Effects of White Lupin and Groundnut on Fractionated Rhizosphere Soil P of Different P-Limited Soil Types in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Plant Growth Conditions
2.3. Plant and Soil Analyses
2.4. Data Analysis
3. Results
3.1. Plant Growth and P Uptake
3.2. Fractionated P of Rhizosphere Soil
3.3. Rhizosphere Soil pH
4. Discussion
4.1. Comparison of Fractionated Rhizosphere Soil P Dynamics between WL and GN
4.2. Effect of Soil Physico-Chemical Properties on Rhizosphere Soil P Dynamics
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holford, I.C.R. Soil phosphorus; its measurement, and its uptake by plants. Aust. J. Soil Res. 1997, 35, 227–239. [Google Scholar] [CrossRef]
- Takahashi, T.; Dahlgren, R.A. Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma 2016, 263, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.A.; Veneklaas, E.J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 2005, 271, 175–187. [Google Scholar] [CrossRef]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37–49. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Bouwman, A.F.; Beusen, A.H.W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Glob. Environ. Chang. 2010, 20, 428–439. [Google Scholar] [CrossRef]
- Rose, T.J.; Hardiputra, B.; Rengel, Z. Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil 2010, 326, 159–170. [Google Scholar] [CrossRef]
- Hassan, H.M.; Hasbullah, H.; Marschner, P. Growth and rhizosphere P pools of legume-wheat rotations at low P supply. Biol. Fertil. Soils 2013, 49, 41–49. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.A.; Veneklaas, E.J. Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertilizer. Aust. J. Agric. Res. 2005, 56, 1041–1047. [Google Scholar] [CrossRef]
- Lambers, H.; Bishop, J.G.; Hopper, S.D.; Laliberte, E.; Zúñiga-Feest, A. Phosphorus-mobilization ecosystem engineering: The roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann. Bot. 2012, 110, 329–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Marschner, P.; Zhang, F. Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legme. Plant Soil 2012, 360, 271–298. [Google Scholar] [CrossRef]
- Maltais-Landry, G. Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant Soil 2015, 394, 139–154. [Google Scholar] [CrossRef]
- Turner, B.L.; McKelvie, I.D.; Haygarth, P.M. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol. Biochem. 2002, 34, 27–35. [Google Scholar] [CrossRef]
- Gerke, J.; Romer, W.; Jungk, A. The excretion of citric and malic acid by proteoid roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. J. Plant Nutr. Soil Sci. 1994, 157, 289–294. [Google Scholar]
- Shane, M.W.; Lambers, H.; Cawthray, G.R.; Kuhn, A.J.; Schurr, U. Impact of phosphorus mineral source (Al-P or Fe-P) and pH on cluster-root formation and carboxylate exudation in Lupinus albus L. Plant Soil 2008, 304, 169–178. [Google Scholar] [CrossRef]
- Ae, N.; Otani, T.; Makino, T.; Tazawa, J. Role of cell wall of groundnut roots in solubilizing sparingly soluble phosphorus in soil. Plant Soil 1996, 186, 197–204. [Google Scholar] [CrossRef]
- Shibata, R.; Yano, K. Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction. Appl. Soil Ecol. 2003, 24, 133–141. [Google Scholar] [CrossRef]
- Ae, N.; Arihara, J.; Okada, K.; Yoshihara, T.; Johansen, C. Phosphorus uptake by pigeon pea and its role in cropping system of the Indian subcontinent. Science 1990, 248, 447–480. [Google Scholar] [CrossRef]
- Gerke, J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 2015, 178, 351–364. [Google Scholar] [CrossRef]
- Hinsinger, H. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Sugihara, S.; Tomita, Y.; Nishigaki, T.; Kilasara, M.; Wasaki, J.; Funakawa, S. Effects of different phosphorus-efficient lugumes and soil texture on fractionated rhizosphere soil phosphorus of strongly weathered soils. Biol. Fertil. Soils 2016, 52, 367–376. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.S.B.; Maruyama, H.; Masuda, G.; Wasaki, J. Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant Soil 2015, 390, 223–236. [Google Scholar] [CrossRef]
- Gunjigake, N.; Wada, K. Effects of phosphorus concentration and pH on phosphate retention by active aluminiumu and iron of Ando Soils. Soil Sci. 1981, 132, 347–352. [Google Scholar] [CrossRef]
- Otani, T.; Ae, N. The status of inorganic and organic phosphorus in some soils in relation to plant availability. Soil Sci. Plant Nutr. 1997, 43, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Freese, D.; van der Zee, S.E.A.T.M.; van Riemsdijk, W.H. Comparison of different models for phosphate sorption as a function of the iron and aluminium oxides of soils. J. Soil Sci. 1992, 43, 729–738. [Google Scholar] [CrossRef]
- Takahashi, S.; Anwar, M.R. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. Field Crop. Res. 2007, 101, 160–171. [Google Scholar] [CrossRef]
- Kinjo, K.; Tokashiki, Y.; Kitou, M. Chemical and Mineralogical properties and humic substances of soils cultivated with sugacane in Kita and Minami Daito Island, Japan. Res. Trop. Agric. 2009, 2, 80–84. (In Japanese) [Google Scholar]
- Otani, T.; Ae, N.; Tanaka, H. Phosphorus (P) uptake mechanisms of crops grown in soils gwoth low P status. Soil Sci. Plant Nutr. 1996, 42, 553–560. [Google Scholar] [CrossRef]
- Nwoke, O.C.; Vanlauwe, B.; Diels, J.; Sanginga, N.; Osounbi, O.; Merckx, R. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils. Agric. Ecosyst. Environ. 2003, 100, 285–294. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.A.; Veneklaas, E.J. Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 2006, 281, 109–120. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Wright, A.L. Soil phosphorus stocks and distribution in chemical fractions for long-term sugarcane, pasture, turfgrass, and forest systems in Florida. Nutr. Cycl. Agroecosyst. 2009, 83, 223–231. [Google Scholar] [CrossRef]
- Soil Survey Staff. Key to Soil Taxonomy, 10th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2006.
- Sekiya, K. Phosphoric acid. In Analysis Methods for Measuring Soil Fertility; Ishizawa, S., Ed.; Yokendo Co. Ltd.: Tokyo, Japan, 1970; pp. 251–253. [Google Scholar]
- Murphy, J.; Reley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Kitson, R.; Mellon, M.G. Colorimetric determination of phosphorus as molybdivanadophosporic acid. Ind. Eng. Chem. Anal. Ed. 1944, 16, 379–383. [Google Scholar] [CrossRef]
- Negassa, W.; Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Soil Sci. Plant Nutr. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Wissuwa, M.; Ae, N. Genotypic variation for phosphorus uptake from hardly soluble ironphosphate in groundnut (Arachis hypogaea L.). Plant Soil 1999, 206, 163–171. [Google Scholar] [CrossRef]
- Li, H.G.; Shen, J.B.; Zhang, F.S.; Marschner, P.; Cawthray, G.; Rengel, Z. Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biol. Fertil. Soils 2010, 46, 79–91. [Google Scholar] [CrossRef]
- Wasaki, J.; Yamamura, T.; Shinano, T.; Osaki, M. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 2003, 248, 129–136. [Google Scholar] [CrossRef]
- Ae, N.; Shen, R.F. Root cell-wall properties are proposed to contribute to phosphorus (P) mobilization by groundnut and pigeonpea. Plant Soil 2002, 245, 95–103. [Google Scholar] [CrossRef]
- Ohwaki, Y.; Hirata, H. Differences in carboxylic acid exudation among p-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Sci. Plant Nutr. 1992, 38, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pearse, S.J.; Lambers, H. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate. Ann. Bot. 2013, 112, 1449–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bayon, R.C.; Weisskopf, L.; Martinoia, E.; Jansa, J.; Frossard, E.; Keller, F.; Follmi, K.B.; Gobat, J.M. Soil Phosphorus Uptake by Continuously Cropped Lupinus albus: A New Microcosm Design. Plant Soil 2006, 283, 309–321. [Google Scholar] [CrossRef]
- George, T.S.; Gregory, P.J.; Robinson, J.S.; Buresh, R.J. Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant Soil 2002, 246, 65–73. [Google Scholar] [CrossRef]
- Wagai, R.; Kajiura, M.; Asano, M.; Hiradate, S. Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different? Geoderma 2015, 241, 295–305. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiuluweit, M.; Lawrence, C.R. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Turner, B.L.; Cade-Menun, B.J.; Condron, L.M.; Newman, S. Extraction of soil organic phosphorus. Talanta 2005, 66, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, G.; Ngo, P.T.; Rumpel, C.; Calabi-Floody, M.; Redel, Y.; Turner, B.L.; Condron, L.M.; Mora, M.L. Chemical nature of residual phosphorus in Andisols. Geoderma 2016, 271, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Kar, G.; Hilger, D.; Schienau, J.J.; Peak, D. Effects of plant growth and time on phosphorus speciation in a manure-amended Prairie soil under controlled conditions. Rhizosphere 2017, 4, 1–8. [Google Scholar] [CrossRef]
Soil pH | TC | TN | Clay (%) | Alo | Feo | Ald | Fed | Bray-P (mg P kg−1) | P Ads. Cap. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
(H2O) | (KCl) | (g kg−1) | (g kg−1) | (mg P2O5 100 g−1) | |||||||
Andisols | 5.3 | 4.6 | 94.3 | 6.5 | 27.9 | 63.8 | 29.6 | 21.5 | 55.5 | 11.7 | 2237.2 |
Andi-Fer | 6.7 | 5.6 | 90.7 | 7.1 | 36.6 | 65.9 | 28.3 | 19.1 | 59.6 | 112.9 | 2072.3 |
Inceptisosl | 5.1 | 3.2 | 18.4 | 1.9 | 30.7 | 2.9 | 1.6 | 5.4 | 35.3 | 9.4 | 686.5 |
Incepti-Fer | 5.1 | 4.3 | 19.8 | 2.1 | 88.7 | 2.2 | 1.9 | 10.1 | 61.0 | 373.0 | 816.2 |
Entisols | 5.5 | 4.1 | 2.4 | 0.2 | 4.4 | 0.5 | 0.4 | 0.1 | 4.4 | 6.5 | 130.6 |
Enti-Fer | 5.5 | 3.4 | 2.6 | 0.3 | 6.0 | 1.5 | 0.6 | 1.1 | 4.8 | 119.2 | 130.2 |
Biomass (g pot−1) | P Concentration (mg P g−1) | P Uptake (mg P pot−1) | |||||
---|---|---|---|---|---|---|---|
Above | Below | Above | Below | Above | Below | Total | |
White Lupin | |||||||
Anidsols | 1.58 cdB | 0.37 dB | 0.66 dA | 0.62 cA | 1.04 cB | 0.23 cB | 1.27 dB |
(0.06) | (0.03) | (0.04) | (0.02) | (0.07) | (0.03) | (0.07) | |
Andi-Fer | 7.24 aB | 2.46 aB | 3.32 bA | 2.06 bB | 23.85 bB | 5.09 bB | 28.94 bB |
(0.43) | (0.22) | (0.17) | (0.11) | (1.25) | (0.59) | (1.75) | |
Inceptisols | 0.63 dB | 0.43 dB | 0.84 dA | 0.71 cA | 0.53 cB | 0.29 cB | 0.82 dB |
(0.10) | (0.16) | (0.03) | (0.03) | (0.10) | (0.10) | (0.18) | |
Incepti-Fer | 8.34 aA | 2.14 abB | 5.08 aA | 3.36 aA | 42.61 aA | 7.27 aB | 49.87 aA |
(0.59) | (0.17) | (0.19) | (0.25) | (3.92) | (0.95) | (4.77) | |
Entisols | 2.06 bcB | 1.41 cB | 1.09 dA | 0.87 cB | 2.26 cB | 1.20 cB | 3.45 cdB |
(0.08) | (0.18) | (0.05) | (0.06) | (0.11) | (0.12) | (0.18) | |
Enti-Fer | 3.20 bB | 1.53 bcB | 2.44 cB | 2.29 bA | 7.83 cB | 3.48 bB | 11.31 cB |
(0.19) | (0.05) | (0.20) | (0.12) | (0.85) | (0.17) | (0.93) | |
Groundnut | |||||||
Anidsols | 5.40 dA | 2.88bcdA | 0.49 dB | 0.70 cA | 2.64 cA | 2.00 cA | 4.64 cA |
(0.31) | (0.17) | (0.01) | (0.04) | (0.18) | (0.14) | (0.29) | |
Andi-Fer | 18.34 aA | 5.46 aA | 2.28 bB | 2.50 bA | 41.75 aA | 13.61 aA | 55.36 aA |
(0.68) | (0.25) | (0.09) | (0.02) | (1.69) | (0.53) | (1.91) | |
Inceptisols | 6.25 dA | 2.50 cdA | 0.49 cdB | 0.46 cB | 3.04 cA | 1.14 cA | 4.18 cA |
(0.34) | (0.15) | (0.01) | (0.03) | (0.18) | (0.07) | (0.22) | |
Incepti-Fer | 9.76 cA | 3.88 bA | 2.65 abB | 3.58 aA | 25.42 bB | 14.23 aA | 39.65 bA |
(0.56) | (0.35) | (0.23) | (0.31) | (1.12) | (2.22) | (3.07) | |
Entisols | 6.62 dA | 2.52 dA | 0.98 cA | 1.20 cA | 6.38 cA | 3.00 cA | 9.38 cA |
(0.35) | (0.16) | (0.08) | (0.07) | (0.22) | (0.16) | (0.25) | |
Enti-Fer | 13.00 bA | 3.60 bcA | 2.95 aA | 2.18 bA | 38.20 aA | 7.77 bA | 45.97 bA |
(0.58) | (0.26) | (0.10) | (0.12) | (1.65) | (0.43) | (1.53) |
Plant P Uptake | ||
---|---|---|
Source | White lupin | Groundnut |
F value | F value | |
Soil types (S) | 34.0 *** | 13.2 *** |
Land management (LM) | 263.6 *** | 965.0 *** |
S × LM | 44.5 *** | 14.0 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, K.; Sugihara, S.; Wasaki, J.; Tanaka, H. Effects of White Lupin and Groundnut on Fractionated Rhizosphere Soil P of Different P-Limited Soil Types in Japan. Agronomy 2019, 9, 68. https://doi.org/10.3390/agronomy9020068
Imai K, Sugihara S, Wasaki J, Tanaka H. Effects of White Lupin and Groundnut on Fractionated Rhizosphere Soil P of Different P-Limited Soil Types in Japan. Agronomy. 2019; 9(2):68. https://doi.org/10.3390/agronomy9020068
Chicago/Turabian StyleImai, Kaoru, Soh Sugihara, Jun Wasaki, and Haruo Tanaka. 2019. "Effects of White Lupin and Groundnut on Fractionated Rhizosphere Soil P of Different P-Limited Soil Types in Japan" Agronomy 9, no. 2: 68. https://doi.org/10.3390/agronomy9020068
APA StyleImai, K., Sugihara, S., Wasaki, J., & Tanaka, H. (2019). Effects of White Lupin and Groundnut on Fractionated Rhizosphere Soil P of Different P-Limited Soil Types in Japan. Agronomy, 9(2), 68. https://doi.org/10.3390/agronomy9020068