Impact of High Temperature and Drought Stresses on Chickpea Production
Abstract
:1. Introduction
2. Effect of Drought on Chickpea
3. Effect of Heat Stress on Chickpea
4. Adaptation Mechanisms of Chickpea Plants to Extreme Events of Climate Change
4.1. Drought Escape and Avoidance
4.2. Heat Escape and Avoidance
5. Strategies to Improve Breeding for Tolerance to Extreme Events of Climate
6. Conclusions and Strategic Approaches to Develop Resilient Cultivars
- Development of simple screening methods to identify drought and heat tolerance chickpea genotypes to the selected environments.
- Determination of physiological and biochemical responses of genotypes to stress and underlying genetic basis of these traits.
- Identification of molecular markers linked to major QTLs that elucidate variation in drought and heat tolerance.
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 17 April 2018).
- IPCC. Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Group І, ІІ and ІІІ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 6–8. ISBN 978-92-9169-143-2. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Planther, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Contribution of Working Group Ι to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 15–20. ISBN 978-1-107-05799-1. [Google Scholar]
- Kadiyala, M.D.M.; Kumara Charyulu, D.; Nedumaran, S.; Moses Shyam, D.; Gumma, M.K.; Bantilan, M.C.S. Agronomic management options for sustaining chickpea yield under climate change scenario. J. Agrometeorol. 2016, 18, 41–47. [Google Scholar]
- Gaur, P.M.; Pande, S.; Sharma, H.C.; Gowda, C.L.L.; Sharma, K.K.; Crouch, J.H.; Vadez, V. Genetic enhancement of stress tolerance in chickpea: Present status and future prospects. In Crop Production in Stress Environments: Genetic and Management Options; Singh, D.P., Tomar, V.S., Behl, R.K., Upadhyaya, S.D., Bhale, M.S., Khare, D., Eds.; AGROBIOS International Publishing: Jodhpur, India, 2007; pp. 85–94. [Google Scholar]
- Gaur, P.M.; Jukanti, A.K.; Samineni, S.; Chaturvedi, S.K.; Basu, P.S.; Babbar, A.; Jeyalakshmi, V.; Nayyar, H.; Devasirvatham, V.; Mallikarjuna, N.; et al. Climate change and heat stress tolerance in chickpea. In Climate Change and Plant Abiotic Stress Tolerance; Tuteja, N., Gill, S.S., Eds.; Wiley Blackwell: Weinheim, Germany, 2012; pp. 839–855. ISBN 978-3-527-33491-9. [Google Scholar]
- Upadhaya, H.D.; Dronavalli, N.; Gowda, C.L.L.; Singh, S. Identification and evaluation of chickpea germplasam for tolerance to heat stress. Crop Sci. 2011, 51, 2079–2094. [Google Scholar] [CrossRef]
- Kalra, N.; Chakraborty, D.; Sharma, A.; Rai, H.K.; Jolly, M.; Chander, S.; Kumar, P.R.; Bhadraray, S.; Barman, D.; Mittal, R.B.; et al. effect of temperature on yield of some winter crops in northwest India. Curr. Sci. 2008, 94, 82–88. [Google Scholar]
- Dubey, S.K.; Sah, U.; Singh, S.K. Impact of climate change in pulse productivity and adaptation strategies as practiced by the pulse growers of Bundelkhand region of Utter Pradesh. J. Food Legum. 2011, 24, 230–234. [Google Scholar]
- Ibrahim, H.M. Heat stress in food legumes: Evaluation of membrane thermostability methodology and use of infra-red thermometry. Euphytica 2011, 180, 99–105. [Google Scholar] [CrossRef]
- Devasirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Raju, T.N.; Trethowan, R.M.; Tan, D.K.Y. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct. Plant Biol. 2012, 39, 1009–1018. [Google Scholar] [CrossRef]
- Ahmed, F.P.; Gaur, P.M.; Croser, J. Chickpea (Cicer arietinum). In Genetic Resources, Chromosome Engineering, and Crop Improvement—Grains Legumes; Singh, R., Jauhar, P., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 185–214. [Google Scholar]
- Kashiwagi, J.; Krishnamurthy, L.; Upadhaya, H.D.; Krishna, H.; Chandra, S.; Vadez, V.; Serraj, R. Genetic variability of drought avoidance root traits in the mini-core germplasam collection of chickpea. Euphytica 2005, 146, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, L.; Kashiwagi, J.; Gaur, P.M.; Upadhaya, H.D.; Vadez, V. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasam. Field Crops. Res. 2010, 119, 322–330. [Google Scholar] [CrossRef]
- Upadhaya, H.D.; Kashiwagi, J.; Varshney, R.K.; Gaur, P.M.; Saxena, K.B.; Krishnamurthy, L.; Gowda, C.L.L.; Pundir, R.P.S.; Chaturvedi, S.K.; Basu, P.S.; et al. Phenotyping chickpeas and pigeonpeas for adaptation to drought. Front. Physiol. 2012, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, L.; Kashiwagi, J.; Upadhaya, H.D.; Gowda, C.L.L.; Gaur, P.M.; Singh, S.; Purushothaman, R.; Varshney, R.K. partitioning coefficient- a trait that contributes to drought tolerance in chickpea. Field Crops Res. 2013, 149, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Purushothaman, R.; Krishnamurthy, L.; Upadhaya, H.D.; Vadez, V.; Varshney, R.K. Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crops Res. 2016. [Google Scholar] [CrossRef]
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). ICC 4958—A Drought Resistant Chickpea; Patahcheru: Telungana, India, 1992; pp. 1–5. ISBN 92-9066-232-8. [Google Scholar]
- Saxena, N.P. (Ed.) Management of drought in chickpea—A holistic approach. In Management of Drought-Agronomic and Genetic Options; Oxford and IBH Publishing Co. Pvt. Ltd.: New Delhi, India, 2003; pp. 103–122. [Google Scholar]
- Bidinger, F.R.; Mahalakshmi, V.; Rao, G.D.P. Assessment of drought resistance in pearl millet (Pennisetum americanum L.): Estimation of genotype response to stress. Crop Pasture Sci. 1987, 38, 83–88. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Jenkinson, D.M.; Vadez, V. Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct. Plant Biol. 2011, 38, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Purushothaman, R.; Thudi, M.; Krishnamurthy, L.; Upadhaya, H.D.; Kashiwagi, J.; Gowda, C.L.L.; Varshney, R.K. Association of mid-reproductive stage canopy depression with the molecular markers and grain yield of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res. 2015, 174, 1–11. [Google Scholar] [CrossRef]
- Nayyar, H.; Kaur, S.; Singh, K.J.; Dhir, K.K.; Bains, T. Water-stress induced injury to chickpea: Evaluation of stress sensitivity in wild and cultivated species in relation to Abscisic acid and Polyamines. J. Agron. Crop Sci. 2005, 191, 450–457. [Google Scholar] [CrossRef]
- Sabaghpour, S.H.; Mahmodi, A.A.; Saeed, A.; Kamel, M.; Malhotra, R.S. Study on chickpea drought tolerance lines under dryland condition. Indian J. Crop Sci. 2006, 1, 70–73. [Google Scholar]
- Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.M.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [Google Scholar] [CrossRef]
- Basu, P.S.; Berger, J.D.; Turner, N.C.; Chaturvedi, S.K.; Ali, M.; Siddique, K.H.M. Osmatic adjustment of chickpea (Cicer arietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought. Ann. Appl. Biol. 2007, 150, 217–225. [Google Scholar] [CrossRef]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three (Cicer arietinum) cultivars. Aust. J. Crop Sci. 2011, 5, 1255–1260. [Google Scholar]
- Toker, C.; Llunch, C.; Tejera, N.A.; Serraj, R.; Siddique, K.H.M. Abiotic stresses. In Chickpea Breeding Management; Yadev, S.S., Redden, R.J., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 474–496. ISBN 139781845932145. [Google Scholar]
- Fang, X.; Turner, N.C.; Yan, G.; Li, F.; Siddique, K.H.M. Flower numbers, pod production, pollen viability and pistil function are reduced, and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 2010, 61, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, L.; Gaur, P.M.; Basu, P.S.; Chaturvedi, S.K.; Tripathi, S.; Vadez, V.; Rathore, A.; Varshney, R.K.; Gowda, C.L.L. Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet. Resour. 2011, 9, 59–69. [Google Scholar] [CrossRef]
- Devasirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Raju, T.N.; Trethoean, R.M.; Tan, D.K.Y. Reproductive biology of chickpea to heat stress in the field is associated with the performance in controlled environments. Field Crops Res. 2013, 142, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Summerfield, R.J.; Hadley, P.; Roberts, E.H.; Minchin, F.R.; Rawsthrone, S. Sensitivity of chickpea (Cicer arietinum L.) to hot temperatures during the reproductive period. Exp. Agric. 1984, 20, 77–93. [Google Scholar] [CrossRef]
- Kaushal, N.; Awasthi, R.; Gupta, K.; Gaur, P.M.; Siddique, K.H.M.; Nayyar, H. Heat stress induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013, 40. [Google Scholar] [CrossRef]
- Sinha, S.K. Food Legumes: Distribution, Adaptability, and Biology of Yield; FAP Plant Production and Protection Paper, No.3; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977; 124p. [Google Scholar]
- Devasirvatham, V.; Gaur, P.M.; Raju, T.N.; Trethowan, R.T.; Tan, D.K.Y. Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Res. 2015, 59–71. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, P.; Kaushal, N.; Mallik, J.A.; Nayyar, H. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress, seed yield in chickpea genotypes differing in heat sensitivity. Arch. Agron. Soil Sci. 2012. [Google Scholar] [CrossRef]
- Munier-Jolain, N.G.; Ney, B. Seed growth rate in grain legumes ІІ. Seed growth rate depends on cotyledon cell number. J. Exp. Bot. 1998, 49, 1971–1976. [Google Scholar] [CrossRef]
- Gaur, P.M.; Krishnamurthy, L.; Kashiwagi, J. Improvement of drought-avoidance root traits in chickpea (Cicer arietinum L.)—Current status of research at ICRISAT. Plant Product. Sci. 2008, 1, 3–11. [Google Scholar] [CrossRef]
- Than, A.M.; Mawl, J.B.; Aung, T.; Gaur, P.M.; Gowda, C.L.L. Development and adoption of improved chickpea varieties in Myanmar. SAT E J. 2007, 5, 1–3. [Google Scholar]
- Soltani, A.; Sinclair, T.R. Optimizing chickpea phenology to available water under current and future climate. Eur. J. Agron. 2012, 38, 22–31. [Google Scholar] [CrossRef]
- Kashiwagi, J.; Krishnamurthy, L.; Purushothaman, R.; Upadhyaya, H.D.; Gaur, P.M.; Gowda, C.L.L.; Ito, O.; Varshney, R.K. Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Res. 2015, 170, 47–54. [Google Scholar] [CrossRef]
- Gaur, P.M.; Chaturvedi, S.K.; Tripathi, S.; Gowda, C.L.L.; Krishnamurthy, L.; Vadez, V.; Mallikarjuna, N.; Varshney, R.K. Improving heat tolerance in chickpea to increase its resilience to climate change. Presented at 5th International Food Legumes Research Conference & 7th European Conference on Grain Legumes, Antalya, Turkey, 26–30 April 2010. [Google Scholar]
- Paul, P.J.; Samineni, S.; Sajja, S.B.; Rathore, A.; Das, R.R.; Chaturvedi, S.K.; Lavanya, G.R.; Varshney, R.K.; Gaur, P.M. Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica 2018, 214–227. [Google Scholar] [CrossRef]
- Paul, P.J.; Samineni, S.; Thudi, M.; Sajja, S.B.; Rathore, A.; Das, R.R.; Khan, A.W.; Chaturvedi, S.K.; Lavanya, G.R.; Varshney, R.K.; et al. Molecular mapping of QTLs for heat tolerance in chickpea. Int. J. Mol. Sci. 2018, 19, 2166. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Thudi, M.; Nayak, S.N.; Gaur, P.M.; Kashiwagi, J.; Krishnamurthy, L.; Jaganathan, D.; Koppolu, J.; Bohra, A.; Tripathi, S.; et al. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theory Appl. Genet. 2014, 127, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Mannur, D.M.; Salimath, P.M.; Mishra, M.N. Evaluation of segregating population for drought related morphological and physiological traits in chickpea. J. Food Legum. 2009, 22, 233–238. [Google Scholar]
- Thudi, M.; Gaur, P.M.; Krishnamurthy, L.; Mir, R.R.; Kudapa, H.; Fike, A.; Kimurto, P.; Tripathi, S.; Soren, K.R.; Mulwa, R.; et al. Genomics assisted breeding for drought tolerance in chickpea. Funct. Plant Biol. 2014, 41, 1178–1190. [Google Scholar] [CrossRef]
- Gaur, P.M.; International Crops Research Institute for Semi-Arid Tropics Hyderabad. Personal communication, 2018.
- Trethowan, R.M.; The Plant Breeding Institute, The University of Sydney. Personal communication, 2018.
- Kumar, J.; Choudhary, A.K.; Solanki, R.K.; Pratap, A. Towards marker-assisted selection in pulses: A review. Plant Breed. 2011, 130, 297–313. [Google Scholar] [CrossRef]
Stress | Phenology, Physiological, Biochemical Changes and Stress Tolerance Index | References |
---|---|---|
Drought | Root length density | [12] |
Chlorophyll loss, low water potential | [23] | |
Shoot biomass and grain yield | [13] | |
Drought tolerance index | [13] | |
Early flowering | [24] | |
Carbon (Δ13C) isotope discrimination during the photosynthetic activity | [25] | |
High osmatic adjustment with low water potential to maintain turgor | [26] | |
High water-soluble carbohydrate content in stressed plants | [27] | |
Higher catalase activity under drought which inhibits the osmatic stress | [27] | |
Small leaf area with less water loss by transpiration | [19,28] | |
Reduced pollen viability, pistil function and pod set | [29] | |
Canopy temperature depression during mid-reproductive stage | [22] | |
Heat | Pod number per plant, harvest index | [30] |
Heat tolerance index | [30] | |
Grain yield | [7] | |
Application of abscisic acid (ABA) induces heat tolerance | [31] | |
Reduced pollen viability | [11,31] | |
Failure of fertilization due to oxidative stress | [31] | |
Early flowering, filled pod number per plant | [32] | |
Canopy temperature depression during reproductive stage | [32] | |
Reduced enzyme activity (Rubisco, sucrose phosphate synthase, sucrose synthesising enzyme) due to stress | [33] | |
Reduced pollen function due to lower sucrose level in pollen | [33] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devasirvatham, V.; Tan, D.K.Y. Impact of High Temperature and Drought Stresses on Chickpea Production. Agronomy 2018, 8, 145. https://doi.org/10.3390/agronomy8080145
Devasirvatham V, Tan DKY. Impact of High Temperature and Drought Stresses on Chickpea Production. Agronomy. 2018; 8(8):145. https://doi.org/10.3390/agronomy8080145
Chicago/Turabian StyleDevasirvatham, Viola, and Daniel K. Y. Tan. 2018. "Impact of High Temperature and Drought Stresses on Chickpea Production" Agronomy 8, no. 8: 145. https://doi.org/10.3390/agronomy8080145