green Version]
- Llano, E.; Adam, G.; Pendás, A.M.; Quesada, V.; Sánchez, L.M.; Santamariá, I.; Noselli, S.; López-Otín, C. Structural and Enzymatic Characterization of Drosophila Dm2-MMP, a Membrane-Bound Matrix Metalloproteinase with Tissue-Specific Expression. J. Biol. Chem. 2002, 277, 23321–23329. [Google Scholar] [CrossRef] [Green Version]
- Page-McCaw, A.; Serano, J.; Santé, J.M.; Rubin, G.M. Drosophila Matrix Metalloproteinases Are Required for Tissue Remodeling, but Not Embryonic Development. Dev. Cell 2003, 4, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Glasheen, B.M.; Robbins, R.M.; Piette, C.; Beitel, G.J.; Page-McCaw, A. A Matrix Metalloproteinase Mediates Airway Remodeling in Drosophila. Dev. Biol. 2010, 344, 772–783. [Google Scholar] [CrossRef] [Green Version]
- Depetris-Chauvin, A.; Fernández-Gamba, A.; Gorostiza, E.A.; Herrero, A.; Castaño, E.M.; Ceriani, M.F. Mmp1 Processing of the PDF Neuropeptide Regulates Circadian Structural Plasticity of Pacemaker Neurons. PLoS Genet. 2014, 10, e1004700. [Google Scholar] [CrossRef]
- Wang, X.; Page-McCaw, A. A Matrix Metalloproteinase Mediates Long-Distance Attenuation of Stem Cell Proliferation. J. Cell Biol. 2014, 206, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Deady, L.D.; Shen, W.; Mosure, S.A.; Spradling, A.C.; Sun, J. Matrix Metalloproteinase 2 Is Required for Ovulation and Corpus Luteum Formation in Drosophila. PLoS Genet. 2015, 11, e1004989. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.M.; Page-McCaw, A.; Broihier, H.T. Matrix Metalloproteinases Promote Motor Axon Fasciculation in the Drosophila Embryo. Dev. Camb. Engl. 2008, 135, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A.; Pastor-Pareja, J.C.; Igaki, T.; Pagliarini, R.; Xu, T. Basement Membrane Remodeling Is Essential for Drosophila Disc Eversion and Tumor Invasion. Proc. Natl. Acad. Sci. USA 2007, 104, 2721–2726. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.J.; Page-McCaw, A. A Secreted MMP Is Required for Reepithelialization during Wound Healing. Mol. Biol. Cell 2012, 23, 1068–1079. [Google Scholar] [CrossRef]
- Page-McCaw, A. Remodeling the Model Organism: Matrix Metalloproteinase Functions in Invertebrates. Semin. Cell Dev. Biol. 2008, 19, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Miles, W.O.; Dyson, N.J.; Walker, J.A. Modeling Tumor Invasion and Metastasis in Drosophila. Dis. Model. Mech. 2011, 4, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Torkamani, A.; Schork, N.J. Identification of Rare Cancer Driver Mutations by Network Reconstruction. Genome. Res. 2009, 19, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Read, R.D.; Cavenee, W.K.; Furnari, F.B.; Thomas, J.B. A Drosophila Model for EGFR-Ras and PI3K-Dependent Human Glioma. PLoS Genet. 2009, 5, e1000374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangi, E.; Murgia, C.; Teague, A.G.S.; Sansom, O.J.; Cagan, R.L. Functional Exploration of Colorectal Cancer Genomes Using Drosophila. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Tian, A.; Benchabane, H.; Ahmed, Y. Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J. Dev. Biol. 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panayidou, S.; Apidianakis, Y. Regenerative Inflammation: Lessons from Drosophila Intestinal Epithelium in Health and Disease. Pathog. Basel Switz. 2013, 2, 209–231. [Google Scholar] [CrossRef] [Green Version]
- Nászai, M.; Carroll, L.R.; Cordero, J.B. Intestinal Stem Cell Proliferation and Epithelial Homeostasis in the Adult Drosophila Midgut. Insect Biochem. Mol. Biol. 2015, 67, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Tucker-Burden, C.; Zhang, C.; Moberg, K.; Read, R.; Hadjipanayis, C.; Brat, D.J. Drosophila Brat and Human Ortholog TRIM3 Maintain Stem Cell Equilibrium and Suppress Brain Tumorigenesis by Attenuating Notch Nuclear Transport. Cancer. Res. 2016, 76, 2443–2452. [Google Scholar] [CrossRef] [Green Version]
- Paglia, S.; Sollazzo, M.; Di Giacomo, S.; de Biase, D.; Pession, A.; Grifoni, D. Failure of the PTEN/APKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila. BioMed. Res. Int. 2017, 2017, e2690187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnakenberg, S.L.; Siegal, M.L.; Bloch Qazi, M.C. Oh, the Places They’ll Go: Female Sperm Storage and Sperm Precedence in Drosophila Melanogaster. Spermatogenesis 2012, 2, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Wolfner, M.F. Tokens of Love: Functions and Regulation of Drosophila Male Accessory Gland Products. Insect. Biochem. Mol. Biol. 1997, 27, 179–192. [Google Scholar] [CrossRef]
- Walker, M.J.; Rylett, C.M.; Keen, J.N.; Audsley, N.; Sajid, M.; Shirras, A.D.; Isaac, R.E. Proteomic Identification of Drosophila Melanogaster Male Accessory Gland Proteins, Including a pro-Cathepsin and a Soluble Gamma-Glutamyl Transpeptidase. Proteome. Sci. 2006, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Rylett, C.M.; Walker, M.J.; Howell, G.J.; Shirras, A.D.; Isaac, R.E. Male Accessory Glands of Drosophila Melanogaster Make a Secreted Angiotensin I-Converting Enzyme (ANCE), Suggesting a Role for the Peptide-Processing Enzyme in Seminal Fluid. J. Exp. Biol. 2007, 210, 3601–3606. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Leiblich, A.; Goberdhan, D.C.I.; Hamdy, F. The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Curr. Top. Dev. Biol. 2017, 121, 339–375. [Google Scholar] [CrossRef] [Green Version]
- Krätzschmar, J.; Haendler, B.; Eberspaecher, U.; Roosterman, D.; Donner, P.; Schleuning, W.D. The Human Cysteine-Rich Secretory Protein (CRISP) Family. Primary Structure and Tissue Distribution of CRISP-1, CRISP-2 and CRISP-3. Eur. J. Biochem. 1996, 236, 827–836. [Google Scholar] [CrossRef]
- Ram, K.R.; Wolfner, M.F. A Network of Interactions among Seminal Proteins Underlies the Long-Term Postmating Response in Drosophila. Proc. Natl. Acad. Sci. USA 2009, 106, 15384–15389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garénaux, E.; Kanagawa, M.; Tsuchiyama, T.; Hori, K.; Kanazawa, T.; Goshima, A.; Chiba, M.; Yasue, H.; Ikeda, A.; Yamaguchi, Y.; et al. Discovery, Primary, and Crystal Structures and Capacitation-Related Properties of a Prostate-Derived Heparin-Binding Protein WGA16 from Boar Sperm. J. Biol. Chem. 2015, 290, 5484–5501. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zipperlen, P.; Kubli, E. Drosophila Sex-Peptide Stimulates Female Innate Immune System after Mating via the Toll and Imd Pathways. Curr. Biol. CB 2005, 15, 1690–1694. [Google Scholar] [CrossRef] [Green Version]
- Short, S.M.; Wolfner, M.F.; Lazzaro, B.P. Female Drosophila Melanogaster Suffer Reduced Defense against Infection Due to Seminal Fluid Components. J. Insect. Physiol. 2012, 58, 1192–1201. [Google Scholar] [CrossRef] [Green Version]
- Herndon, L.A.; Wolfner, M.F. A Drosophila Seminal Fluid Protein, Acp26Aa, Stimulates Egg Laying in Females for 1 Day after Mating. Proc. Natl. Acad. Sci. USA 1995, 92, 10114–10118. [Google Scholar] [CrossRef] [Green Version]
- Ram, K.R.; Wolfner, M.F. Sustained Post-Mating Response in Drosophila Melanogaster Requires Multiple Seminal Fluid Proteins. PLoS Genet. 2007, 3, e238. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Pandey, A.K.; Kumar, A.; Misra, S.; Gupta, H.P.K.; Gupta, S.; Singh, A.; Buehner, N.A.; Ravi Ram, K. Functional Male Accessory Glands and Fertility in Drosophila Require Novel Ecdysone Receptor. PLoS Genet. 2017, 13, e1006788. [Google Scholar] [CrossRef] [Green Version]
- Truman, J.W.; Riddiford, L.M. Endocrine Insights into the Evolution of Metamorphosis in Insects. Annu. Rev. Entomol. 2002, 47, 467–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourche, J. The determination of the molting and metamorphosis of Drosophila melanogaster: Effects of starvation and of ecdysone supply. Arch. Anat. Microsc. Morphol. Exp. 1967, 56, 141–152. [Google Scholar]
- King-Jones, K.; Thummel, C.S. Nuclear Receptors—A Perspective from Drosophila. Nat. Rev. Genet. 2005, 6, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Bairati, A. Struttura ed ultrastruttura dell’apparato genitale maschile di Drosophila melanogaster Meig. Z. Für Zellforsch. Mikrosk. Anat. 1967, 76, 56–99. [Google Scholar] [CrossRef]
- Kalb, J.M.; DiBenedetto, A.J.; Wolfner, M.F. Probing the Function of Drosophila Melanogaster Accessory Glands by Directed Cell Ablation. Proc. Natl. Acad. Sci. USA 1993, 90, 8093–8097. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, K.; Kokuryo, A.; Imano, T.; Minami, R.; Nakagoshi, H.; Adachi-Yamada, T. Isoform-Specific Functions of Mud/NuMA Mediate Binucleation of Drosophila Male Accessory Gland Cells. BMC Dev. Biol. 2014, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Susic-Jung, L.; Hornbruch-Freitag, C.; Kuckwa, J.; Rexer, K.-H.; Lammel, U.; Renkawitz-Pohl, R. Multinucleated Smooth Muscles and Mononucleated as Well as Multinucleated Striated Muscles Develop during Establishment of the Male Reproductive Organs of Drosophila Melanogaster. Dev. Biol. 2012, 370, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, A.S.; Partridge, L. Why It Is Difficult to Model Sperm Displacement in Drosophila Melanogaster: The Relation between Sperm Transfer and Copulation Duration. Evol. Int. J. Org. Evol. 2000, 54, 534–542. [Google Scholar] [CrossRef]
- Ito, S.; Ueda, T.; Ueno, A.; Nakagawa, H.; Taniguchi, H.; Kayukawa, N.; Miki, T. A Genetic Screen in Drosophila for Regulators of Human Prostate Cancer Progression. Biochem. Biophys. Res. Commun. 2014, 451, 548–555. [Google Scholar] [CrossRef]
- Corrigan, L.; Redhai, S.; Leiblich, A.; Fan, S.-J.; Perera, S.M.W.; Patel, R.; Gandy, C.; Wainwright, S.M.; Morris, J.F.; Hamdy, F.; et al. BMP-Regulated Exosomes from Drosophila Male Reproductive Glands Reprogram Female Behavior. J. Cell. Biol. 2014, 206, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Leiblich, A.; Hellberg, J.E.E.U.; Sekar, A.; Gandy, C.; Mendes, C.C.; Redhai, S.; Mason, J.; Wainwright, M.; Marie, P.; Goberdhan, D.C.I.; et al. Mating Induces Switch from Hormone-Dependent to Hormone-Independent Steroid Receptor–Mediated Growth in Drosophila Secondary Cells. PLoS. Biol. 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Noll, M. Dual Role of the Pax Gene Paired in Accessory Gland Development of Drosophila. Development 2002, 129, 339–346. [Google Scholar] [CrossRef]
- Ruivo, C.F.; Adem, B.; Silva, M.; Melo, S.A. The Biology of Cancer Exosomes: Insights and New Perspectives. Cancer. Res. 2017, 77, 6480–6488. [Google Scholar] [CrossRef] [Green Version]
- Namee, N.M.; O’Driscoll, L. Extracellular Vesicles and Anti-Cancer Drug Resistance. Biochim. Biophys. Acta. Rev. Cancer. 2018, 1870, 123–136. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures. 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 27 July 2021).
Prostate Normal Growth and Development | Non Tumorigenic Prostatic Pathologies | Early Prostate Carcinogenesis | Androgen-Insensitive Transition | Late Prostate Cancer (CRPC) and Metastasis | Pre- Clinical Studies | ||
---|---|---|---|---|---|---|---|
2-D cell lines | |||||||
Untransformed | RWPE-1, BPH-1, PRNS-1-1, P69 | ||||||
Androgen-sensitive | LNCaP, LAPC-4, LAPC-9, LuCaP 23.1 | ||||||
Androgen-insensitive | PC3, DU145 | ||||||
3-D models | |||||||
Mouse models | Xenograft | ||||||
Genetic models | |||||||
Drosophila models |
Advantages | Disadvantages | |
---|---|---|
2-D Cell lines | - Provide functional and mechanistic insight - Well characterized - Easy to obtain and manipulate | - Monolayer culture - Inability to reproduce the pathology - Majority of cell lines derived from metastases: limit their use for early prostate cancer - Absence of tumor microenvironment |
3-D models | - Closer to a native tumor - Better conservation of heterogeneity - Partial tumor microenvironment - Multilayer culture - Conservation of cell morphology - Conservation of cell-cell and cell-matrix interactions | - Still in development, not a routine procedure - Remain ex vivo (metastatic studies limitation, limited microenvironment) - Use of aggressive cells: not adapted for early prostate cancer studies |
Mouse Xenografts models | - Tumor easily accessible - Can be done with benign and malignant tissue (SRC) - Transplantation in a definite organ, metastatic potential can be evaluated (SRC) - Conserved interactions between implanted tissue and prostate microenvironment (ortho) - Can generate metastases - In vivo - Conservation of prostate tumor heterogeneity (PDX models) | - Can take several months to develop a tumor - Non prostatic microenvironment for subcutaneous and SRC transplantation - Only high-grade tissue transplantation for subcutaneous xenograft - Used of immunodeficient mice - Loss of prostate tumor heterogeneity |
Mouse genetic models | - Intact prostate microenvironment - Temporally observation of gene manipulation and drug treatment - Preservation of most of histopathological features observed in human pathology - In vivo | - Use of androgen-dependent promoter - Differential organization of mouse prostate compared to human - Tumor development can take several months - Limitation of the number of animals that can be used (3Rs). - Gene redundancy complicating signaling pathways studies - Low success of clinical trials emerging from mice |
Drosophila models | - Short life cycle (10 days at 25 °C) - Large number of offspring per generation - Well-described anatomy - Huge amounts of genetic tools available - Few redundancies and good conservation of fundamental biological mechanisms and signaling pathways - Acinus-like organization | - Different microenvironment - Far from mammals: results ought to be confirmed in cell models. - No ortholog of the androgen receptor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rambur, A.; Vialat, M.; Beaudoin, C.; Lours-Calet, C.; Lobaccaro, J.-M.; Baron, S.; Morel, L.; de Joussineau, C. Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021, 10, 2387. https://doi.org/10.3390/cells10092387
Rambur A, Vialat M, Beaudoin C, Lours-Calet C, Lobaccaro J-M, Baron S, Morel L, de Joussineau C. Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells. 2021; 10(9):2387. https://doi.org/10.3390/cells10092387
Chicago/Turabian StyleRambur, Amandine, Marine Vialat, Claude Beaudoin, Corinne Lours-Calet, Jean-Marc Lobaccaro, Silvère Baron, Laurent Morel, and Cyrille de Joussineau. 2021. "Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer" Cells 10, no. 9: 2387. https://doi.org/10.3390/cells10092387
APA StyleRambur, A., Vialat, M., Beaudoin, C., Lours-Calet, C., Lobaccaro, J.-M., Baron, S., Morel, L., & de Joussineau, C. (2021). Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells, 10(9), 2387. https://doi.org/10.3390/cells10092387