Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Biospecimen Collection
2.3. Biospecimen Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Singh, R.P. The role of anti-vascular endothelial growth factor (Anti-vegf) in the management of proliferative diabetic retinopathy. Drugs Context 2018, 7, 212532. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Diabetic Retinopathy. Available online: https://www.cdc.gov/visionhealth/pdf/factsheet.pdf (accessed on 1 July 2020).
- Kaufman, F.R. Type 2 diabetes mellitus in children and youth: A new epidemic. J. Pediatr. Endocrinol. Metab. 2002, 15 (Suppl. 2), 737–744. [Google Scholar] [CrossRef]
- Dobrogowska, D.H.; Dobrogowska, D.H.; Lossinsky, A.S.; Tarnawski, M.; Vorbrodt, A.W. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol. 1998, 27, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.P.; Schachat, A.P. A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 915–930. [Google Scholar] [CrossRef] [PubMed]
- Maier, R.; Weger, M.; Haller-Schober, E.-M.; El-Shabrawib, Y.; Wedrich, A.; Theisl, A.; Aigner, T.; Barth, A.; Haas, A. Multiplex bead analysis of vitreous and serum concentrations of inflammatory and proangiogenic factors in diabetic patients. Mol. Vis. 2008, 14, 637–643. [Google Scholar] [PubMed]
- Murugeswari, P.; Shukla, D.; Rajendran, A.; Kim, R.; Namperumalsamy, P.; Muthukkaruppan, V. Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales’ disease. Retina 2008, 28, 817–824. [Google Scholar] [CrossRef]
- Rusnak, S.; Vrzalova, J.; Sobotova, M.; Hecova, L.; Ricarova, R.; Topolcan, O. The measurement of intraocular biomarkers in various stages of proliferative diabetic retinopathy using multiplex xmap technology. J. Ophthalmol. 2015, 2015, 424783. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Nawaz, M.I.; Mohammad, G.; Siddiquei, M.M.; Alam, K.; Mousa, A.; Opdenakker, G. Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. Lipids Health Dis. 2014, 13, 187. [Google Scholar] [CrossRef] [Green Version]
- Adamiec-Mroczek, J.; Oficjalska-Młyńczak, J.; Misiuk-Hojło, M. Proliferative diabetic retinopathy-The influence of diabetes control on the activation of the intraocular molecule system. Diabetes Res. Clin. Pract. 2009, 84, 46–50. [Google Scholar] [CrossRef]
- Barile, G.R.; Chang, S.S.; Park, L.S.; Reppucci, V.S.; Schiff, W.M.; Schmidt, A.M. Soluble cellular adhesion molecules in proliferative vitreoretinopathy and proliferative diabetic retinopathy. Curr. Eye Res. 1999, 19, 219–227. [Google Scholar] [CrossRef]
- Limb, G.A.; Hickman-Casey, J.; Hollifield, R.D.; Chignell, A.H. Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2453–2457. [Google Scholar]
- Ma, Y.; Tao, Y.; Lu, Q.; Jiang, Y.-R. Intraocular expression of serum amyloid A and interleukin-6 in proliferative diabetic retinopathy. Am. J. Ophthalmol. 2011, 152, 678–685.e2. [Google Scholar] [CrossRef]
- Hernández, C.; Burgos, R.; Cantón, A.; García-Arumí, J.; Segura, R.M.; Simó, R. Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: A case-control study. Diabetes Care 2001, 24, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Nakazawa, M.; Suzuki, K.; Yamazaki, H.; Miyagawa, Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn. J. Ophthalmol. 2011, 55, 256–263. [Google Scholar] [CrossRef]
- Wu, L.; Martínez-Castellanos, M.A.; Quiroz-Mercado, H.; Arevalo, J.F.; Berrocal, M.H.; Farah, M.; Maia, M.; Roca, J.A.; Rodriguez, F.J.; Pan American Collaborative Retina Group (PACORES). Twelve-month safety of intravitreal injections of bevacizumab (Avastin): Results of the Pan-American Collaborative Retina Study Group (Pacores). Graefes Arch. Clin. Exp. Ophthalmol 2008, 246, 81–87. [Google Scholar] [CrossRef]
- Hang, H.; Yuan, S.; Yang, Q.; Yuan, D.; Liu, Q. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy. Mol. Vis. 2014, 20, 1137–1145. [Google Scholar] [PubMed]
- Sato, T.; Kusaka, S.; Shimojo, H.; Fujikado, T. Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 2009, 116, 2165–2169. [Google Scholar] [CrossRef]
- McInnes, I.B.; Gracie, J.A. Interleukin-15: A new cytokine target for the treatment of inflammatory diseases. Curr. Opin. Pharmacol. 2004, 4, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Center, D.M.; Cruikshank, W.W.; Zhang, Y. Nuclear pro-IL-16 regulation of T cell proliferation: p27(Kip1)-dependent G0/G1 arrest mediated by inhibition of Skp2 transcription. J. Immunol. 2004, 172, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Scheiffarth, O.F.; Thurau, S.R.; Wildner, G. Cells of the immune system and their cytokines in epiretinal membranes and in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmic Res. 1993, 25, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Johnson, M.A.; McLeod, D.S.; Alexander, T.; Hansen, B.C.; Lutty, G.A. Neutrophils are associated with capillary closure in spontaneously diabetic monkey retinas. Diabetes 2005, 54, 1534–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutty, G.A.; Cao, J.; McLeod, D.S. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am. J. Pathol. 1997, 151, 707–714. [Google Scholar]
- Li, J.-K.; Wei, F.; Jin, X.-H.; Dai, Y.-M.; Cui, H.-S.; Li, Y.-M. Changes in vitreous VEGF, bFGF and fibrosis in proliferative diabetic retinopathy after intravitreal bevacizumab. Int. J. Ophthalmol. 2015, 8, 1202–1206. [Google Scholar]
- Beranek, M.; Kolar, P.; Tschoplova, S.; Kankova, K.; Vasku, A. Genetic variation and plasma level of the basic fibroblast growth factor in proliferative diabetic retinopathy. Diabetes Res. Clin. Pract. 2008, 79, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Adachi, K.; Suzuki, Y.; Maeno, A.; Nakazawa, M. Profiles of Inflammatory Cytokines in the Vitreous Fluid from Patients with Rhegmatogenous Retinal Detachment and Their Correlations with Clinical Features. Biomed. Res. Int. 2016, 2016, 4256183. [Google Scholar] [CrossRef]
- Balogh, A.; Milibak, T.; Szabo, V.; Nagy, Z.Z.; Resch, M.D. Position of macula lutea and presence of proliferative vitreoretinopathy affect vitreous cytokine expression in rhegmatogenous retinal detachment. PLoS ONE 2020, 15, e0234525. [Google Scholar] [CrossRef]
- Garweg, J.G.; Zandi, S.; Pfister, I.; Rieben, R.; Skowronska, M.; Tappeiner, C. Cytokine profiles of phakic and pseudophakic eyes with primary retinal detachment. Acta Ophthalmol. 2019, 97, e580–e588. [Google Scholar] [CrossRef]
- Kenarova, B.; Voinov, L.; Apostolov, C.; Vladimirova, R.; Misheva, A. Levels of some cytokines in subretinal fluid in proliferative vitreoretinopathy and rhegmatogenous retinal detachment. Eur. J. Ophthalmol. 1997, 7, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Rasier, R.; Gormus, U.; Artunay, O.; Yuzbasioglu, E.; Oncel, M.; Bahcecioglu, H. Vitreous Levels of VEGF, IL-8, and TNF-α in Retinal Detachment. Curr. Eye Res. 2010, 35, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.J.; Claesson-Welsh, L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 2001, 22, 201–207. [Google Scholar] [CrossRef]
- McAuley, A.K.; Sanfilippo, P.G.; Hewitt, A.W.; Liang, H.; Lamoureux, E.; Wang, J.J.; Connell, P.P. Vitreous biomarkers in diabetic retinopathy: A systematic review and meta-analysis. J. Diabetes Complicat. 2014, 28, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Izuora, K.E.; Chase, H.P.; Jackson, W.E.; Coll, J.R.; Osberg, I.M.; Gottlieb, P.A.; Rewers, M.J.; Garg, S.K. Inflammatory markers and diabetic retinopathy in type 1 diabetes. Diabetes Care 2005, 28, 714–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.; Kuehn, S.; Tsiampalis, N.; Vu, M.K.; Kakkassery, V.; Stute, G.; Dick, H.B.; Joachim, S.C. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS ONE 2018, 13, e0194603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Phone, A.; Lamy, R.; Ma, D.; Laotaweerungsawat, S.; Chen, Y.; Zhao, T.; Ma, W.; Zhang, F.; Psaras, C.; et al. Correlation of Aqueous, Vitreous, and Plasma Cytokine Levels in Patients with Proliferative Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2020, 61, 26. [Google Scholar] [CrossRef] [Green Version]
- Arfken, C.L.; Reno, P.L.; Santiago, J.V.; Klein, R. Development of proliferative diabetic retinopathy in African-Americans and whites with type 1 diabetes. Diabetes Care 1998, 21, 792–795. [Google Scholar] [CrossRef] [Green Version]
With PDR | n = 35 | % |
---|---|---|
Tractional Retinal Detachment | 12 | 34 |
Vitreous Hemorrhage | 18 | 51 |
Epiretinal Membrane | 2 | 5 |
Without PDR | n=39 | % |
Epiretinal membrane | 3 | 8 |
Macular hole | 5 | 13 |
Posterior vitreous detachment with vitreous hemorrhage | 2 | 5 |
Rhegmatogenous retinal detachment | 26 | 67 |
Retinal tear with hemorrhage | 1 | 2.5 |
Subluxed lens | 1 | 2.5 |
Vitreomacular traction | 1 | 2.5 |
PDR n = 35 | % | Diabetics without PDR and Nondiabetics n = 39 | % | |
---|---|---|---|---|
Gender | ||||
Male | 23 | 65.7 | 28 | 71.8 |
Female | 12 | 34.3 | 11 | 28.2 |
Mean Age | 55.5 | 53.7 | ||
Race | ||||
White | 8 | 23 | 17 | 44 |
Black | 17 | 48 | 10 | 26 |
Asian | 0 | 0 | 3 | 8 |
American Indian/ Alaskan Native | 4 | 11 | 5 | 13 |
Other | 6 | 17 | 4 | 10 |
Diabetic Retinopathy Status | ||||
Nondiabetics | 0 | 0 | 31 | 95 |
Diabetics with no retinopathy | 0 | 0 | 6 | |
Mild | 0 | 0 | 1 | 2.5 |
Moderate | 0 | 0 | 1 | 2.5 |
Severe | 0 | 0 | 0 | 0 |
Proliferative | 35 | 100 | 0 | 0 |
PDR Versus Non-PDR | PDR vs. Non-PDR, after Adjusting for Less Than Proliferative Diabetic Retinopathy, Anti-VEGF Therapy, and Rhegmatogenous Retinal Detachment | ||||||
---|---|---|---|---|---|---|---|
(n = 35 vs. 39) | |||||||
Cytokines | Fold Change | Effect (SE) | p-value | FDR | Effect (SE) | p-value | FDR |
IL-8 | 1.24 | 1.03 (0.398) | 0.012 | 0.094 | 2.09 (0.613) | 0.001 | 0.019 |
IL-13 | 1.2 | 0.202 (0.123) | 0.105 | 0.27 | 0.411 (0.194) | 0.038 | 0.102 |
IL-15 * | 1.2 | 0.448 (0.205) | 0.032 | 0.131 | 0.891 (0.358) | 0.016 | 0.061 |
IL-16 * | 1.18 | 0.723 (0.289) | 0.015 | 0.094 | 1.57 (0.506) | 0.003 | 0.028 |
IL-17A | 1.34 | 0.183 (0.0837) | 0.033 | 0.131 | 0.275 (0.15) | 0.072 | 0.157 |
VEGF | 2.76 | 3.94 (0.61) | <0.001 | <0.001 | 5.14 (1.07) | <0.001 | <0.001 |
bFGF * | 0.617 | −1.67 (0.619) | 0.009 | 0.094 | −0.131 (0.961) | 0.892 | 0.892 |
Flt1 | 1 | 0.0196 (0.355) | 0.956 | 0.983 | 0.65 (0.507) | 0.205 | 0.266 |
Tie2 | 1.54 | 1.63 (0.942) | 0.088 | 0.263 | 1.93 (1.51) | 0.205 | 0.266 |
VEGF-C | 1.69 | 1.43 (0.866) | 0.104 | 0.27 | 2.45 (1.34) | 0.071 | 0.157 |
VEGF-D | 1.83 | 3.02 (0.788) | <0.001 | 0.005 | 3.6 (1.26) | 0.006 | 0.035 |
CRP | 1.07 | 1.23 (0.679) | 0.075 | 0.225 | 1.76 (1.08) | 0.109 | 0.191 |
ICAM1 | 1.06 | 0.947 (0.413) | 0.025 | 0.129 | 1.91 (0.624) | 0.003 | 0.028 |
SAA | 1.16 | 2.34 (1.15) | 0.045 | 0.162 | 3.21 (1.83) | 0.084 | 0.164 |
VCAM1 | 1.04 | 0.63 (0.586) | 0.286 | 0.509 | 1.94 (0.856) | 0.027 | 0.0843 |
Study | Sample Source | Methodology | Findings | Comments |
---|---|---|---|---|
Loporchio et al. | Vitreous | Cross-sectional Prospective Case (n = 35) vs. Control (n = 39) | IL 8 ↑ | |
IL 15 ↑ | ||||
IL 16 ↑ | ||||
IL 17A↑ | ||||
VEGF ↑, VEGF D ↑ | ||||
bFGF ↓ | ||||
SAA ↑, ICAM1 ↑ | ||||
Diabetes Research and Clinical Practice [11] | Vitreous and Serum | Case (n = 46) vs. Control (n = 15) | ICAM-1 ↑ (vitreous and serum) | Cytokines elevated in both vitreous and serum; E-selectin and VCAM-1 not statically significant in vitreous |
VCAM-1 ↑ (vitreous and serum) | ||||
E-Selectin ↑ (vitreous and serum) | ||||
vWF ↑ (vitreous and serum) | ||||
Diabetes Care [15] | Vitreous and Serum | Case vs. control (n = 20 in both groups) | VCAM↑-1 (serum and vitreous) After correcting for total protein VCAM-1 was lower in PDR patients. VEGF was elevated in PDR patients vs. controls | Total protein concentration in vitreous hemorrhage patients was measured as a control. Only VCAM-1 elevation in vitreous was statistically significant. |
Diabetes Care [34] | Plasma and Serum | Cross-sectional Prospective Case (n = 115) vs. control (n = 39) | PgE2 ↑ CRP ↑ IL-6 and PgE1 were the same among controls and cases. | Although nonvitreous samples tested, CRP elevated in case samples, similar to our findings of CRP in vitreous |
Japan Journal of Ophthalmology [16] | Vitreous | Case (n = 76) vs. Control (n = 23) | IL-6 ↑ | Also reviewed factors in comparison to CRVO |
IL-8 ↑ | ||||
IL-10 ↑ | ||||
IL-13 ↑ | ||||
IP-10 ↑ | ||||
MCP-1 ↑ | ||||
MIP-1b ↑ | ||||
PDGF ↑ | ||||
VEGF ↑ | ||||
Multivariate analysis showed IL-10 and IL-13 positively correlated to VEGF and that PDGF was inversely correlated to VEGF | ||||
PLOS One [35] | Vitreous | Case vs. Control (n = 17 in both groups) | IL1-b ↑ | Study group was both NPDR and PDR. |
INF-g ↑ | ||||
VEGF-A ↑ | ||||
PGF ↑ | ||||
IL-2 (no change) | ||||
IL-4 (no change) | ||||
IL-13 ↓ | ||||
Investigative Ophthalmology and Visual Science [36] | Vitreous Aqueous Serum | Case vs. control (n = 7 controls and 17 cases) | IL-8 ↑ (aqueous and vitreous) | No difference in serum cytokines in cases vs. controls |
PlGF ↑ (aqueous and vitreous) | ||||
VEGFa ↑ (aqueous and vitreous) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loporchio, D.F.; Tam, E.K.; Cho, J.; Chung, J.; Jun, G.R.; Xia, W.; Fiorello, M.G.; Siegel, N.H.; Ness, S.; Stein, T.D.; et al. Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells 2021, 10, 1069. https://doi.org/10.3390/cells10051069
Loporchio DF, Tam EK, Cho J, Chung J, Jun GR, Xia W, Fiorello MG, Siegel NH, Ness S, Stein TD, et al. Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells. 2021; 10(5):1069. https://doi.org/10.3390/cells10051069
Chicago/Turabian StyleLoporchio, Dean F., Emily K. Tam, Jane Cho, Jaeyoon Chung, Gyungah R. Jun, Weiming Xia, Marissa G. Fiorello, Nicole H. Siegel, Steven Ness, Thor D. Stein, and et al. 2021. "Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy" Cells 10, no. 5: 1069. https://doi.org/10.3390/cells10051069
APA StyleLoporchio, D. F., Tam, E. K., Cho, J., Chung, J., Jun, G. R., Xia, W., Fiorello, M. G., Siegel, N. H., Ness, S., Stein, T. D., & Subramanian, M. L. (2021). Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells, 10(5), 1069. https://doi.org/10.3390/cells10051069