Mating Disruption as a Pest Management Strategy: Expanding Applications in Stored Product Protection
Abstract
1. Introduction
2. Biology and Ecology of Target Species
2.1. Lepidoptera—Plodia Interpunctella
2.2. Lepidoptera—Ephestia Kuehniella (Also Anagasta Kuehniella)
2.3. Coleoptera—Sitophilus spp.
2.4. Implications for MD
3. Principles and Mechanisms of Mating Disruption
3.1. Mechanisms of Action
3.1.1. Competitive Attraction and False Trail Following
3.1.2. Pheromone Masking and Camouflage
3.1.3. Desensitization and Habituation
3.1.4. Delay in Mating
3.2. Pheromone Release Systems and Formulations
3.2.1. Passive Dispensers
3.2.2. Microencapsulated Formulations
3.2.3. Aerosol Emitters
3.2.4. Polymer-Based Matrices and Controlled-Release Systems
4. Mating Disruption in Stored-Product Moths (Lepidoptera)
4.1. Review of Laboratory and Field Studies for P. interpunctella and E. kuehniella
4.1.1. Laboratory Studies
4.1.2. Small-Scale and Semi-Field Trials
4.1.3. Large-Scale and Commercial Deployments
4.2. Examples of Commercial Formulations and Performance in Storage Environments
4.3. Factors Affecting the Efficacy of MD
4.4. Synergistic Use of MD with Other Tactics
5. Mating Disruption and Aggregation Interference in Stored-Product Beetles (Coleoptera)
5.1. Pheromone Communication System in Beetles
5.2. Attempts to Disrupt Mating or Aggregation
5.3. Factors Influencing the Efficacy of MD
5.4. Integration with Kairomones
6. Comparative Effectiveness and Limitations of MD in Storage Environments
6.1. Technical and Environmental Challenges
6.2. Maintaining Optimal Pheromone Concentrations over Time
6.3. Laboratory Versus Field Performance
6.4. Economic and Practical Considerations
6.5. Differences in Pheromone-Based Disruption Between Coleoptera and Lepidoptera
7. Integration of MD into IPM
7.1. Complementarity of MD Within IPM
7.2. Role of Pheromone-Based Monitoring Within IPM Programs
7.3. Synergies with Sanitation, Structural Improvements and Environmental Control
7.4. Integration with Physical and Biological Control Methods
7.5. Contribution of MD to Reduced Chemical Dependency in IPM
8. Future Research and Perspectives
8.1. Improved Pheromone Delivery Systems
8.2. Long-Term Validation and Performance Optimization
8.3. Expanding MD to Other Pest-Taxa
8.4. Integration with Automated Sensing and Digital Monitoring
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, P.D. Potential for using semiochemicals to protect stored products from insect infestation. J. Stored Prod. Res. 2004, 40, 1–25. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Ahmad, S. Management strategies for control of stored grain insect pests in farmer stores and public warehouses. World J. Agric. Sci. 2011, 7, 527–549. [Google Scholar]
- Morrison, W.R., III; Scully, E.D.; Campbell, J.F. Towards developing areawide semiochemical-mediated, behaviorally based integrated pest management programs for stored product insects. Pest Manag. Sci. 2021, 77, 2667–2682. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Rumbos, C.I.; Sakka, M.; Sotiroudas, V. Insecticidal efficacy of phosphine fumigation at low pressure against major stored-product insect species in a commercial dried fig processing facility. Crop Prot. 2016, 90, 177–185. [Google Scholar] [CrossRef]
- Rotschild, G.H.L. Mating disruption in lepidopterous pests: Current status and future prospects. In Management of Insect Pests with Semiochemicals; Mitchell, E.R., Ed.; Plenum Press: New York, NY, USA, 1981; pp. 207–228. [Google Scholar]
- Phillips, T.W. Semiochemicals of stored-product insects: Research and applications. J. Stored Prod. Res. 1997, 33, 17–30. [Google Scholar] [CrossRef]
- Trematerra, P. Advances in the use of pheromones for stored-product protection. J. Pest Sci. 2012, 85, 285–299. [Google Scholar] [CrossRef]
- Savoldelli, S.; Jucker, C.; Lupi, D.; Malabusini, S.; Peri, E.; Guarino, S. Pheromone-mediated mating disruption of the European grain moth Nemapogon granellus in ham factories. J. Stored Prod. Res. 2023, 102, 102117. [Google Scholar] [CrossRef]
- Miller, J.R.; Gut, L.J. Mating disruption for the 21st century: Matching technology with mechanism. Environ. Entomol. 2015, 44, 427–453. [Google Scholar] [CrossRef]
- Savoldelli, S.; Trematerra, P. Mass-trapping, mating-disruption and attracticide methods for managing stored-product insects: Success stories and research needs. Stewart Postharvest Rev. 2011, 7, 1–8. [Google Scholar] [CrossRef]
- Lance, D.R.; Leonard, D.S.; Mastro, V.C.; Walters, M.L. Mating disruption as a suppression tactic in programs targeting regulated lepidopteran pests in the US. J. Chem. Ecol. 2016, 42, 590–605. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Lucchi, A.; Thomson, D.; Ioratti, C. Sex pheromone aerosol devices for mating disruption: Challenges for a brighter future. Insects 2019, 10, 308. [Google Scholar] [CrossRef]
- Saba, Z.; Kumar, U.S.; Deepak, Y.; Babu, D.Y.; Sadguru, P. Mating disruption in insect pests by sex pheromones: A profound integrated pest management technique. Int. J. Zool. Investig. 2022, 8, 689–700. [Google Scholar] [CrossRef]
- Mevada, R.; Sisodiya, D.B.; Parmar, R.G.; Prajapati, D.R. Mating disruption: An ecological step towards sustainable pest management. J. Eco-Friendly Agric. 2023, 18, 144–150. [Google Scholar] [CrossRef]
- Wijayaratne, L.K.W.; Burks, C.S. Persistence of mating suppression of the Indian meal moth Plodia interpunctella in the presence and absence of commercial mating disruption dispensers. Insects 2020, 11, 701. [Google Scholar] [CrossRef]
- Mohandass, S.; Arthur, F.H.; Zhu, K.Y.; Throne, J.E. Biology and management of Plodia interpunctella in stored products. J. Stored Prod. Res. 2007, 43, 302–311. [Google Scholar] [CrossRef]
- Sieminska, E.; Ryne, C.; Löfstedt, C.; Anderbrant, O. Long-term pheromone-mediated mating disruption of the Mediterranean flour moth, Ephestia kuehniella, in a flour mill. Entomol. Exp. Appl. 2009, 131, 294–299. [Google Scholar] [CrossRef]
- Trematerra, P. Efficacy of pheromones for managing the Mediterranean flour moth, Ephestia kuehniella Zeller, in food and feed processing facilities. In Proceedings of the 12th International Working Conference on Stored Product Protection, Berlin, Germany, 7–11 October 2018; pp. 7–11. [Google Scholar] [CrossRef]
- Ryne, C.; Svensson, G.P.; Löfstedt, C. Mating disruption of Plodia interpunctella in small-scale plots: Effects of pheromone blend, emission rates and population density. J. Chem. Ecol. 2001, 27, 2109–2124. [Google Scholar] [CrossRef] [PubMed]
- Trematerra, P.; Athanassiou, C.G.; Sciarretta, A.; Kavallieratos, N.G.; Buchelos, C.T. Efficacy of the auto-confusion system for mating disruption of Ephestia kuehniella and Plodia interpunctella. J. Stored Prod. Res. 2013, 55, 90–98. [Google Scholar] [CrossRef]
- Hasan, M.M.; Athanassiou, C.G.; Hossain, M.A. Estimating long-term spatial distribution of Plodia interpunctella in various food facilities in Bangladesh through pheromone-baited traps. Sci. Rep. 2022, 12, 15986. [Google Scholar] [CrossRef]
- Lindenmayer, J.C.; Campbell, J.F.; Miller, J.F.; Gerken, A.R. Evaluation of microencapsulated liquid pheromone for the control of Indian meal moth (Plodia interpunctella) in a retail environment. J. Stored Prod. Res. 2025, 110, 102479. [Google Scholar] [CrossRef]
- Guedes, N.M.P.; Guedes, R.N.C.; Campbell, J.F.; Throne, J.E. Mating behaviour and reproductive output in insecticide-resistant and -susceptible strains of the maize weevil (Sitophilus zeamais). Ann. Appl. Biol. 2017, 170, 415–424. [Google Scholar] [CrossRef]
- Vélez, M.; Botina, L.L.; Turchen, L.M.; Barbosa, W.F.; Guedes, R.N.C. Spinosad- and deltamethrin-induced impact on mating and reproductive output of the maize weevil Sitophilus zeamais. J. Econ. Entomol. 2018, 111, 950–958. [Google Scholar] [CrossRef]
- Diab, M.K.; Abu-Elsaoud, A.M.; Ghareeb, E.M.; Salama, M.G. Sustainable approaches for managing Sitophilus granarius in stored grains. J. Stored Prod. Res. 2025, 113, 102681. [Google Scholar] [CrossRef]
- Phillips, T.W.; Throne, J.E. Biorational approaches to managing stored-product insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar] [CrossRef]
- Stejskal, V.; Aulicky, R.; Kucerova, Z. Pest control strategies and damage potential of seed-infesting pests in Czech stores: A review. Plant Prot. Sci. 2014, 50, 165–173. [Google Scholar] [CrossRef]
- Nikolaou, P.; Marciniak, P.; Adamski, Z.; Ntalli, N. Controlling stored-product pests with plant secondary metabolites: A review. Agriculture 2021, 11, 879. [Google Scholar] [CrossRef]
- Huang, F.; Subramanyam, B. Effects of delayed mating on reproductive performance of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2003, 39, 53–63. [Google Scholar] [CrossRef]
- Nansen, C.; Phillips, T.W.; Parajulee, M.N.; Franqui, R.A. Comparison of direct and indirect sampling procedures for Plodia interpunctella in a maize storage facility. J. Stored Prod. Res. 2004, 40, 151–168. [Google Scholar] [CrossRef]
- Plarre, R. Pheromones and other semiochemicals of stored product insects: A historical review, current application, and perspective needs. In 100 Years Research in Plant Protection: Important Areas of Research in Stored Product Protection; Reichmuth, C., Ed.; Biologische Bundesanstalt für Land- und Forstwirtschaft: Berlin, Germany, 1998; pp. 13–83. [Google Scholar]
- Vukajlović, F.N.; Predojević, D.Z.; Miljković, K.O.; Tanasković, S.T.; Gvozdenac, S.M.; Perišić, V.M.; Grbović, F.J. Life history of Plodia interpunctella on dried fruits and nuts: Effects of macronutrients and secondary metabolites on immature stages. J. Stored Prod. Res. 2019, 83, 243–253. [Google Scholar] [CrossRef]
- Dowdy, A.K.; McGaughey, W.H. Seasonal activity of stored-product insects in and around farm-stored wheat. J. Econ. Entomol. 1994, 87, 1351–1358. [Google Scholar] [CrossRef]
- Arthur, F.H.; Campbell, J.F.; Toews, M.D. Distribution, abundance, and seasonal patterns of stored-product beetles in a commercial food storage facility. J. Stored Prod. Res. 2014, 56, 21–32. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Baker, T.C. Pheromone puffs suppress mating by Plodia interpunctella and Sitotroga cerealella in an infested corn store. Entomol. Exp. Appl. 2002, 102, 239–251. [Google Scholar] [CrossRef]
- Olsson, P.O.C.; Anderbrant, O.; Löfstedt, C. Flight and oviposition behavior of Ephestia cautella and Plodia interpunctella in response to odors of different chocolate products. J. Insect Behav. 2005, 18, 363–380. [Google Scholar] [CrossRef]
- Gerken, A.R.; Campbell, J.F. Spatial and temporal variation in stored-product insect pest distributions and implications for pest management in processing and storage facilities. Ann. Entomol. Soc. Am. 2022, 115, 239–252. [Google Scholar] [CrossRef]
- Morrison, W.R.; Agrafioti, P.; Domingue, M.J.; Scheff, D.S.; Lampiri, E.; Gourgouta, M.; Baliota, G.V.; Sakka, M.; Myers, S.W.; Athanassiou, C.G. Comparison of different traps and attractants in three food processing facilities in Greece on the capture of stored product insects. J. Econ. Entomol. 2023, 116, 1432–1446. [Google Scholar] [CrossRef]
- Amoah, B.A.; Mahroof, R.M.; Gerken, A.R.; Campbell, J.F. Effect of delayed mating on longevity and reproductive performance of Lasioderma serricorne (Coleoptera: Anobiidae). J. Econ. Entomol. 2019, 112, 475–484. [Google Scholar] [CrossRef]
- Welter, S.C.; Pickel, C.; Millar, J.; Cave, F.; Van Steenwyk, R.; Dunley, J.E. Pheromone mating disruption offers management options for key pests. Calif. Agric. 2005, 59, 16–22. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Buchelos, C.T. Grain properties and insect distribution trends in silos of wheat. J. Stored Prod. Res. 2020, 88, 101632. [Google Scholar] [CrossRef]
- Quintero, H.; Quintero Cortes, J.; Plata-Rueda, A.; Martínez, L.C. Azadirachtin-mediated responses in the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). Insects 2025, 16, 294. [Google Scholar] [CrossRef] [PubMed]
- Kučerova, Z.; Aulicky, R.; Stejskal, V. Outdoor occurrence of stored-product pests (Coleoptera) in the vicinity of a grain store. Plant Prot. Sci. 2005, 41, 86–89. [Google Scholar] [CrossRef]
- Trematerra, P.; Oliviero, A.; Savoldelli, S.; Schöller, M. Controlling infestation of a chocolate factory by Plodia interpunctella by combining mating disruption and the parasitoid Habrobracon hebetor. Insect Sci. 2016, 24, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Shani, A.; Clearwater, J. Evasion of mating disruption in Ephestia cautella (Walker) by increased pheromone production relative to that of undisrupted populations. J. Stored Prod. Res. 2001, 37, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Cardé, R.T. Mating disruption with pheromones for control of moth pests in area-wide management programmes. In Area-Wide Integrated Pest Management; Hendrichs, J., Pereira, R., Vreysen, M.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 779–794. [Google Scholar]
- Stelinski, L.J.; Gut, L.J.; Miller, J.R. An attempt to increase efficacy of moth mating disruption by co-releasing pheromones and kairomones and to understand possible underlying mechanisms of this technique. Environ. Entomol. 2013, 42, 158–166. [Google Scholar] [CrossRef]
- Baker, T.C.; Mafra-Neto, A.; Dittl, T.; Rice, M.E. A novel controlled-release device for disrupting sex pheromone communications in moths. IOBC WPRS Bull. 1997, 20, 141–149. [Google Scholar]
- Yamanaka, T. Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests. Popul. Ecol. 2007, 49, 75–86. [Google Scholar] [CrossRef]
- Burks, C.S.; Brandl, D.G.; Kuenen, L.P.S.; Reyes, C.C.; Fisher, J.M. Pheromone traps for monitoring Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in the presence of mating disruption. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; Julius-Kühn-Archiv: Quedlinburg, Germany, 2010; Volume 425, pp. 79–84. [Google Scholar] [CrossRef]
- Knight, A.L.; Larson, T.L.; Ketner, K.; Hilton, R.; Hawkins, L. Field evaluations of concentrated spray applications of microencapsulated sex pheromone for codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 2008, 37, 980–989. [Google Scholar] [CrossRef]
- Huggett, N.J.; Storm, C.G.; Smith, M.J. Behavioural effects of pheromone-based control system EXosexTM SPTab on male Indianmeal moth, Plodia interpunctella. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; Julius-Kühn-Archiv: Quedlinburg, Germany, 2010; Volume 425, pp. 119–124. [Google Scholar] [CrossRef]
- Gerken, A.R.; Dryer, D.; Abts, S.R.; Campbell, J.F. Behavioral Response of Unmated Female Plodia interpunctella Hübner (Lepidoptera: Pyralidae) to Synthetic Sex Pheromone Lure. Environ. Entomol. 2022, 51, 1200–1209. [Google Scholar] [CrossRef]
- Mori, B.A.; Evenden, M.L. When mating disruption does not disrupt mating: Fitness consequences of delayed mating in moths. Entomol. Exp. Appl. 2012, 146, 50–65. [Google Scholar] [CrossRef]
- Akinneye, J.O.; Oyeniyi, E.A.; Manuwa, O.A. Delayed mating: A non-chemical control strategy for the management of Plodia interpunctella infesting stored products in Nigeria. Trends Appl. Sci. Res. 2020, 15, 74–80. [Google Scholar]
- Prevett, P.F.; Benton, F.P.; Hall, D.R.; Hodges, R.J.; dos Santos Serodio, R. Suppression of mating in Ephestia cautella (Walker) (Lepidoptera: Phycitidae) using microencapsulated formula-tions of synthetic sex pheromone. J. Stored Prod. Res. 1989, 25, 147–154. [Google Scholar] [CrossRef]
- Trematerra, P.; Spina, G. Mating-Disruption Trials for Control of Mediterranean Flour Moth, Ephestia kuehniella Zeller (Lepidoptera: Pyra-lidae), in Traditional Flour Mills. J. Food Prot. 2013, 76, 456–461. [Google Scholar] [CrossRef]
- Witzgall, P.; Kirsch, P.; Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef]
- Prakash, A.; Nandagopal, V.; Prasad, T.V.; Rao, J.; Korada, R.R. Pheromones for the management of insect pests of stored products: A review. J. Appl. Zool. Res. 2015, 26, 11–36. [Google Scholar]
- Trematerra, P.; Athanassiou, C.; Stejskal, V.; Sciarretta, A.; Kavallieratos, N.; Palyvos, N. Large-scale mating disruption of Ephestia spp. and Plodia interpunctella in Czech Republic, Greece and Italy. J. Appl. Entomol. 2011, 135, 749–762. [Google Scholar] [CrossRef]
- Abshire, J.; Harman, R.; Bruce, A.; Gillette, S.; Maille, J.M.; Ranabhat, S.; Scully, E.D.; Zhu, K.Y.; Gerken, A.R.; Morrison, W.R. Flight capacity and behavior of Ephestia kuehniella in response to kairomonal and pheromonal stimuli. Environ. Entomol. 2024, 53, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.S.; McLaughlin, J.R.; Miller, J.R.; Brandl, D.G. Mating disruption for control of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in dried beans. J. Stored Prod. Res. 2011, 47, 216–221. [Google Scholar] [CrossRef]
- Burks, C.S.; Kuenen, L.P.S. Effect of mating disruption and lure load on the number of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) males captured in pheromone traps. J. Stored Prod. Res. 2012, 49, 189–195. [Google Scholar] [CrossRef]
- Ryne, C.; Svensson, G.P.; Anderbrant, O.; Löfstedt, C. Evaluation of long-term mating disruption of Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae) in indoor storage facilities by pheromone traps and monitoring of relative aerial concentrations of pheromone. J. Econ. Entomol. 2007, 100, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Sciaretta, A.; Trematerra, P. Mating disruption of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in a storage facility: Spatio-temporal distribution changed after long-term application. J. Stored Prod. Res. 2016, 67, 1–12. [Google Scholar] [CrossRef]
- Hasan, M.M.; Mahroof, R.M.; Aikins, M.J.; Athanassiou, C.G.; Phillips, T.W. Pheromone-based auto-confusion for mating disruption of Plodia interpunctella (Lepidoptera: Pyralidae) in structures with raw and processed grain products. J. Stored Prod. Res. 2023, 104, 102201. [Google Scholar] [CrossRef]
- Campbell, J.F.; Miller, J.; Petersen, J.; Lingren, B. Evaluation of mating disruption for suppression of Plodia interpunctella populations in retail stores. Insects 2025, 16, 691. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.; Athanassiou, C.; Stejskal, V.; Trematerra, P. Potential of using synthetic sex pheromone for mating disruption of stored product Pyralidae. IOBC/WPRS Bull. 2011, 69, 67–78. [Google Scholar]
- Campos, M.; Phillips, T.W. Attract-and-kill and other pheromone-based methods to suppress populations of the Indianmeal moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 2014, 107, 473–480. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Agrafioti, P. Utilizing mating disruption in stored product protection: Shifting from the past to the future. J. Plant Dis. Prot. 2025, 132, 59. [Google Scholar] [CrossRef]
- Mahroof, R.M.; Phillips, T.W. Mating disruption of Lasioderma serricorne (Coleoptera: Anobiidae) in stored product habitats using the synthetic pheromone serricornin. J. Appl. Entomol. 2013, 138, 378–386. [Google Scholar] [CrossRef]
- Campbell, J.F.; Hagstrum, D.W. Patch exploitation by Tribolium castaneum: Movement patterns, distribution, and oviposition. J. Stored Prod. Res. 2002, 38, 55–68. [Google Scholar] [CrossRef]
- Doud, C.W.; Phillips, T.W. Responses of red flour beetle adults, Tribolium castaneum (Coleoptera: Tenebrionidae), and other stored product beetles to different pheromone trap designs. Insects 2020, 11, 733. [Google Scholar] [CrossRef]
- Jian, F. Influences of stored product insect movements on integrated pest management decisions. Insects 2019, 10, 100. [Google Scholar] [CrossRef]
- Gerken, A.R.; Scully, E.D.; Campbell, J.F. Red flour beetle (Coleoptera: Tenebrionidae) response to volatile cues varies with strain and behavioral assay. Environ. Entomol. 2018, 47, 1252–1265. [Google Scholar] [CrossRef] [PubMed]
- Gries, R.; Khaskin, G.; Cepeda, P.; Gries, G.; Britton, R.; Borden, J.H. Attractive host kairomones for the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae). J. Stored Prod. Res. 2022, 99, 102029. [Google Scholar] [CrossRef]
- Gutierrez, M.A.M.; Cunha, A.L.; dos Santos, C.G.; Dos Santos, J.K.B.; Dos Santos, E.; Elias, J.J.; Santos, A.B.; Da Rocha, J.R.; Dos Santos, L.C.; Oliveira, D.J.A.; et al. Review on stored grain insect pheromones. Int. J. Agron. Agric. Res. 2023, 23, 28–59. [Google Scholar]
- Senevirathne, W.M.S.S.; Premathilaka, P.A.P.I.; Egodawatta, W.C.P.; Morrison, W.R., III; Wijayaratne, L.K.W. Monitoring of Tribolium castaneum (Coleoptera: Tenebrionidae) adults following exposure to abamectin by traps with 4,8-dimethyldecanal and commercial kairomone. J. Stored Prod. Res. 2025, 114, 102742. [Google Scholar] [CrossRef]
- Bhagat, D.; Samanta, S.K.; Bhattacharya, S. Efficient management of fruit pests by pheromone nanogels. Sci. Rep. 2013, 3, 1294. [Google Scholar] [CrossRef] [PubMed]
- Jasrotia, P.; Nagpal, M.; Mishra, C.N.; Sharma, A.K.; Kumar, S.; Kamble, U.; Bhardwaj, A.K.; Kashyap, P.L.; Kumar, S.; Singh, G.P. Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Front. Nanotechnol. 2022, 3, 811056. [Google Scholar] [CrossRef]
- Tao, R.; You, C.; Qu, Q.; Zhang, X.; Deng, Y.; Ma, W.; Huang, C. Recent advances in the design of controlled- and sustained-release micro-nanocarriers of pesticide. Environ. Sci. Nano 2023, 10, 351–371. [Google Scholar] [CrossRef]
- Anukiruthika, T.; Jayas, D.S. Chemical cues in grain storage: A review on semiochemical types, pest behavior, and control strategies. J. Stored Prod. Res. 2025, 113, 102674. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Athanassiou, C.G. Improving stored product insect pest management: From theory to practice. Insects 2019, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Anukiruthika, T.; Jian, F.; Jayas, D.S. Movement and behavioral response of stored product insects under stored grain environments—A review. J. Stored Prod. Res. 2021, 90, 101752. [Google Scholar] [CrossRef]
- Altunç, Y.E.; Sakka, M.K.; Gourgouta, M.; Morrison, W.R.; Güncan, A.; Athanassiou, C.G. Exploring efficacy of pyrethroid-incorporated nets for the control of stored product moth species: Immediate and delayed effects on Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae). J. Econ. Entomol. 2024, 115, 2159–2167. [Google Scholar] [CrossRef]


| Target Species | Study Site | Pheromone Formulation | Measured Outcome | Efficacy (%) * | References |
|---|---|---|---|---|---|
| P. interpunctella, S. cerealella | Laboratory | Controlled pheromone puff system | Reduction in mating | 95–100 | [35] |
| P. interpunctella, E. kuehniella | Food storage facilities (auto-confusion system) | Aerosol dispenser (continuous release) | Trap catch reduction | 60–80 | [20] |
| P. interpunctella | Chocolate factory | MD + parasitoid Habrobracon hebetor | Infestation reduction | 70–90 | [44] |
| Stored-product Lepidoptera (different species) | Processing facilities | Multiple dispenser and attractant types | Trap catch reduction | 50–75 | [38] |
| Various moth pests | Field trials | Hand-applied dispensers | Mating suppression | 80–95 | [40] |
| Grapholita molesta (model species) | Comparative laboratory-field study | Combined pheromone + kairomone | Reduction in mating | 85–95 | [47] |
| Integration Strategy | Mechanism or Contribution | Expected Benefits * | References |
|---|---|---|---|
| Pheromone monitoring and trapping | Establishes population thresholds, tracks MD performance | Optimized timing and placement of MD; early detection | [21,50] |
| Sanitation and structural (facilities) improvements | Removal of residues and sealing of cracks; improved airflow | Reduces pest habitats and pheromone background interference; enhances pheromone distribution | [12,44] |
| Temperature or controlled atmosphere treatments | Physical suppression of pest populations through heat or low oxygen | Reduces residual populations and synergizes with MD by limiting recolonization | [2,4] |
| Biological control (parasitoids) | Parasitism of eggs or larvae complementing adult MD | Synergistic suppression: long-term pest regulation | [26,44] |
| Reduced chemical or fumigant use | Replacement or alternation with semiochemical-based measures | Resistance management, environmental safety, regulatory compliance | [3,27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Adamič Zamljen, S.; Bohinc, T.; Trdan, S. Mating Disruption as a Pest Management Strategy: Expanding Applications in Stored Product Protection. Agronomy 2026, 16, 39. https://doi.org/10.3390/agronomy16010039
Adamič Zamljen S, Bohinc T, Trdan S. Mating Disruption as a Pest Management Strategy: Expanding Applications in Stored Product Protection. Agronomy. 2026; 16(1):39. https://doi.org/10.3390/agronomy16010039
Chicago/Turabian StyleAdamič Zamljen, Sergeja, Tanja Bohinc, and Stanislav Trdan. 2026. "Mating Disruption as a Pest Management Strategy: Expanding Applications in Stored Product Protection" Agronomy 16, no. 1: 39. https://doi.org/10.3390/agronomy16010039
APA StyleAdamič Zamljen, S., Bohinc, T., & Trdan, S. (2026). Mating Disruption as a Pest Management Strategy: Expanding Applications in Stored Product Protection. Agronomy, 16(1), 39. https://doi.org/10.3390/agronomy16010039

