Nitrogen Recovery and Loss from Kentucky Bluegrass Fertilized by Conventional or Enhanced-Efficiency Urea Granules
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Volatilization of Urea Fertilizer Nitrogen as Ammonia
3.2. Turfgrass Growth and Recovery of Fertilizer Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Trapping-Efficiency Trial Methods
Appendix A.2. Trapping-Efficiency Trial Results
References
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Holst, G.J.; Thygesen, M.; Pedersen, C.B.; Peel, R.G.; Barndt, J.; Christiensen, J.H.; Bonlokke, J.; Hertel, O.; Sigsgaard, T. Atmospheric ammonia, ammonium and incident asthma—A nationwide case-control study in Danish preschool children. Eur. Respir. J. 2017, 50, OA502. [Google Scholar] [CrossRef]
- Paulot, F.; Jacob, D.J. Hidden cost of U.S. agricultural exports: Particulate matter from ammonia emissions. Environ. Sci. Technol. 2014, 48, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. Ammonia pollution from farming may exact hefty health costs. Science 2014, 343, 238. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.L.; Schwede, D.B.; Bash, J.O.; Pleim, J.E.; Walker, J.T.; Foley, K.M. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 1621. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.A.; Jacob, D.J.; Sulprizio, M.P.; Zhang, L.; Holmes, C.D.; Schichtel, B.A.; Blett, T.; Porter, E.; Pardo, L.H.; Lynch, J.A. Present and future nitrogen deposition to national parks in the United States: Critical load exceedances. Atmos. Chem. Phys. 2013, 13, 9083–9095. [Google Scholar] [CrossRef][Green Version]
- Bittman, S.; Sheppard, S.C.; Hunt, D. Potential for mitigating atmospheric ammonia in Canada. Soil Use Manag. 2017, 33, 263–275. [Google Scholar] [CrossRef]
- Pinder, R.W.; Adams, P.J.; Pandis, S.N.; Gilliland, A.B. Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs. J. Geophys. Res. 2006, 111, D16310. [Google Scholar] [CrossRef]
- Carrow, R.N.; Waddington, D.V.; Rieke, P.E. Turfgrass Soil Fertility and Chemical Problems: Assessment and Management; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 306–318. ISBN 1-57504-153-7. [Google Scholar]
- Petrovic, A.M. The fate of nitrogenous fertilizers applied to turfgrass. J. Environ. Qual. 1990, 19, 1–14. [Google Scholar] [CrossRef]
- Turner, T.R.; Hummel, N.W., Jr. Nutritional requirements and fertilization. In Turfgrass-Agronomy Monograph; Carrow, R.N., Shearman, R.C., Waddington, D.V., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1992; No. 32; pp. 385–440. ISBN 0-89118-108-3. [Google Scholar]
- Hargrove, W.L. Evaluation of ammonia volatilization in the field. J. Prod. Agric. 1988, 1, 104–111. [Google Scholar] [CrossRef]
- Titko, S., III; Street, J.R.; Logan, T.J. Volatilization of ammonia from granular and dissolved urea applied to turfgrass. Agron. J. 1987, 79, 535–540. [Google Scholar] [CrossRef]
- Torello, W.A.; Wehner, D.J.; Turgeon, A.J. Ammonia volatilization from fertilized turfgrass stands. Agron. J. 1983, 75, 454–457. [Google Scholar] [CrossRef]
- Henning, S.W.; Branham, B.E.; Mulvaney, R.L. Response of turfgrass to urea-based fertilizers formulated to reduce ammonia volatilization and nitrate conversion. Biol. Fertil. Soils 2013, 49, 51–60. [Google Scholar] [CrossRef]
- Knight, E.C.; Guertal, E.A.; Wood, C.W. Mowing and nitrogen source effects on ammonia volatilization from turfgrass. Crop Sci. 2007, 51, 1628–1634. [Google Scholar] [CrossRef]
- Knight-Huckaby, E.C.; Wood, C.W.; Guertal, E.A. Nitrogen source effects on ammonia volatilization from warm-Season sod. Crop Sci. 2012, 52, 1379–1384. [Google Scholar] [CrossRef]
- Kojima, S.; Bohner, A.; von Wiren, N. Molecular mechanisms of urea transport in plants. J. Membrane Biol. 2006, 212, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.C.; Paul, J.L. Foliar absorption of urea, ammonium, and nitrate by perennial ryegrass turf. J. Am. Soc. Hortic. Sci. 1992, 117, 75–79. [Google Scholar]
- Chin, W.; Kroontje, W. Urea hydrolysis and subsequent loss of ammonia. Soil Sci. Soc. Am. J. 1963, 27, 316–318. [Google Scholar] [CrossRef]
- Torello, W.A.; Wehner, D.J. Urease activity in a Kentucky bluegrass turf. Agron. J. 1983, 75, 654–656. [Google Scholar] [CrossRef]
- Bernardi, A.C.C.; Mota, E.P.; Cardosa, R.D.; Monte, M.B.M.; Oliveira, P.P.A. Ammonia volatilization from soil, dry-matter yield, and nitrogen levels of Italian ryegrass. Comm. Soil Sci. Plant Anal. 2014, 45, 153–162. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.O.; Bertrand, N. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr. Cycl. Agroecosyst. 2009, 84, 71–80. [Google Scholar] [CrossRef]
- Sigunda, D.O.; Janssen, B.H.; Oenema, O. Ammonia volatilization from vertisols. Eur. J. Soil Sci. 2002, 53, 195–202. [Google Scholar] [CrossRef]
- Bowman, D.C.; Paul, J.L.; Davis, W.B.; Nelson, S.H. Reducing ammonia volatilization from Kentucky bluegrass turf by irrigation. HortScience 1987, 22, 84–87. [Google Scholar]
- Holcomb, J.C.; Sullivan, D.M.; Horneck, D.A.; Clough, G.H. Effect of irrigation rate on ammonia volatilization. Soil Sci. Soc. Am. J. 2011, 75, 2341–2347. [Google Scholar] [CrossRef]
- Sheard, R.W.; Beauchamp, E.G. Aerodynamic measurement of ammonium volatilization from urea applied to bluegrass fescue turf. In Proceedings of the Fifth International Turfgrass Research Conference; Lemaire, F., Ed.; INRA: Paris, France, 1985; pp. 549–556. [Google Scholar]
- Landschoot, P. Turfgrass fertilization—A basic guide for professional turfgrass managers. Doc. UC184. PennState Extension, Penn State University, University Park. 2018. Available online: https://extension.psu.edu/turfgrass-fertilization-a-basic-guide-for-professional-turfgrass-managers (accessed on 5 July 2018).
- Virginia Golf Course Superintendents Association (VGCSA). Environmental Best Management Practices for Virginia’s Golf Courses; VGCSA: Glen Allen, VA, USA, 2012; pp. 67–78. Available online: https://cdn.cybergolf.com/images/373/Virginia-BMP-Full-Report-final.pdf (accessed on 5 July 2018).
- Kiss, S.; Simihaian, M. Improving Efficiency of Urea Fertilizers by Inhibition of Soil Urease Activity; Kluwer Academic Publishers: Norwell, MA, USA, 2002; pp. 142–419. ISBN 1-4020-0493-1. [Google Scholar]
- McCarty, G.W.; Bremner, J.M.; Chai, H.S. Effect of N-(n-butyl) thiophosphoric triamide on hydrolysis of urea by plant, microbial, and soil urease. Biol. Fertil. Soils 1989, 8, 123–127. [Google Scholar] [CrossRef]
- Manunza, B.; Deiana, S.; Pintire, M.; Gessa, C. The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site: A comparative molecular dynamics study. Soil Biol. Biochem. 1999, 31, 789–796. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Strategies for mitigating ammonia emissions from agroecosystems. In Solutions to Improve Nitrogen Use Efficiency for the World; INI: Melbourne, Australia, 2016; Available online: http://www.ini2016.com/pdf-papers/INI2016_Pan_Baobao.pdf (accessed on 5 July 2018).
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Cantu, R.R.; Aita, C.; Doneda, A.; Giacomini, D.A.; Dessbesell, A.; Arenhardt, M.; De Bastiani, G.G.; Pujol, S.B.; Rochette, P.; Chantigny, M.H.; et al. Alternatives to regular urea for abating N losses in lettuce production under sub-tropical climate. Biol. Fertil. Soils 2017, 53, 589–599. [Google Scholar] [CrossRef]
- Del Moro, S.K.; Sullivan, D.M.; Horneck, D.A. Ammonia volatilization from broadcast urea and alternative dry nitrogen fertilizers. Soil Sci. Soc. Am. J. 2018, 81, 1629–1639. [Google Scholar] [CrossRef]
- Engel, R.; Jones, C.; Romero, C.; Wallander, R. Late-fall, winter and spring broadcast applications of urea to no-till winter wheat I. Ammonia loss and mitigation by NBPT. Soil Sci. Soc. Am. J. 2017, 81, 322–330. [Google Scholar] [CrossRef]
- Martins, M.R.; Sant’Anna, S.A.C.; Zaman, M.; Santos, R.C.; Monteiro, R.C.; Alves, B.J.R.; Jantalia, C.P.; Boddey, R.M.; Urquiaga, S. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil. Agric. Ecosyst. Environ. 2017, 247, 54–62. [Google Scholar] [CrossRef]
- Mira, A.B.; Cantarella, H.; Souza-Netto, G.J.M.; Moreira, L.A.; Kamogawa, M.Y.; Otto, R. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 2017, 248, 105–112. [Google Scholar] [CrossRef]
- Raymond, J.E.; Fox, T.R.; Strahm, B.D.; Zerpa, J. Ammonia volatilization following nitrogen fertilization with enhanced efficiency fertilizers and urea in loblolly pine (Pinus taeda L.) plantations of the southern United States. For. Ecol. Manag. 2016, 376, 247–255. [Google Scholar] [CrossRef]
- Sunderlage, B.; Cook, R.L. Soil property and fertilizer additive effects on ammonia volatilization from urea. Soil Sci. Soc. Am. J. 2018, 82, 253–259. [Google Scholar] [CrossRef]
- Soldat, D. Effects of N-(nbutyl) thiophoshoric triamide (NBTP) and dicyandiamide (DD) on the efficacy of urea applied to turfgrass. Grass Roots 2001, July/August, 20–25. [Google Scholar]
- Guertal, B. Evaluations of new turfgrass fertilizers: Field and laboratory studies. TERO 2014, 13, 41–45. [Google Scholar]
- Waddington, D.V.; Landschoot, P.J.; Clark, J.M.; Fidanza, M.A. Evaluation of liquid nitrogen sources and the urease inhibitor (N-(n-butyl) thiophosphoric-triamide on Kentucky bluegrass turf. Intl. Turfgrass Soc. Res. J. 1993, 7, 572–579. [Google Scholar]
- Holcomb, J.C. Enhanced efficiency nitrogen fertilizers for nitrogen management in the Columbia Basin. M.S. Thesis, Oregon State University, Corvallis, OR, USA, 2011. [Google Scholar]
- Milesi, C.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R.; Running, S.W. A Strategy for Mapping and Modeling the Ecological Effects of US Lawns; ISPRS: Tempe, AZ, USA, 2005; pp. 1–6. Available online: http://www.isprs.org/proceedings/XXXVI/8-W27/milesi.pdf (accessed on 8 August 2018).
- Hall, R. Fertilization in regulators’ crosshairs: LCOs must remain alert and ready to defend the products they use. Turf 2015, 28, B6, B8, B10. [Google Scholar]
- Mitchell, A. Regional rules on nutrient management: It pays to check local requirements when applying nutrients. N. Z. Turf Manag. J. 2016, 33, 30–32. [Google Scholar]
- Hartz, T.K.; Smith, R.F.; LeStrange, M.; Schulbach, K.F. On-farm moitoring of soil and crop nitrogen status by nitrate-selective electrode. Commun. Soil Sci. Plant Anal. 1993, 24, 2607–2615. [Google Scholar] [CrossRef]
- Molins-Legua, C.; Meseguer-Lloret, S.; Moliner-Martinez, Y.; Campins-Falco, P. A guide for selecting the most appropriate method for ammonium determination in water analysis. Trac-Trends Anal. Chem. 2006, 25, 282–290. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3-Chemical Analysis; Sparks, D.L., Ed.; Soil Science Society of America; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Schlossberg, M.J.; McGraw, B.A.; Hivner, K.R.; Pruyne, D.T. Method for flux-chamber measurement of ammonia volatilization from putting greens foliarly-fertilized by urea. Clean-Soil Air Water 2017, 45, 1–9. [Google Scholar] [CrossRef]
- Kaur, G.; Nelson, K.A.; Motavalli, P.P. Early-season soil waterlogging and N fertilizer sources impacts on corn N uptake and apparent N recovery efficiency. Agronomy 2018, 8, 102. [Google Scholar] [CrossRef]
- Zhu, Q.; Schlossberg, M.J.; Bryant, R.B. Foliar fertilization–induced injury and recovery of a creeping bentgrass putting green. J. Plant Nutr. 2016, 39, 1589–1596. [Google Scholar] [CrossRef]
- McIntosh, M.S. Analysis of combined experiments. Agron. J. 1983, 75, 153–155. [Google Scholar] [CrossRef]
- Black, A.S.; Sherlock, R.R.; Smith, N.P.; Cameron, K.C.; Goh, K.M. Effects of form of nitrogen, season, and urea application rate on ammonia volatilization from pastures. New Zeal. J. Agr. Res. 1985, 28, 469–474. [Google Scholar] [CrossRef]
- Joo, Y.K.; Christians, N.E.; Bremner, J.M. Effect of urease inhibitors and cationic materials on ammonia volatilization following fertilization of Kentucky bluegrass (Poa pratensis L.) with urea. J. Fert. Issues 1987, 4, 98–102. [Google Scholar]
- Liantie, L.; Wang, Z.P.; Van Cleemput, O.; Baert, L. Urea N uptake efficiency of ryegrass (Lolium perenne L.) in the presence of urea inhibitors. Biol. Fertil. Soils 1993, 15, 225–228. [Google Scholar] [CrossRef]
- Joo, Y.K.; Christians, N.E.; Blackmer, A.M. Kentucky bluegrass recovery of urea-derived nitrogen-15 amended with urease inhibitor. Soil Sci. Soc. Am. J. 1991, 55, 528–530. [Google Scholar] [CrossRef]
Urea Fertilizer Treatment 1 | Urea-N (g kg) | P2O5 (g kg) | K2O (g kg) | Inhibitor/Additive/Enhancement | Mass Fraction (g kg) |
---|---|---|---|---|---|
U | 460 | 0 | 0 | – | – |
EEF-S1 | 460 | 0 | 0 | Dicyandiamide (DCD) N-butyl-thiophosphoric triamide (NBPT) | 10.5 0.9 |
EEF-S2 | 460 | 0 | 0 | Dicyandiamide (DCD) N-butyl-thiophosphoric triamide (NBPT) | 21.0 0.9 |
EEF-C | 290 | 20 | 50 | Slowly available N from polymer- and polymer-/sulfur-coated urea | 72.0 |
Clipping | Fertilizer-N | ||||||||||
Source | df | yield | N offtake | df | Volatilized as NH3 | df | Recovered in clippings | ||||
num | den | P (FR < Fcrit) | num | den | P (FR < Fcrit) | num | den | P (FR < Fcrit) | |||
TRT | 4 | 4 | <0.0001 | <0.0001 | 3 | 9 | 0.0002 | 3 | 3 | 0.0329 | |
DAFPT/DAIT 1 | 5 | 315 | <0.0001 | <0.0001 | 1 | 152 | <0.0001 | 5 | 250 | <0.0001 | |
TRT Χ DAFPT/DAIT | 20 | 315 | 0.4980 | 0.2744 | 3 | 152 | <0.0001 | 15 | 250 | 0.9702 | |
Mean clipping | Cumulative fertilizer-N | ||||||||||
Nitrogen fertilizer TRT | yield | N offtake | Volatilized as NH3 | Recovered in clippings | |||||||
kg ha–1 | kg ha–1 | kg ha–1 | |||||||||
EEF-S1 | 220.3 | 10.0 | 8.3 (19.3%) | 31.1 (72.4%) | |||||||
EEF-S2 | 219.5 | 10.1 | 8.6 (19.9%) | 31.3 (72.9%) | |||||||
EEF-C | 209.8 | 9.5 | 11.0 (25.6%) | 28.3 (65.8%) | |||||||
Urea | 206.7 | 9.3 | 14.4 (33.5%) | 26.9 (62.5%) | |||||||
Control | 119.2 | 4.9 | ─ | ─ | |||||||
LSD 2 a = 0.05 | 7.13 | 0.60 | 1.99 | 2.76 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlossberg, M.J.; McGraw, B.A.; Sebring, R.L.; Hivner, K.R. Nitrogen Recovery and Loss from Kentucky Bluegrass Fertilized by Conventional or Enhanced-Efficiency Urea Granules. Agronomy 2018, 8, 144. https://doi.org/10.3390/agronomy8080144
Schlossberg MJ, McGraw BA, Sebring RL, Hivner KR. Nitrogen Recovery and Loss from Kentucky Bluegrass Fertilized by Conventional or Enhanced-Efficiency Urea Granules. Agronomy. 2018; 8(8):144. https://doi.org/10.3390/agronomy8080144
Chicago/Turabian StyleSchlossberg, Maxim J., Benjamin A. McGraw, Ryan L. Sebring, and Kyle R. Hivner. 2018. "Nitrogen Recovery and Loss from Kentucky Bluegrass Fertilized by Conventional or Enhanced-Efficiency Urea Granules" Agronomy 8, no. 8: 144. https://doi.org/10.3390/agronomy8080144