Next Article in Journal
Opportunities for Napier Grass (Pennisetum purpureum) Improvement Using Molecular Genetics
Previous Article in Journal
Residues Management Practices and Nitrogen-Potassium Fertilization Influence on the Quality of Pineapple (Ananas comosus (L.) Merrill) Sugarloaf Fruit for Exportation and Local Consumption
Previous Article in Special Issue
QTL Analysis for Drought Tolerance in Wheat: Present Status and Future Possibilities
Open AccessReview

Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs

International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
*
Author to whom correspondence should be addressed.
Academic Editor: Silvio Salvi
Agronomy 2017, 7(2), 27; https://doi.org/10.3390/agronomy7020027
Received: 5 January 2017 / Revised: 22 February 2017 / Accepted: 27 March 2017 / Published: 9 April 2017
(This article belongs to the Special Issue QTL Mapping of Drought Tolerance)
Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. View Full-Text
Keywords: drought; marker; pyramiding; QTLs; rice; genomics drought; marker; pyramiding; QTLs; rice; genomics
Show Figures

Figure 1

MDPI and ACS Style

Sandhu, N.; Kumar, A. Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs. Agronomy 2017, 7, 27.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop