Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Biotype Origin and Verification
2.3. Experiment I. Response of A. toschiella to M. destructor Resistance Genes in No-Choice Tests
2.4. Experiment II. Response of A. toschiella to M. destructor Resistance Genes in Choice Tests
2.5. Experiment III. Response of A. toschiella to the D. noxia-Resistant Dn7 Gene in No-Choice Tests
3. Statistical Analysis
4. Results
4.1. Response of A. toschiella to M. destructor-Resistance Genes in No-Choice Tests
4.2. Response of A. toschiella to M. destructor-Resistance Genes in Choice Tests
4.3. Response of A. toschiella to the D. noxia-Resistant Dn7 Genes in No-Choice Tests
5. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dixon, J.; Braun, H.-J.; Kosina, P.; Crouch, J. Wheat Facts and Futures 2009; CIMMYT: Texcoco de Mora, Mexico, 2009. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Berzonsky, W.A.; Ding, H.; Haley, S.D.; Lamb, R.J.; McKenzie, R.I.H.; Ohm, H.W.; Patterson, F.L.; Peairs, F.B.; Porter, D.R.; Ratcliffe, R.H.; et al. Breeding wheat for resistance to insects. Plant Breed. Rev. 2003, 22, 221–296. [Google Scholar]
- Slykhuis, J.T. Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to the spread of wheat streak mosaic. Phytopathology 1955, 45, 116–128. [Google Scholar]
- Seifers, D.L.; Martin, T.; Harvey, T.L.; Fellers, J.P.; Michaud, J. Identification of the wheat curl mite as the vector of Triticum mosaic virus. Plant Dis. 2009, 93, 25–29. [Google Scholar] [CrossRef]
- Bockus, W.W.; Appel, J.A.; Bowden, R.L.; Fritz, A.K.; Gill, B.S.; Martin, T.J.; Sears, R.G.; Seifers, D.L.; Brown-Guedira, G.L.; Eversmeyer, M.G. Success stories: Breeding for wheat disease resistance in Kansas. Plant Dis. 2001, 85, 453–461. [Google Scholar] [CrossRef]
- French, R.; Stenger, D.C. Evolution of wheat streak mosaic virus: Dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 2003, 41, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M. Plant Resistance to Arthropods—Molecular and Conventional Approaches; Springer: Dordrecht, The Netherlands, 2005; 423p. [Google Scholar]
- Smith, C.M.; Clement, S.L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 2012, 57, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.; Kynast, R. Confirmation of a 1A/1R wheat-rye chromosome translocation in the wheat variety ‘Amigo’. Plant Breed. 1987, 98, 57–60. [Google Scholar] [CrossRef]
- Whelan, E.D.P.; Thomas, J.B. Chromosomal location in common wheat of a gene (Cmc1) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite. Genome 1989, 32, 1033–1036. [Google Scholar] [CrossRef]
- Malik, R.; Smith, C.M.; Brown-Guedira, G.L.; Harvey, T.L.; Gill, B.S. Assessment of Aegilops tauschii for reistance to biotypes of wheat curl mite (Acari; Eriophyidae). J. Econ. Entomol. 2003, 96, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Turanli, F.; Ilker, E.; Dogan, F.E.; Askan, L.; Istipiller, D. Inheritance of resistance to Russian Wheat Aphid (Diuraphis noxia Kurdjumov) in bread wheat (Triticum aestivum L.). Turk. J. Field Crops 2012, 17, 171–176. [Google Scholar]
- Du Toit, F. Resistance in wheat (Triticum aestivum) to Diuraphis noxia (Homoptera: Aphididae). Cereal Res. Commun. 1987, 15, 175–179. [Google Scholar]
- Du Toit, F. Inheritance of resistance in two Triticum aestivum lines to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1989, 82, 1251–1253. [Google Scholar] [CrossRef]
- Liu, X.M.; Brown-Guedira, G.L.; Hatchett, J.H.; Owuoche, J.O.; Chen, M.S. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor. Appl. Genet. 2005, 111, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Fritz, A.K.; Reese, J.C.; Wilde, G.E.; Gill, B.S.; Chen, M.S. H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor. Appl. Genet. 2005, 110, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Harvey, T.L.; Seifers, D.L.; Martin, T.J.; Brown-Guedira, G.L.; Gill, B.S. Survival of wheat curl mites on different sources of resistance in wheat. Crop Sci. 1999, 39, 1887–1889. [Google Scholar] [CrossRef]
- Haley, S.D.; Peairs, F.B.; Walker, C.B.; Rudolph, J.B.; Randolph, T.L. Occurrence of new Russian wheat aphid biotype in Colorado. Crop Sci. 2004, 44, 1589–1592. [Google Scholar] [CrossRef]
- Thomas, J.B.; Conner, R.L. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Sci. 1986, 26, 527–530. [Google Scholar] [CrossRef]
- Malik, R.; Brown-Guedira, G.L.; Smith, C.M.; Harvey, T.L.; Gill, B.S. Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci. 2003, 43, 644–650. [Google Scholar] [CrossRef]
- Whelan, E.D.P.; Hart, G.E. A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 1988, 30, 289–292. [Google Scholar] [CrossRef]
- Sebesta, E.E.; Wood, E.A.; Porter, D.R.; Webster, J.A.; Smith, E.L. Registration of Amigo wheat germplasm resistant to greenbug. Crop Sci. 1994, 34, 293. [Google Scholar] [CrossRef]
- Lu, H.; Rudd, J.C.; Burd, J.D.; Weng, Y. Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations. Plant Breed. 2010, 129, 472–476. [Google Scholar]
- Chen, M.S.; Echegaray, E.; Whitworth, J.; Wang, H.; Sloderbeck, P.; Knutson, A.; Giles, K.; Royer, T. Virulence analysis of Hessian fly populations from Texas, Oklahoma, and Kansas. J. Econ. Entomol. 2009, 102, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.S.; Hatchett, J.H. Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci. 1994, 34, 958–960. [Google Scholar] [CrossRef]
- Amri, A.; Hatchett, J.H.; Cox, T.S.; El Bouhssini, M.; Sears, R.G. Resistance to Hessian fly from North African durum wheat germplasm. Crop Sci. 1990, 30, 378–381. [Google Scholar] [CrossRef]
- Friebe, B.; Hatchett, J.H.; Sears, R.G.; Gill, B.S. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 1990, 79, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet. 1991, 83, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cainong, J.C.; Zavatsky, L.E.; Chen, M.S.; Johnson, J.; Friebe, B.; Gill, B.S.; Lukaszewski, A.J. Wheat-rye T2BS·2BL-2RL recombinants with resistance to Hessian Fly (H21). Crop Sci. 2010, 50, 920–925. [Google Scholar] [CrossRef]
- Chen, J.; Souza, E.J.; Zemetra, R.S.; Bosque-Pérez, N.A.; Guttieri, M.J.; Schotzko, D.; O’Brien, K.L.; Windes, J.M.; Guy, S.O.; Brown, B.D.; et al. Registration of ‘Cataldo’ Wheat. J. Plant Reg. 2009, 3, 264–268. [Google Scholar] [CrossRef]
- Marais, G.F.; Horn, M.; DuToit, F. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed. 1994, 113, 265–271. [Google Scholar] [CrossRef]
- Lapitan, N.L.V.; Li, Y.-C.; Peng, J.; Botha, A.-M. Fractionated extracts of Russian wheat aphid eliciting defense responses in wheat. J. Econ. Entomol. 2007, 100, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Weiland, A.A.; Peairs, F.B.; Randolph, T.L.; Rudolph, J.B.; Haley, S.D.; Puterka, G.J. Biotypic diversity in Colorado Russian wheat aphid populations. J. Econ. Entomol. 2008, 101, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Jankielsohn, A. Changes in the Russian wheat aphid (Hemiptera: Aphididae) biotype complex in South Africa. J. Econ. Entomol. 2016, 109, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Garcés Carrera, S.; Davis, H.; Aguirre-Rojas, L.; Murugan, M.; Smith, C.M. Multiple categories of resistance to wheat curl mite (Acari: Eriophyidae) expressed in accessions of Aegilops tauschii. J. Econ. Entomol. 2012, 105, 2180–2186. [Google Scholar] [CrossRef]
- Murugan, M.; Cardona, P.S.; Duraimurugan, P.; Whitfield, A.E.; Schneweis, D.; Starkey, S.; Smith, C.M. Wheat curl mite resistance: Interactions of mite feeding with wheat streak mosaic virus infection. J. Econ. Entomol. 2011, 104, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Malik, R. Molecular Genetic Characterization of Wheat Curl Mite, Aceria tosichella Keifer (Acari: Eriophyidae), and Wheat Genes Conferring Wheat Curl Mite Resistance. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2001; 144p. [Google Scholar]
- Dixon, A.G.O.; Bramel-Cox, P.J.; Reese, J.C.; Harvey, T.L. Mechanisms of resistance and their interactions in twelve sources of resistance to biotype E Greenbug (Homoptera: Aphididae) in sorghum. J. Econ. Entomol. 1990, 83, 234–240. [Google Scholar] [CrossRef][Green Version]
- Massey, F.J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Gbur, E.E.; Stroup, W.W.; McCarter, K.; Durham, S.; Young, L.J.; Christman, M.; West, M.; Kramer, M. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences; American Society of Agronomy/Soil Science Society of America/Crop Science Society of America: Madison, WI, USA, 2012. [Google Scholar]
- Kenward, M.G.; Roger, J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Stroup, W.W. Rethinking the analysis of non-normal data in plant and soil science. Agron. J. 2015, 107, 811–827. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Milliken, G.A.; Johnson, D.E. Designed Experiments. In Analysis of Messy Data, 2nd ed.; Chapman & Hall: New York, NY, USA, 2009; Volume 1. [Google Scholar]
- SAS Institute. The GLIMMIX Procedure. In SAS/STAT 9.2 User’s Guid; SAS Institue Inc.: Cary, NC, USA, 2008. [Google Scholar]
- SAS Institute. The FREQ procedure. In SAS/STAT 9.2 User’s Guid; SAS Institue Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Coutts, B.A.; Strickland, G.R.; Kehoe, M.A.; Severtson, D.L.; Jones, R.A.C. The epidemiology of Wheat streak mosaic virus in Australia: Case histories, gradients, mite vectors, and alternative hosts. Aust. J. Agric. Res. 2008, 59, 844–853. [Google Scholar] [CrossRef]
- Morgan, G.; Patrick, C.; Steddom, K.; Rush, C.M. Wheat Streak Mosaic Virus and High Plains Virus; Texas Cooperative Extension Publication: College Station, TX, USA, 2005; E-337. [Google Scholar]
- Velandia, M.; Rejesus, R.M.; Jones, D.C.; Price, J.A.; Workneh, Z.F.; Rush, C.M. Economic impact of Wheat streak mosaic virus in the Texas High Plains. Crop Prot. 2010, 29, 699–703. [Google Scholar] [CrossRef]
- Carver, B.F.; Smith, C.M.; Chuang, W.-P.; Hunger, R.M.; Edwards, J.T.; Yan, L.; Brown-Guedira, G.; Gill, B.S.; Bai, G.; Bowden, R.L. Registration of OK05312, a high-yielding hard winter wheat donor of Cmc4 for wheat curl mite resistance. J. Plant Reg. 2016, 10, 75–79. [Google Scholar] [CrossRef]
Genotype | Resistance Gene | Mean (Lower, Upper 95% CI) | ||
---|---|---|---|---|
Mean Number of A. tosichella c | % Dry Weight Change c | Tolerance Index d | ||
OK05312 | Cmc4 | 4.7 (1.7, 13.2) a | 8 (−4.7, 20.7) a | 3.6 (−0.9, 8.1) b,c |
Hamlet | H21 | 5.8 (2.1, 16.1) a | 2 (−38.2, 42.2) a,b | 5.4 (0.9, 10) c |
KSWGRC26 | H26 | 61.7 (23, 165.4) b | −3.3 (−16, 9.4) a,b | −1.4 (−3.9, 1.1) a |
Molly | H13 | 68 (25.2, 183.7) b | 4 (−8.7, 16.7) b | −1.3 (−3.8, 1.2) a,b |
Ike | None | 94.7 (35.8, 250.5) b | 11.8 (−0.9, 24.4) b | 0.1 (−0.05, 0.3) a,b |
KS92WGRC20 | H25 | 125.5 (47.4, 332) b | 15.8 (3.1, 28.5) b | 0.3 (0.1, 0.4) a,b |
KS99WGRC42 | Hdic | 151.5 (57.3, 400.2) b | −8.3 (−21, 4.4) a,b | −0.03 (−0.2, 0.1) a,b |
Redland | H18 | 177.7 (67.2, 469.6) b | −25.5 (−38.2, −12.8) a | −0.5 (−1.5, 0.4) a,b |
Genotype | H Gene | % Folded Leaf Plants | χ2 Fisher’s Exact Test | |
---|---|---|---|---|
Ike | OK05312 | |||
OK05312 | Cmc4 | 0 | ns | - |
Hamlet | H21 | 10 | ns | ns |
KSWGRC26 | H26 | 50 | ns | * |
Molly | H13 | 60 | ns | * |
KS99WGRC42 | Hdic | 80 | ns | ** |
KS92WGRC20 | H25 | 90 | * | ** |
Redland | H18 | 80 | ns | ** |
Ike | None | 30 | - | ns |
Genotype | Resistance Gene | Mean ± SE Number of A. tosichella Adults | % Leaf Folding | χ2 Fisher’s Exact Test | |
---|---|---|---|---|---|
Jagger | OK05312 | ||||
OK05312 | Cmc4 | 32.4 ± 60.8 a | 0 | ** | - |
Hamlet | H21 | 88.1 ± 64.1 a,b | 0 | ** | ns |
KS99WGRC42 | Hdic | 89.7 ± 55.9 a,b | 20 | ** | ns |
KS92WGRC20 | H25 | 96.0 ± 58.2 a,b | 0 | ** | ns |
KSWGRC26 | H26 | 218.2 ± 55.9 a,b,c | 60 | ns | * |
Redland | H18 | 246.5 ± 55.9 a,b,c | 100 | ns | ** |
Molly | H13 | 261.8 ± 55.9 b,c | 50 | ns | * |
Jagger | None | 328.1 ± 55.9 c | 90 | - | ** |
Genotype | Resistance Gene | Mean ± SE Number of A. toschiella | |||
---|---|---|---|---|---|
Biotype 1 | Biotype 2 | ||||
Assay 1 | Assay 2 | Assay 1 | Assay 2 | ||
OK05315 | Cmc4 | 21.4 ± 7.1 b | 22.8 ± 17.1 b | 36.1 ± 30.2 b | 83.6 ± 34.0 a,b |
93M370 | Dn7 | 41.9 ± 7.1 b | 16.6 ± 17.1 b | 28.6 ± 30.2 b | 14.3 ± 34.0 b |
Jagger | none | 153.8 ± 7.1 a | 133.5 ± 17.1 a | 257.3 ± 30.2 a | 163.1 ± 34.0 a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Rojas, L.M.; Khalaf, L.K.; Garcés-Carrera, S.; Sinha, D.K.; Chuang, W.-P.; Smith, C.M. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines. Agronomy 2017, 7, 74. https://doi.org/10.3390/agronomy7040074
Aguirre-Rojas LM, Khalaf LK, Garcés-Carrera S, Sinha DK, Chuang W-P, Smith CM. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines. Agronomy. 2017; 7(4):74. https://doi.org/10.3390/agronomy7040074
Chicago/Turabian StyleAguirre-Rojas, Lina Maria, Luaay Kahtan Khalaf, Sandra Garcés-Carrera, Deepak K. Sinha, Wen-Po Chuang, and C. Michael Smith. 2017. "Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines" Agronomy 7, no. 4: 74. https://doi.org/10.3390/agronomy7040074
APA StyleAguirre-Rojas, L. M., Khalaf, L. K., Garcés-Carrera, S., Sinha, D. K., Chuang, W.-P., & Smith, C. M. (2017). Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines. Agronomy, 7(4), 74. https://doi.org/10.3390/agronomy7040074