Nitrogen Uptake and Use Efficiency Affected by Spatial Configuration in Maize/Peanut Intercropping in Rain-Fed Semi-Arid Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experimental Design
2.2. Measurements and Methods
- (1)
- Dry Weight of Plant Organs
- (2)
- Crop Yield
- (3)
- Plant Nitrogen Content
- (4)
- Land Equivalent Ratio (LER)
- (5)
- Nitrogen Equivalent Ratio (NER)
- (6)
- Fertilizer-Nitrogen Equivalent Ratio (FNER)
- (7)
- Nitrogen Uptake Advantage (ΔNU)
- (8)
- Nitrogen Use Efficiency Advantage (ΔNUE)
- (9)
- Contribution of Nitrogen Uptake and Utilization Efficiency to Yield Advantage
- (10)
- Aggressivity (Amp) and Nutrient Competition Ratio (CRmp)
2.3. Statistical Analysis
3. Results
3.1. Responses of Dry Matter Accumulation and Yield to Different Planting Patterns
3.2. Effects of Planting Patterns on Land Equivalent Ratio (LER)
3.3. Responses of Nitrogen Uptake and Fertilizer Nitrogen Use Efficiency to Different Planting Patterns
3.4. Inter-Species Competitiveness
4. Discussion
4.1. Regional Adaptation and Resource-Use Characteristics of Maize/Peanut Intercropping in Semi-Arid Sandy Areas
4.2. Spatial Configuration Regulation on Nitrogen Absorption and Utilization Efficiency
4.3. Trade-Off Between Nitrogen Absorption and Utilization Efficiency and the Role of Interspecific Competition
4.4. Management Implications and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chai, Q.; Nemecek, T.; Liang, C.; Gan, Y. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc. Natl. Acad. Sci. USA 2021, 118, e2106382118. [Google Scholar] [CrossRef] [PubMed]
- Stomph, T.J.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.; Li, L.; Simon, J.; Jensen, E.S.; et al. Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 160, pp. 1–50. [Google Scholar] [CrossRef]
- Si, T.; Yang, L.; Lu, J.; Lin, Y.; Yu, X.; Zhang, X.; Zou, X. Application of root exudates derived from peanut/maize intercropping system promotes peanut growth and yield via modulating nitrogen turnover processes. BMC Plant Biol. 2025, 25, 977. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Z.; Liao, D.; Raza, M.A.; Wang, B.; Zhang, J.; Chen, J.; Feng, L.; Wu, X.; Liu, C.; et al. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations. Sci. Rep. 2020, 10, 9504. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, Y.; Liu, Y.; Shen, Y.; Wang, Z. Interspecific interaction and productivity in a dryland wheat/alfalfa strip intercropping. Field Crops Res. 2024, 309, 109335. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, X.; Zhang, S.; Palta, J.A.; Chen, Y. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 2017, 415, 131–144. [Google Scholar] [CrossRef]
- Cong, Z.; Gu, J.; Li, C.; Li, F.; Li, F. Enhancing Soil Conditions and Maize Yield Efficiency through Rational Conservation Tillage in Aeolian Semi-Arid Regions: A TOPSIS Analysis. Water 2024, 16, 2228. [Google Scholar] [CrossRef]
- Han, F.; Guo, S.; Naseer, M.A.; Guo, S.; Guo, R.; Cai, T.; Zhang, P.; Jia, Z.; Yang, D.; Chen, X.; et al. Potential use of maize–peanut intercropping to adapt to drought and nitrogen–shortage impacts. Plant Soil 2024, 499, 255–274. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Y.; Zheng, H.; Olesen, J.E.; Rees, R.M.; Zou, J.; Zhang, L.; Hu, S.; Qiao, B.; Wang, X.; et al. Excessive N applications reduces yield and biological N fixation of summer-peanut in the North China Plain. Field Crops Res. 2023, 302, 109021. [Google Scholar] [CrossRef]
- Dong, B.; Wang, Z.; Stomph, T.J.; Evers, J.B.; van der Putten, P.E.L.; van der Werf, W. Temporal complementarity drives nitrogen uptake in strip intercropping with or without legumes. Agron. Sustain. Dev. 2025, 45, 59. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yang, Z.; Fei, J.; Zhou, X.; Rong, X.; Peng, J.; Luo, G. Intercropping improves maize yield and nitrogen uptake by regulating nitrogen transformation and functional microbial abundance in rhizosphere soil. J. Environ. Manag. 2024, 358, 120886. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 43–85, E-ISBN 9789400774209.
- Lu, R. Soil Agro-Chemical Analysis Methods; China Agricultural Science and Technology Press: Beijing, China, 2000; ISBN 7-80119-925-1. [Google Scholar]
- Mead, R.; Willey, R.W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Li, L. The Ecological Principles and Applications of Biological N2 Fixation in Legumes-Based Intercropping Systems; China Agricultural University Press: Beijing, China, 2013. [Google Scholar]
- Xu, Z.; Li, C.; Zhang, C.; Yu, Y.; van der Werf, W.; Zhang, F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: A meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Li, X.; Yang, S.; Rengel, Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 2001, 71, 123–137. [Google Scholar] [CrossRef]
- Deb, D.; Dutta, S. The robustness of land equivalent ratio as a measure of yield advantage of multi-crop systems over monocultures. Exp. Results 2022, 3, e2. [Google Scholar] [CrossRef]
- McGilchrist, C.A. Analysis of Competition Experiments. Biometrics 1965, 21, 975–985. [Google Scholar] [CrossRef]
- Morris, R.A.; Garrity, D.P. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Res. 1993, 34, 319–334. [Google Scholar] [CrossRef]
- Gao, H.; Meng, W.; Zhang, C.; van der Werf, W.; Zhang, Z.; Wan, S.; Zhang, F. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food Energy Secur. 2020, 9, e187. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Li, C.; Cai, Y.; Song, X.; Zhao, X. Intercropping increases plant water availability and water use efficiency: A synthesis. Agric. Ecosyst. Environ. 2025, 379, 109360. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Feng, C.; Du, G.; Feng, L.; Bai, W.; Zhang, Z.; Zhang, D.; Yang, J.; Li Chao Yang, S.; et al. Intercropping maize and peanut under semi-arid conditions is a zero-sum game. Field Crops Res. 2025, 326, 109833. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.C.; Li, H.G.; Zhang, F.S.; van der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Tan, Y.; Yu, A.; Zhao, C.; Fan, Z.; Yin, W.; Chai, Q.; Cao, W. Strip width ratio expansion with lowered N fertilizer rate enhances N complementary use between intercropped pea and maize. Sci. Rep. 2020, 10, 19969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, P.; Du, Q.; Zhou, Y.; Ren, J.; Jin, F.; Yang, W.; Yong, T. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chin. J. Eco-Agric. 2019, 27, 1183–1194. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, W.; Wen, Y.; Qian, X.; Peixoto, L.; Yang, S.; Meng, S.; Yang, Y.; Zeng, Z.; Zang, H. Temporal and spatial patterns of N2O emissions in maize/legume strip intercropping: Effects of straw incorporation and crop interactions. Field Crops Res. 2025, 326, 109850. [Google Scholar] [CrossRef]
- Xu, K.; Chai, Q.; Hu, F.; Yin, W.; Fan, Z. Postponed nitrogen fertilizer topdressing enhances nitrogen use efficiency in pea/maize intercropping. Plant Soil 2023, 487, 587–603. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, X.; Zhou, D.; Liu, Z.; Shi, X.; Yuan, Y.; Jia, P.; Liu, Y.; Song, P.; Wang, X.; et al. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. Front. Plant Sci. 2022, 13, 957336. [Google Scholar] [CrossRef]
- Weih, M.; Asplund, L.; Bergkvist, G. Assessment of nutrient use in annual and perennial crops: A functional concept for analyzing nitrogen use efficiency. Plant Soil 2011, 339, 513–520. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Z.; Sun, D.; Lei, Y.; Li, Z.; Zheng, Y. Advances in Water and Nitrogen Management for Intercropping Systems: Crop Growth and Soil Environment. Agronomy 2025, 15, 2000. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Vallicrosa, H.; Fleischer, K.; Delgado-Baquerizo, M.; Fernández-Martínez, M.; Cerný, J.; Tian, D.; Kourmouli, A.; Mayoral, C.; Grados, D.; Lu, M.; et al. Nitrogen deposition and climate drive plant nitrogen uptake while soil factors drive nitrogen use efficiency in terrestrial ecosystems. Earth Syst. Dyn. 2025, 16, 1183–1196. [Google Scholar] [CrossRef]
- Jiao, N.; Wang, J.; Ma, C.; Zhang, C.; Guo, D.; Zhang, F.; Jensen, E.S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. Crop J. 2021, 9, 1460–1469. [Google Scholar] [CrossRef]
- Bukomba, J.; Lusk, M.G.; Maltais-Landry, G. Inorganic nitrogen dynamics under cover crops in Florida’s sandy soils. Nutr. Cycl. Agroecosystems 2025, 131, 543–555. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, G.; Wang, E.; Liu, S.; Chang, J.; Zhang, P.; Zhou, H.; Wei, Y.; Zhang, H.; Zhu, Y.; et al. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nat. Food 2024, 5, 59–71. [Google Scholar] [CrossRef]




| Year | Planting Pattern | LERm | LERp | LER |
|---|---|---|---|---|
| 2022 | M2P2 | 0.50 ± 0.03 a | 0.14 ± 0.04 c | 0.65 ± 0.06 b |
| M2P4 | 0.44 ± 0.01 a | 0.30 ± 0.01 ab | 0.73 ± 0.02 ab | |
| M4P4 | 0.51 ± 0.08 a | 0.20 ± 0.01 bc | 0.71 ± 0.09 ab | |
| M8P8 | 0.52 ± 0.02 a | 0.38 ± 0.05 a | 0.90 ± 0.03 a | |
| 2023 | M2P2 | 0.78 ± 0.11 a | 0.07 ± 0.01 b | 0.85 ± 0.10 a |
| M2P4 | 0.43 ± 0.01 b | 0.41 ± 0.03 a | 0.84 ± 0.02 a | |
| M4P4 | 0.72 ± 0.09 ab | 0.38 ± 0.10 a | 1.09 ± 0.16 a | |
| M8P8 | 0.62 ± 0.09 ab | 0.34 ± 0.10 a | 0.95 ± 0.14 a | |
| 2024 | M2P2 | 0.66 ± 0.10 a | 0.12 ± 0.01 c | 0.78 ± 0.09 ab |
| M2P4 | 0.42 ± 0.05 b | 0.23 ± 0.02 b | 0.65 ± 0.07 b | |
| M4P4 | 0.58 ± 0.01 ab | 0.20 ± 0.04 b | 0.79 ± 0.04 ab | |
| M8P8 | 0.66 ± 0.05 a | 0.32 ± 0.01 a | 0.98 ± 0.06 a | |
| Average | M2P2 | 0.65 ± 0.039 a | 0.11 ± 0.029 b | 0.76 ± 0.05 b |
| M2P4 | 0.43 ± 0.039 b | 0.31 ± 0.029 a | 0.74 ± 0.05 b | |
| M4P4 | 0.60 ± 0.039 a | 0.26 ± 0.029 a | 0.86 ± 0.05 ab | |
| M8P8 | 0.60 ± 0.039 a | 0.34 ± 0.029 a | 0.94 ± 0.05 a | |
| p value | Treatment | 0.003 | 0.000 | 0.031 |
| Year | 0.021 | 0.087 | 0.017 | |
| Treat × Year | 0.391 | 0.129 | 0.391 |
| Treatment | ∆NU % | ∆NUE Biomass % | ∆NUE Yield % | LER-1 | P (1 + am + ap) | P (em + ep) | P (amem + apep) |
|---|---|---|---|---|---|---|---|
| M2P2 | −52.74 | 33.47 | 48.01 | −0.35 | 143.10 | −87.48 | 70.46 |
| M2P4 | −31.45 | 53.13 | 21.59 | −0.27 | 91.07 | −7.08 | −0.30 |
| M4P4 | −33.28 | 53.02 | 26.94 | −0.29 | 82.14 | −65.23 | 56.05 |
| M8P8 | −0.37 | −1.74 | −16.85 | −0.10 | −163.96 | 194.19 | −13.50 |
| Treatment | Amp | CRmp |
|---|---|---|
| M2P2 | 0.72 | 3.17 |
| M2P4 | 0.89 | 0.70 |
| M4P4 | 0.63 | 2.39 |
| M8P8 | 0.27 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiang, W.; Zhang, Y.; Feng, L.; Zhang, L.; Bai, W.; Song, W.; Feng, C.; Sun, Z. Nitrogen Uptake and Use Efficiency Affected by Spatial Configuration in Maize/Peanut Intercropping in Rain-Fed Semi-Arid Region. Agronomy 2026, 16, 131. https://doi.org/10.3390/agronomy16010131
Xiang W, Zhang Y, Feng L, Zhang L, Bai W, Song W, Feng C, Sun Z. Nitrogen Uptake and Use Efficiency Affected by Spatial Configuration in Maize/Peanut Intercropping in Rain-Fed Semi-Arid Region. Agronomy. 2026; 16(1):131. https://doi.org/10.3390/agronomy16010131
Chicago/Turabian StyleXiang, Wuyan, Yue Zhang, Liangshan Feng, Lizhen Zhang, Wei Bai, Wenbo Song, Chen Feng, and Zhanxiang Sun. 2026. "Nitrogen Uptake and Use Efficiency Affected by Spatial Configuration in Maize/Peanut Intercropping in Rain-Fed Semi-Arid Region" Agronomy 16, no. 1: 131. https://doi.org/10.3390/agronomy16010131
APA StyleXiang, W., Zhang, Y., Feng, L., Zhang, L., Bai, W., Song, W., Feng, C., & Sun, Z. (2026). Nitrogen Uptake and Use Efficiency Affected by Spatial Configuration in Maize/Peanut Intercropping in Rain-Fed Semi-Arid Region. Agronomy, 16(1), 131. https://doi.org/10.3390/agronomy16010131

