Roots to Riches: Unearthing the Synergy of Intercropping, Microbial Interactions, and Symbiotic Systems for Sustainable Agriculture: A Review
Abstract
1. Introduction
2. Legume–Cereal Intercropping
2.1. Intercropping with Bioenergy Crops
2.2. Agroforestry Mixed Cropping
2.3. Rice Paddy Intercropping
Country | Crops Mixture | Benefits/Results | References |
---|---|---|---|
Algeria | Common bean–Maize | The rhizosphere microbial biomass is enhanced through the facilitation of C and N partitioning between root nodules and the rhizosphere microbial community | Latati et al., 2017 [30] |
China | Soybean–Maize | Prevented the emergence of soybean red crown rot | Gao et al., 2014 [31] |
Alfalfa–Corn–Rye | The intercropping system provided higher forage production performance | Zhang et al., 2015 [32] | |
Soybean–Maize | Enhanced root length density (RLD) in both intercrops compared to the corresponding monocrop | Ren et al., 2017 [33] | |
Soybean–Maize | Selecting the optimal planting arrangement (2Maize–2Soybean) can enhance light interception and influence its distribution between maize and soybean rows under relay-intercropping conditions | Feng et al., 2019 [34] | |
Peanut–Maize–Millet | Applying seedling defoliation in intercropped corn could increase peanut yield without compromising corn yield | Huang et al., 2022 [35] | |
Alfalfa–Spring wheat | Intercropped alfalfa and spring wheat could reduce soil salinity, improve soil structure and ionic balance | Su et al., 2024 [36] | |
Ethiopia | Faba bean–Barley | Intercropping faba bean with barley produced a higher yield than monocropping of each crop species | Agegnehu et al., 2006 [37] |
Bean–Maize | Intercropping reduced weeds, it was more productive and cost-effective than single-crop farming | Workayehu and Wortmann, 2011 [38] | |
France | Pea–Durum wheat | Crude protein content in grain dry matter of durum wheat was significantly higher in intercrops than in monocrops (14% on average) | Bedoussac and Justes, 2010 [39] |
India | Legumes–Pulses–Little millet | Soil microbial population and enzymatic activity were higher in little millet-based legume intercropping compared to the monocropping | Keerthanapriya et al., 2019 [40] |
Iran | Legumes-Cereals | Acceptable feed production and quality can be produced due to the low dry matter content of legumes | Eskandari et al., 2009 [41] |
Sword bean–White Bean–Maize | Population density of the two-spotted spider, Tetranychus urticae, was significantly reduced (62–83%) | Ziaie-Juybari et al., 2021 [42] | |
Vetch–Barley | Intercropped barley and vetch at a ratio of 80:20 improved the grain yield, its components, and forage quality compared to other intercropping ratios | Kahraryan et al., 2021 [43] | |
Clover–Sorghum | The intercropping system under 75% soil moisture deficit irrigation regime is recommended for semi-arid regions due to saving water while producing desired forage yield and quality | Pourali et al., 2023 [44] | |
Italy | Pea–Faba bean–Barley | Pea-barley intercropping enhanced the overall sustainability of the rotation by promoting greater complementarity in N resource utilization | Monti et al., 2019 [45] |
Kenya | Bean–Maize | Greater weed control increased overall yields, and the highest Land Equivalent Ratio (LER) | Maina et al., 1997 [46] |
Lithuania | Field pea–Barley–Wheat–Oat–Triticale | The number of weeds was significantly lower in peas-cereals stands than with peas alone | Deveikyte et al., 2009 [47] |
Northwest China | Faba Bean–Wheat–Maize | The top 20 cm of soil organic C and N content was 4% ± 1% and 11% ± 1% higher in intercrops than in monocrops, respectively | Cong et al., 2015 [48] |
Pakistan | Soybean–Maize | Strip intercropping systems can conserve 20–50% of water and land | Raza et al., 2022 [49] |
Poland | Soybean–Winter barley | Crop protein yields protection under unfavorable weather conditions | Świtek et al., 2024 [50] |
Field pea–Maize | Intercropping for forage increases protein production | Sowiński, 2024 [51] | |
South Africa | Cowpea–Sorghum | LER increased productivity by 46% across all intercrop systems | Chimonyo et al., 2016 [52] |
Spain | Faba bean–Pea–Oat | Orobanche crenata infection on faba bean and pea is reduced when these host crops are intercropped with oat | Fernandez-Aparicio et al., 2007 [53] |
Türkiye | Runner bean–Corn | The ammonia-N levels linearly increase from 0.90% to 2.218% in intercropping areas mixed with beans | Bildirici et al., 2009 [54] |
3. Outlook and Legume Production in Industrialized Nations
4. Interactions Between Soil–Plant–Microbes in an Intercropping System
4.1. Dynamics of Soil–Plant-Microbe Interaction
4.2. Rhizospheric Interactions in Legume–Cereal Intercropping System
4.2.1. Rhizosphere Microbial Community and the Role of Exudates in Shaping These Communities
4.2.2. Plant-Microbe Interactions
4.3. The Role of Soil Organisms in Nutrient Cycling in Legume–Cereal Intercropping
5. Ecological Challenges and the Role of Legume–Cereal Intercropping in the Development of Sustainable Agriculture: Opportunities and Limitations
5.1. Analytical Framework for Synthesis
5.2. The Environmental and Economic Potential of Legume–Cereal Intercropping
5.3. Addressing Ecological Challenges
- Climate Change
- Soil Degradation
- Loss of Biodiversity
- Water Pollution
5.4. Future of Sustainable Agriculture: Scaling up Intercropping Practices
5.5. Limitations, Trade-Offs, and Conflicting Results
- Neutral or negative yield outcome
- Management complexity and cost
- Variable pest and disease dynamics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The Millennium Development Goals Report. 2015. Available online: https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf (accessed on 16 March 2024).
- United Nations. World Population Prospects. 2017. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 16 March 2024).
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Meena, R.S.; Meena, V.S.; Meena, S.K.; Verma, J.P. Towards the plant stress mitigate the agricultural productivity: A book review. J. Clean Prod. 2015, 102, 552–553. [Google Scholar] [CrossRef]
- Giller, K.; Beare, M.; Lavelle, P.; Izac, A.-M.; Swift, M. Agricultural intensification, soil biodiversity and agroecosystem function. Appl. Soil Ecol. 1997, 6, 3–16. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Fujita, K.; Ofosu-Budu, K.G.; Ogata, S. Biological nitrogen fixation in mixed legume–cereal cropping systems. Plant Soil 1992, 141, 155–175. [Google Scholar] [CrossRef]
- Lal, R. Soil quality and ethics: The human dimension. In Food Security and Soil Quality, Advances in Soil Science; Lal, R., Stewart, B.A., Eds.; Taylor & Francis (CRC Press): Boca Raton, FL, USA, 2010; pp. 301–308. [Google Scholar] [CrossRef]
- Verma, J.P.; Jaiswal, D.K.; Meena, V.S.; Kumar, A.; Meena, R. Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: A book review. J. Clean. Prod. 2015, 107, 793–794. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Manna, M.C.; Dayal, D.; Wanjari, R.H. Carbon sequestration potential and sustainable yield index for groundnut- and fallow-based cropping systems. J. Agric. Sci. 2006, 144, 249–259. [Google Scholar] [CrossRef]
- Abbo, S.; Lev-Yadun, S.; Gopher, A. Agricultural origins: Centers and non-centers; a near eastern reappraisal. Crit. Rev. Plant Sci. 2010, 29, 317–328. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Moreira, B.; Gonçalves, A.; Pinto, L.; Prieto, M.A.; Carocho, M.; Caleja, C.; Barros, L. Intercropping Systems: An Opportunity for Environment Conservation within Nut Production. Agriculture 2024, 14, 1149. [Google Scholar] [CrossRef]
- Toker, P.; Canci, H.; Turhan, I.; Isci, A.; Scherzinger, M.; Kordrostami, M.; Yol, E. The advantages of intercropping to improve productivity in food and forage production—A review. Plant Prod. Sci. 2024, 27, 155–169. [Google Scholar] [CrossRef]
- Yu, R.-P.; Dresbøll, D.B.; Finckh, M.R.; Justes, E.; van der Werf, W.; Fletcher, A.; Carlsson, G.; Li, L. Intercropping: Ecosystem functioning and sustainable agriculture. Plant Soil. 2025, 506, 1–6. [Google Scholar] [CrossRef]
- Stone, T.F.; Alford, J.; Bečvářová, P.H.; Eisa, M.A.M.; El-Naggar, A.H.; Espinosa, M.J.C.; Frąc, M.; Álvaro-Fuentes, J.; García-Gil, J.C.; Krabbe, K.; et al. Food system strategies to increase grain legume-cereal intercropping in Europe. Agroecol. Sustain. Food Syst. 2024, 49, 518–542. [Google Scholar] [CrossRef]
- Ziaie, G.; Bünemann, E.K.; Oberson, A. Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant Soil. 2017, 415, 5537–5555. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sust. Develop. 2020, 40, 1–9. [Google Scholar] [CrossRef]
- Alvey, S.; Bagayoko, M.; Neumann, G.; Buerkert, A. Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant Soil. 2001, 231, 45–54. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S.; Ogindo, H.O. A simulation model of cereal—Legume intercropping systems for semi-arid regions. Field Crop. Res. 2005, 93, 10–22. [Google Scholar] [CrossRef]
- Latati, M.; Blavet, D.; Alkama, N.; Laoufi, H.; Drevon, J.J.; Gérard, F.; Pansu, M.; Ounane, S.M. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in alkaline soil. Plant Soil. 2014, 385, 181–191. [Google Scholar] [CrossRef]
- Griffon, T.T. The sensitivity of ants to environmental change: A preliminary analysis. In The Other 99%: The Conservation and Biodiversity of Invertebrates; Ponder, W., Lunney, D., Eds.; Royal Zoological Society of New South Wales: Sydney, NSW, Australia, 1999; pp. 95–100. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Schrey, S.D. Bioenergy Crops: Current Status and Future Prospects. Agronomy 2021, 11, 316. [Google Scholar] [CrossRef]
- Tacconi, F.; Waha, K.; Ojeda, J.J.; Leith, P.; Mohammed, C.; Venables, W.N.; Rana, J.C.; Bhardwaj, R.; Yadav, R.; Ahlawat, S.P.; et al. Farm Diversification Strategies, Dietary Diversity and Farm Size: Results from a Cross-Country Sample in South and Southeast Asia. Global Food Security 2023, 38, 100706. [Google Scholar] [CrossRef]
- Marzouk, S.H.; Tindwa, H.J.; Amuri, N.A.; Semoka, J.M. An Overview of Underutilized Benefits Derived from Azolla as a Promising Biofertilizer in Lowland Rice Production. Heliyon 2023, 9, e13040. [Google Scholar] [CrossRef]
- FAO. Integrated Agriculture–Aquaculture: A Primer; FAO Fisheries Technical Paper 407; FAO: Rome, Italy, 2001; Available online: https://www.fao.org/4/ac221e/ac221e00.htm (accessed on 16 March 2024).
- Zhang, Y.; Guan, C.; Li, Z.; Luo, J.; Ren, B.; Chen, C.; Xu, Y.; Ding, J.; Huang, H. Review of Rice–Fish–Duck Symbiosis System in China—One of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS). Sustainability 2023, 15, 1910. [Google Scholar] [CrossRef]
- Chen, W.; Kang, Z.; Yang, Y.; Li, Y.; Qiu, R.; Qin, J.; Li, H. Interplanting of Rice Cultivars with High and Low Cd Accumulation Can Achieve the Goal of “Repairing While Producing” in Cd-Contaminated Soil. Science of The Total Environment 2022, 2, 158229. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Liao, X.; Li, H.; Xie, Y.; Wei, W.; Chen, J.; Liu, Z.; Ji, X. Remediation of Cd Contaminated Paddy Fields by Intercropping of the High- and Low-Cd-Accumulating Rice Cultivars. Science of The Total Environment 2023, 878, 163133. [Google Scholar] [CrossRef] [PubMed]
- Latati, M.; Aouiche, A.; Tellah, S.; Laribi, A.; Benlahrech, S.; Kaci, G.; Ouarem, F.; Ounane, S.M. Intercropping maize and common bean enhances microbial carbon and nitrogen availability in low phosphorus soil under Mediterranean conditions. Eur. J. Soil Biol. 2017, 80, 9–18. [Google Scholar] [CrossRef]
- Gao, X.; Wu, M.; Xu, R.; Wang, X.; Pan, R.; Kim, H.-J.; Liao, H.; Yang, C.-H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE 2014, 9, e95031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yin, B.; Xie, Y.; Li, J.; Yang, Z.; Zhang, G.; Cheng, Z. Legume-cereal intercropping improves forage yield, quality and degradability. PLoS ONE 2015, 10, e0144813. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Wang, X.L.; Zhang, S.Q.; Palta, J.A.; Chen, Y.L. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 2017, 415, 131–144. [Google Scholar] [CrossRef]
- Feng, L.; Raza, M.A.; Chen, Y.; Bin Khalid, M.H.; Meraj, T.A.; Ahsan, F.; Fan, Y.; Du, J.; Wu, X.; Song, C.; et al. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS ONE 2019, 14, e0212885. [Google Scholar] [CrossRef]
- Huang, B.; Zou, X.; Xu, H.; Xu, J.; Liu, H.; Sun, W.; Gong, L.; Niu, S.; Feng, L.; Yang, N.; et al. Seedling defoliation of cereal crops increases peanut growth and yield in an intercropping system. Crop. J. 2022, 10, 418–425. [Google Scholar] [CrossRef]
- Su, K.; Mu, L.; Zhou, T.; Kamran, M.; Yang, H. Intercropped alfalfa and spring wheat reduces soil alkali-salinity in the arid area of northwestern China. Plant Soil 2024, 499, 275–292. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar] [CrossRef]
- Workayehu, T.; Wortmann, C.S. Maize–bean intercrop weed suppression and profitability in Southern Ethiopia. Agron. J. 2011, 103, 1058–1063. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 2010, 330, 19–35. [Google Scholar] [CrossRef]
- Keerthanapriya, S.; Hemalatha, M.; Ramanathan, S.; Prabina, B.J. Studies on microbial dynamics in little millet (Panicum sumatrense L.) based intercropping system under rainfed condition. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 819–830. [Google Scholar] [CrossRef]
- Eskandari, H.; Ghanbari, A.; Javanmard, A. Intercropping of cereals and legumes for forage production. Not. Sci. Biol. 2009, 1, 7–13. [Google Scholar] [CrossRef]
- Ziaie-Juybari, H.; Pirdashti, H.; Abo-Elyousr, K.A.M.; Mottaghian, A. Abiotic benefits of intercropping legumes and maize to reduce pests. Archiv. Phytopathol. Plant Prot. 2021, 54, 1539–1552. [Google Scholar] [CrossRef]
- Kahraryan, B.; Farahvash, F.; Mohammadi, S.; Mirshekari, B.; Rashidi, V. Evaluation of yield, yield components and nutritive value in intercropping of barley with vetch. Plant Sci. Today 2021, 8, 373–379. [Google Scholar] [CrossRef]
- Pourali, S.; Aghayari, F.; Ardakani, M.R.; Paknejad, F.; Golzardi, F. Benefits from intercropped forage sorghum–red clover under drought stress conditions. Gesunde Pflanz. 2023, 75, 1769–1780. [Google Scholar] [CrossRef]
- Monti, M.; Pellicanò, A.; Pristeri, A.; Badagliacca, G.; Preiti, G.; Gelsomino, A. Cereal/grain legume intercropping in rotation with durum wheat in crop/ livestock production systems for Mediterranean farming system. Field Crop. Res. 2019, 240, 23–33. [Google Scholar] [CrossRef]
- Maina, J.M. Effects of Intercropping on Weeds and Weed Management in Maize Growing in Kenya. Ph.D. Thesis, University of Reading, Reading, UK, 1997. [Google Scholar]
- Deveikyte, I.; Kadziuliene, Z.; Sarunaite, L. Weed suppression ability of spring cereal crops and peas in pure and mixed stands. Agron. Res. 2009, 7, 239–244. Available online: https://www.researchgate.net/publication/268354399 (accessed on 16 March 2024).
- Cong, W.-F.; Hoffland, E.; Li, L.; Six, J.; Sun, J.-H.; Bao, X.-G.; Zhang, F.-S.; Van Der Werf, W. Intercropping enhances soil carbon and nitrogen. Global Chang. Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.; Yasin, H.S.; Gul, H.; Qin, R.; Din, A.M.U.; Bin Khalid, M.H.; Hussain, S.; Gitari, H.; Saeed, A.; Wang, J.; et al. Maize/soybean strip intercropping produces higher crop yields and saves water under semi-arid conditions. Front. Plant Sci. 2022, 13, 1006720. [Google Scholar] [CrossRef] [PubMed]
- Świtek, S.; Majchrzycki, W.; Taras, A.; Piechota, T. Relay intercropping of soybean and winter barley in Polish climatic conditions—Importance of strip width and yearly weather. Agronomy 2024, 14, 2736. [Google Scholar] [CrossRef]
- Sowiński, J. Intercropping maize (Zea mays L.) and field beans (Vicia faba L.) for forage, increases protein production. Sci. Rep. 2024, 14, 16419. [Google Scholar] [CrossRef] [PubMed]
- Chimonyo, V.; Modi, A.; Mabhaudhi, T. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agric. Wat. Manag. 2016, 177, 317–328. [Google Scholar] [CrossRef]
- Fernandez-Aparicio, M.; Sillero, J.C.; Rubiales, D. Intercropping with cereals reduces infection by orobanche crenata in legumes. Crop Prot. 2007, 26, 1166–1172. [Google Scholar] [CrossRef]
- Bildirici, N.; Aldemir, R.; Karsli, M.A.; Dogan, Y. Potential benefits of intercropping corn with runner bean for small-sized farming system. Asian-Australasian J. Anim. Sci. 2009, 22, 836–842. [Google Scholar] [CrossRef]
- Pierre, J.F.; Latournerie-Moreno, L.; Garruña, R.; Jacobsen, K.L.; Laboski, C.A.M.; Us-Santamaría, R.; Ruiz-Sánchez, E. Effect of maize–legume intercropping on maize physio-agronomic parameters and beneficial insect abundance. Sustainability 2022, 14, 12385. [Google Scholar] [CrossRef]
- Homulle, Z.; George, T.S.; Karley, A.J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant Soil 2022, 471, 1–26. [Google Scholar] [CrossRef]
- Li, X.; Mu, Y.; Cheng, Y.; Liu, X.; Nian, H. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol. Plant. 2013, 35, 1113–1119. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Phillips, R.D. Starchy legumes in human nutrition, health and culture. Plant Foods Hum. Nutr. 1993, 44, 195–211. [Google Scholar] [CrossRef]
- Everwand, G.; Dauber, J.; Cass, S.; Williams, M.; Stout, J. Legume crops and biodiversity. In Legumes in Cropping Systems; Murphy-Bokern, D., Stoddard, F.L., Watson, C.A., Eds.; Wallingford: CAB International: Oxfordshire, UK, 2017; pp. 55–69. [Google Scholar]
- European Commission. EU Agricultural Outlook for Markets and Income, 2018–2030; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Commission. Communication From the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions—Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Peoples, M.B.; Hauggaard-Nielsen, H.; Huguenin-Elie, O.; Jensen, E.S.; Justes, E.; Williams, M. The Contributions of Legumes to Reducing the Environmental Risk of Agricultural Production. In Agroecosystem Diversity; Elsevier Inc.: Philadelphia, PA, USA, 2019; pp. 123–143. [Google Scholar] [CrossRef]
- Marzinzig, B.; Brünjes, L.; Biagioni, S.; Behling, H.; Link, W.; Westphal, C. Bee pollinators of faba bean (Vicia faba L.) differ in their foraging behaviour and pollination efficiency. Agric. Ecosyst. Environ. 2018, 264, 24–33. [Google Scholar] [CrossRef]
- Kirkegaard, J.; Christen, O.; Krupinsky, J.; Layzell, D. Break crop benefits in temperate wheat production. Field Crop. Res. 2008, 107, 185–195. [Google Scholar] [CrossRef]
- Nemecek, T.; von Richthofen, J.-S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Peoples, M.B.; Hauggaard-Nielsen, H.; Jensen, E.S. The potential environmental benefits and risks derived from legumes in rotations. In Nitrogen Fixation in Crop Production; Agronomy Monographs; Emerich, D.W., Krishnan, H.B., Eds.; American Society of Agronomy (ASA): Madison, WI, USA, 2009; Volume 52, pp. 349–385. [Google Scholar]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Zander, P.; Amjath-Babu, T.S.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; et al. Grain legume decline and potential recovery in European agriculture: A review Agron. Sustain. Dev. 2016, 36, 26. [Google Scholar] [CrossRef]
- Chalk, P.M. Dynamics of biologically fixed N in legume-cereal rotations: A review. Aust. J. Agric. Res. 1998, 49, 303–316. [Google Scholar] [CrossRef]
- Köpke, U.; Nemecek, T. Ecological services of faba bean. Field Crop. Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Assembleia da República. Lei n◦11/2017 de 17 de abril—Estabelece a obrigatoriedade de existência de opção vegetariana nas ementas das cantinas e refeitórios públicos. Diário da República −1.ª série/N.º 75; Assembleia Da República: Lisbon, Portugal, 2017.
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.; Vanhatalo, A.; et al. Grain legume production and use in European agricultural systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef]
- Ferreira, H.; Pinto, E.; Vasconcelos, M.W. Legumes as a cornerstone of the transition toward more sustainable agri-food systems and diets in Europe. Front. Sustain. Food Syst. 2021, 5, 694121. [Google Scholar] [CrossRef]
- European Commission. Market Developments and Policy Evaluation Aspects of the Plant Protein Sector in the EU—Final Report; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- FAOstat. Statistics Database of the Food and Agriculture Organization of the United Nations. 2016. Available online: http://www.fao.org/statistics/databases/en/ (accessed on 30 October 2016).
- Eurostat. European Commission, Brussels, Belgium. 2016. Available online: http://ec.europa.eu/eurostat (accessed on 29 October 2016).
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT Statistical Database; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 August 2025).
- Yu, L.; Tang, Y.; Wang, Z.; Gou, Y.; Wang, J. Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/soybean strip intercropping. Nutr. Cycl. Agroecosyst. 2019, 113, 35–49. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Jusop, S.; Naher, U.A.; Othman, R.; Razi, M.I.; Andrade, P.; Zhou, D. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci. World J. 2013, 2013, 272409. [Google Scholar] [CrossRef]
- García-Orenes, F.; Morugán-Coronado, A.; Zornoza, R.; Scow, K.; Herrera-Estrella, A. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem. PLoS ONE 2013, 8, 80522. [Google Scholar] [CrossRef]
- Prashar, P.; Shah, S. Impact of fertilizers and pesticides on soil microflora in agriculture. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2016; pp. 331–361. [Google Scholar] [CrossRef]
- Rooney, D.C.; Clipson, N. Impact of sheep urine deposition and plant species on ammonia-oxidizing bacteria in upland grassland soil. Can. J. Microbiol. 2008, 54, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Weir, T.L.; van der Lelie, D.; Vivanco, J.M. Rhizosphere chemical dialogues: Plant–microbe interactions. Curr. Opin. Biotechnol. 2009, 20, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Uroz, S.; Courty, P.E.; Oger, P. Plant symbionts are engineers of the plant associated microbiome. Trend Plant Sci. 2019, 24, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhu, Z.; Wei, L.; Wu, J.; Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes. Rhizosphere 2019, 10, 100145. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant health: Feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol Biotechnol. 2019, 103, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.I.; Ceccherini, M.T.; Sunseri, F.; Lupini, A. Rhizosphere as hotspot for plant-soil-microbe interaction. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer: Singapore, 2020; pp. 17–43. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, L.; Chen, P.; Du, Q.; Pang, T.; Song, C.; Wang, X.; Liu, W.; Yang, W.; Yong, T. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. J. Integr. Agric. 2019, 18, 2006–2018. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Pypers, P.; Mugendi, D.; Kung’u, J.; Mugwe, J.; Merckx, R.; Vanlauwe, B. A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop. Res. 2010, 115, 132–139. [Google Scholar] [CrossRef]
- Song, Y.N.; Zhang, F.S.; Marschner, P.; Fan, F.L.; Gao, H.M.; Bao, X.G.; Sun, J.H.; Li, L. Effect of intercropping on crop yield and chemical and microbiological properties in the rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol. Fertil. Soil 2007, 43, 565–574. [Google Scholar] [CrossRef]
- Sun, Y.M.; Zhang, N.N.; Wang, E.T.; Yuan, H.L.; Yang, J.S.; Chen, W.X. Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiol. Ecol. 2009, 70, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Wang, N.; Hu, Y.B.; Sun, G.Y. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system. Microbiol. Open 2018, 7, e00555. [Google Scholar] [CrossRef]
- Alvey, S.; Yang, C.-H.; Buerkert, A.; Crowley, D.E. Cereal/legume rotation effects on rhizosphere bacterial community structure in West Arican soils. Biol. Fertil. Soil 2003, 37, 73–82. [Google Scholar] [CrossRef]
- Li, H.; Shen, J.; Zhang, F.; Marschner, P.; Cawthray, G.; Rengel, Z. Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biol. Fertil. Soil 2009, 46, 79–91. [Google Scholar] [CrossRef]
- Song, C.; Wang, W.; Gan, Y.; Wang, L.; Chang, X.; Wang, Y.; Yang, W. Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercropping systems. J. Sci. Food Agric. 2022, 102, 1430–1442. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Bernard, L.; Brauman, A.; Daufresne, T.; Deleporte, P.; Desclaux, D.; Souche, G.; Placella, S.A.; Hinsinger, P. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol. Biochem. 2014, 75, 86–93. [Google Scholar] [CrossRef]
- Wang, D.; Marschner, P.; Solaiman, Z.; Rengel, Z. Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil Biol. Biochem. 2007, 39, 249–256. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.M.; Singh, B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Zhang, R.F.; Vivanco, J.M.; Shen, Q.R. The unseen rhizosphere root-soil-microbe interactions for crop production. Curr. Opin. Microbiol. 2017, 37, 8–14. [Google Scholar] [CrossRef]
- Fridley, J.D. The influence of species diversity on ecosystem productivity: How, where, and why? Oikos 2001, 93, 514–526. [Google Scholar] [CrossRef]
- Hinsinger, P.; Betencourt, E.; Bernard, L.; Brauman, A.; Plassard, C.; Shen, J.; Tang, X.; Zhang, F. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 2011, 156, 1078–1086. [Google Scholar] [CrossRef]
- Callaway, R.M. Direct mechanisms for facilitation. In Positive Interactions and Interdependence in Plant Communities; Callaway, R.M., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 15–59. [Google Scholar] [CrossRef]
- Coba de la Pena, T.; Fedorova, E.; Pueyo, J.J.; Lucas, M.M. The symbiosome: Legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front. Plant. Sci. 2018, 8, 2229. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K. Carbon and Nitrogen in the Terrestrial Environment; Springer: Berlin/Heidelberg, Germany, 2008; Volume XII, p. 430. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.B. Nitrogen rhizodeposition of legumes. A Review. Agron. Sust. Develop. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Hamel, C.; Cutforth, H.; Wang, H. Strategies for reducing the carbon footprint of field crops for semiarid areas—A review. Agron. Sust. Develop. 2011, 31, 643–656. [Google Scholar] [CrossRef]
- Begam, A.; Mondal, R.; Dutta, S.; Banerjee, H. Impact of Cereal+legume Intercropping Systems on Productivity and Soil Health —A Review. Int. J. Bio-Res. Stress Manag. 2020, 11, 274–286. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.Y.; Wu, H.M.; Zhang, F.F.; Li, C.J.; Li, X.X.; Lambers, H.; Li, L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl. Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef] [PubMed]
- Vora, S.M.; Joshi, P.; Belwalkar, M.; Archana, G. Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea—Maize intercropping system. Rhizosphere 2021, 18, 100331. [Google Scholar] [CrossRef]
- Layek, J.; Das, A.; Mitran, T.; Nath, C.; Meena, R.S.; Yadav, G.S.; Lal, R. Cereal+Legume intercropping: An option for improving productivity and sustaining soil health. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer: Singapore, 2018; pp. 347–386. [Google Scholar] [CrossRef]
- Dang, K.; Gong, X.; Zhao, G.; Wang, H.; Ivanistau, A.; Feng, B. Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: A potential mechanism for increasing proso millet grain yield. Front. Microbiol. 2020, 11, 601054. [Google Scholar] [CrossRef]
- Han, Y.; Dong, Q.; Zhang, K.; Sha, D.; Jiang, C.; Yang, X.; Liu, X.; Zhang, H.; Wang, X.; Guo, F.; et al. Maize-peanut rotational strip intercropping improves peanut growth and soil properties by optimizing microbial community diversity. Peer J. 2022, 10, 13777. [Google Scholar] [CrossRef]
- Bargaz, A.; Noyce, G.L.; Fulthorpe, R.; Carlsson, G.; Furze, J.R.; Jensen, E.S.; Dhiba, D.; Isaac, M.E. Species interactions enhance root allocation, microbial diversity, and P acquisition in intercropped wheat and soybean under P deficiency. Appl. Soil Ecol. 2017, 120, 179–188. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr. Cycl. Agroecosyst. 2003, 65, 289–300. [Google Scholar] [CrossRef]
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015, 16, 237–251. [Google Scholar] [CrossRef]
- Mazzafera, P.; Favarin, J.L.; Andrade, S.A.L.D. Editorial: Intercropping systems in sustainable agriculture. Front. Sustain. Food Syst. 2021, 5, 634361. [Google Scholar] [CrossRef]
- Pickett, J.A.; Khan, Z.R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges. New Phytolog. 2016, 212, 856–870. [Google Scholar] [CrossRef]
- Pélissier, R.; Violle, C.; Morel, J.B. Plant immunity: Good fences make good neighbors? Curr. Opin. Plant Biol. 2021, 62, 102045. [Google Scholar] [CrossRef]
- Huang, D.; Sun, M.; Han, M.; Zhang, Z.; Miao, Y.; Zhang, J.; Yao, Y. Volatile organic compounds (VOCs) regulate the spatial distribution of Lepidoptera insects in an orchard ecosystem. Biol. Contr. 2020, 149, 104311. [Google Scholar] [CrossRef]
- Mohebbi, A.H.; Harutyunyan, S.S.; Chorom, M. Phytoremediation potential of three plants grown in monoculture and intercropping with date palm in contaminated soil. Internat. J. Agric. Crop Sci. 2012, 4, 1523–1530. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Chemosphere phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Ong, S.M.C.; Chu, Z. Progress of phytoremediation: Focus on new plant and molecular mechanism. J. Plant Biol. Soil Health 2013, 1, 1–5. [Google Scholar]
- Ebbisa, A. Mechanisms underlying cereal/legume intercropping as nature-based biofortification: A review. Food Prod. Process. Nutr. 2022, 4, 19. [Google Scholar] [CrossRef]
- Wiche, O.; Székely, B.; Kummer, N.; Moschner, C. Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution. Int. J. Phytorem. 2016, 18, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Fang, L.; Wang, M.; Jiang, M.; Shen, G. Intercropping of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals. J. Chem. 2018, 2018, 7803408. [Google Scholar] [CrossRef]
- Cao, X.; Dong, Q.; Mao, L.; Yang, X.; Wang, X.; Zou, Q. Enhanced Phytoextraction Technologies for the Sustainable Remediation of Cadmium-Contaminated Soil Based on Hyperaccumulators—A Review. Plants 2025, 14, 115. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Yang, X.; Zou, Q.; Mao, L.; Dong, Q.; He, Z. Intercropping Coupled with Inoculation on Cd Accumulation in a Sedum alfredii-Oilseed Rape System under Various Field Conditions. Environmental Technology & Innovation 2024, 35, 103709. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Yang, G.; Ma, S.; Shao, D. Intercropping Can Accelerate the Phytoremediation of Cd-Contaminated Soil. Science of The Total Environment 2024, 956, 177350. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Mo, Q.; Li, Y.; Meng, D.; Li, H. Intercropping Efficiency of Pteris vittata with Two Legume Plants: Impacts of Soil Arsenic Concentrations. Ecotoxicology and Environmental Safety 2023, 259, 115004. [Google Scholar] [CrossRef]
- Hiltner, L. Beiträge zur Mykorrhizafrage: Über die biologische und physiologische Bedeutung der endotrophen Mykorrhiza. Nat. Wiss. Z. Niederbayern. 1903, 1, 1–17. [Google Scholar]
- Hartmann, A.; Rothballer, M.; Schmid, M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 2008, 312, 7–14. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Pivato, B.; Semblat, A.; Guégan, T.; Jacquiod, S.; Martin, J.; Deau, F.; Moutier, N.; Lecomte, C.; Burstin, J.; Lemanceau, P. Rhizosphere Bacterial Networks, but Not Diversity, Are Impacted by Pea-Wheat Intercropping. Front. Microbiol. 2021, 12, 674556. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.L.; Zhang, F.S.; Song, Y.N.; Sun, J.H.; Bao, X.G.; Guo, T.W.; Li, L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil 2006, 283, 275–286. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen distribution and soil microbial community characteristics in a legume–cereal intercropping system: A review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Wahbi, S.; Maghraoui, T.; Hafidi, M.; Sanguin, H.; Oufdou, K.; Prin, Y.; Duponnois, R.; Galiana, A. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis. Appl. Soil Ecol. 2016, 107, 91–98. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; McElroy, M.S.; Chapagain, T.; Papadopoulos, Y.A.; Raizada, M.N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron. Sustain. Dev. 2016, 36, 58. [Google Scholar] [CrossRef]
- Tripathi, S.C.; Venkatesh, K.; Meena, R.P.; Chander, S.; Singh, G.P. Sustainable intensification of maize and wheat cropping system through pulse intercropping. Sci. Rep. 2021, 11, 18805. [Google Scholar] [CrossRef]
- Xiao, Y.B.; Li, L.; Zhang, F.S. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect N15 techniques. Plant Soil 2004, 262, 45–54. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.C.; Li, X.L.; Zhang, F.S.; Christie, P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil 1999, 212, 105–114. [Google Scholar] [CrossRef]
- Yong, T.W.; Liu, X.M.; Yang, F.; Song, C.; Wang, X.C.; Liu, W.G.; Su, B.Y.; Zhou, L.; Yang, W.Y. Characteristics of Nitrogen Uptake, Use and Transfer in a Wheat-Maize-Soybean Relay Intercropping System. Plant Prod. Sci. 2015, 18, 388–397. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Freney, J.R.; Simpson, J.R. Assessing nitrogen transfer from legumes to associated grasses. Soil Biol. Biochem. 1985, 17, 575–577. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, X.; Gao, Q.; Zhang, H.; Gao, Y. Root Contact between Maize and Alfalfa Facilitates Nitrogen Transfer and Uptake Using Techniques of Foliar 15N-Labeling. Agronomy 2020, 10, 360. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, L.; Le Bayon, R.C.; Kohler, F.; Page, V.; Jossi, M.; Gobat, J.M.; Martinoia, E.; Aragno, M. Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: A one-year microcosm study on lupin and wheat. Soil Biol. Biochem. 2008, 40, 1772–1780. [Google Scholar] [CrossRef]
- Madsen, L.H.; Tirichine, L.; Jurkiewicz, A.; Sullivan, J.T.; Heckmann, A.B.; Bek, A.S.; Ronson, C.W.; James, E.K.; Stougaard, J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun. 2010, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.; Lagunas, B.; Gifford, M.L. Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis. Front. Microbiol. 2020, 11, 585749. [Google Scholar] [CrossRef]
- Hirsch, M.; Thomas ALarue Doyle, J. Is the Legume Nodule a Modified Root or Stem or an Organ sui generis? Crit. Rev. Plant Sci. 1997, 16, 361–392. [Google Scholar] [CrossRef]
- Peters, N.K.; Frost, J.W.; Long, S.R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 1986, 233, 977–980. [Google Scholar] [CrossRef]
- Lynch, J.M. Introduction: Some consequences of microbial rhizosphere competence for plant and soil. In The Rhizosphere; Lynch, J.M., Ed.; John Wiley & Sons Ltd.: West Sussex, UK, 1990; pp. 1–10. [Google Scholar]
- Kapoor, R.; Mukerji, K.G. Rhizosphere microbial community dynamics. In Microbial Activity in the Rhizosphere; Mukerji, K.G., Manoharachary, C., Singh, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 55–66. [Google Scholar] [CrossRef]
- Turner, T.R.; Ramakrishnan, K.; Walshaw, J.; Heavens, D.; Alston, M.; Swarbreck, D.; Osbourn, A.; Grant, A.; Poole, P.S. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013, 7, 2248–2258. [Google Scholar] [CrossRef]
- Liu, Y.C.; Qin, X.M.; Xiao, J.X.; Tang, L.; Wei, C.Z.; Wei, J.J.; Zheng, Y. Intercropping influences component and content change of flavonoids in root exudates and nodulation of faba bean. J. Plant Interact. 2017, 12, 187–192. [Google Scholar] [CrossRef]
- Xiong, C.; Singh, B.K.; He, J.Z.; Han, Y.L.; Li, P.P.; Wan, L.H.; Meng, G.Z.; Liu, S.Y.; Wang, J.T.; Wu, C.F.; et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 2021, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Wang, Y.; Zhang, Y.; Fei, J.; Rong, X.; Peng, J.; Yin, L.; Zhou, X.; Luo, G. Enhanced productivity of maize through intercropping is associated with community composition, core species, and network complexity of abundant microbiota in rhizosphere soil. Geoderma 2024, 442, 116786. [Google Scholar] [CrossRef]
- Huang, X.F.; Chaparro, J.M.; Reardon, K.F.; Zhang, R.F.; Shen, Q.R.; Vivanco, J.M. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 2014, 92, 267–275. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.; Xing, Y.; Xie, X.; Wang, L. Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape. Plant Soil 2019, 440, 85–96. [Google Scholar] [CrossRef]
- Chen, P.; He, W.; Shen, Y.; Zhu, L.; Yao, X.; Sun, R. Interspecific Neighbor stimulates peanut growth through modulating root endophytic microbial community construction. Front. Plant Sci. 2022, 13, 1–16. [Google Scholar] [CrossRef]
- Blair, M.W. Mineral Biofortication Strategies for Food Staples: The Example of Common Bean. J. Agric. Food Chem. 2013, 61, 8287–8294. [Google Scholar] [CrossRef]
- Mommer, L.; Kirkegaard, J.; van Ruijven, J. Root-Root interactions: Towards a rhizosphere framework. Trend. Plant Sci. 2016, 21, 209–217. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Wipf, D. Des champignons au service des plantes. PHM–Revue Hortic. 2010, 521, 9–11. [Google Scholar]
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J.M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soil 2003, 37, 1–16. [Google Scholar] [CrossRef]
- van Kessel, C.; Singleton, P.W.; Hoben, H.J. Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiol. 1985, 79, 562–563. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar] [CrossRef]
- Drogue, B. Spécificité de la Coopération Phytostimulatrice Azospirillum-Céréales. Ph.D. Thesis, Université Claude Bernard-Lyon I, Villeurbanne, France, 2013. [Google Scholar]
- Romero-Perdomo, F.; Abril, J.; Camelo, M.; Moreno-galv’an, A.; Pastrana, I.; Rojas-tapias, D.; Bonilla, R. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Rev. Argent. Microbiol. 2017, 49, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Bechtaoui, N.; Raklami, A.; Tahiri, A.-I.; Benidire, L.; El Alaoui, A.; Meddich, A.; Göttfert, M.; Oufdou, K. Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biol. Open 2019, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Konkolewska, A.; Piechalak, A.; Ciszewska, L.; Antos-Krzemińska, N.; Skrzypczak, T.; Hanć, A.; Sitko, K.; Małkowski, E.; Barałkiewicz, D.; Małecka, A. Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environ. Sci. Pollut. Res. 2020, 27, 13809–13825. [Google Scholar] [CrossRef] [PubMed]
- Saharan, K.; Schütz, L.; Kahmen, A.; Wiemken, A.; Boller, T.; Mathimaran, N. Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “bio fertilization” and “big irrigation” mediated by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Front. Environ. Sci. 2018, 6, 46. [Google Scholar] [CrossRef]
- Mathimaran, N.; Jegan, S.; Thimmegowda, M.N.; Prabavathy, V.R.; Yuvaraj, P.; Kathiravan, R.; Sivakumar, M.N.; Manjunatha, B.N.; Bhavitha, N.C.; Sathish, A.; et al. Intercropping transplanted pigeon pea with finger Millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Front. Sustain. Food Syst. 2020, 4, 88. [Google Scholar] [CrossRef]
- Schelud’ko, A.V.; Makrushin, K.V.; Tugarova, A.V.; Krestinenko, V.A.; Panasenko, V.I.; Antonyuk, L.P.; Katsy, E.I. Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins. Microbiol. Res. 2009, 164, 149–156. [Google Scholar] [CrossRef]
- Morris, P.F.; Bone, E.; Tyler, B.M. Chemotropic and contact responses of phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol. 1998, 117, 1171–1178. [Google Scholar] [CrossRef]
- Teplitski, M.; Robinson, J.B.; Bauer, W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe. Interact. 2000, 13, 637–648. [Google Scholar] [CrossRef]
- Bernard, L.; Mougel, C.; Maron, P.A.; Nowak, V.; Lévêque, J.; Henault, C.; Haichar, F.Z.; Berge, O.; Marol, C.; Balesdent, J.; et al. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA-and RNA-SIP techniques. Environ. Microbiol. 2007, 9, 752–764. [Google Scholar] [CrossRef]
- Bernard, L.; Maron, P.A.; Mougel, C.; Nowak, V.; Lévêque, J.; Marol, C.; Balesdent, J.; Gibiat, F.; Ranjard, L. Contamination of soil by copper affects the dynamics, diversity, and activity of soil bacterial communities involved in wheat decomposition and carbon storage. Appl. Environ. Microbiol. 2009, 75, 7565–7569. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soil 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Betencourt, E. Interactions Entre Céréale et Légumineuse en Association et Acquisition de Phosphore du sol: Processus Rhizosphériques Sous-Jacents. Montpellier Sup. Agro. Doctoral Dissertation, ÉCOLE DOCTORALE Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences et Environnement (SIBAGHE), Montpellier, France, 2012. [Google Scholar]
- Schipanski, M.E.; Drinkwater, L.E.; Russelle, M.P. Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant Soil 2010, 329, 379–397. [Google Scholar] [CrossRef]
- Li, L.; Li, S.M.; Sun, J.H.; Zhou, L.L.; Bao, X.G.; Zhang, H.G.; Zhang, F.S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Nat. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef] [PubMed]
- Janati, W.; Mikou, K.; El Ghadraoui, L.; Errachidi, F. Growth stimulation of two legumes (Vicia faba and Pisum sativum) using phosphate-solubilizing bacteria inoculation. Front. Microbiol. 2023, 14, 1212702. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gao, Y.Z. Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation. Chin. Sci. Bull. 2019, 65, 142–149. [Google Scholar] [CrossRef]
- Brahimi, S.; Toumatia, O.; Drevon, J.J.; Zitouni, A.; Lazali, M. Intercropping legumes and cereals increases resource use efficiency and crop productivity in low phosphorus soils under semi-arid Mediterranean conditions. Agroecol. Sustain. Food Syst. 2022, 46, 1482–1501. [Google Scholar] [CrossRef]
- Francisquini, A.; Calonego, J.C.; Rosolem, C.A.; dos Santos, C.H.; Tiritan, C.S. Increase of nitrogen-use efficiency by phosphorus fertilization in grass-legume pastures. Nutr. Cycl. Agroecosyst. 2020, 118, 165–175. [Google Scholar] [CrossRef]
- Musa, E.M.; Elsheikh, E.A.E.; Ahmed, I.A.M.; Babiker, E.E. Intercropping Sorghum (Sorghum bicolor L.) and Cowpea (Vigna unguiculata L.): Effect of Bradyrhizobium Inoculation and Fertilization on Minerals Composition of Sorghum Seeds. ISRN Agron. 2012, 20, 64–76. [Google Scholar] [CrossRef]
- Khan, Y.; Shah, S.; Tian, H. The Roles of Arbuscular Mycorrhizal Fungi in Influencing Plant Nutrients, Photosynthesis, and Metabolites of Cereal Crops—A Review. Agronomy 2022, 12, 2191. [Google Scholar] [CrossRef]
- Khan, Y.; Yang, X.; Zhang, X.; Yaseen, T.; Shi, L.; Zhang, T. Arbuscular mycorrhizal fungi promote plant growth of Leymus chinensis (Trin.) Tzvelev by increasing the metabolomics activity under nitrogen addition. Grassl. Sci. 2021, 67, 128–138. [Google Scholar] [CrossRef]
- Mei, L.; Yang, X.; Cao, H.; Zhang, T.; Guo, J. Arbuscular mycorrhizal fungi alter plant and soil C: N: P stoichiometries under warming and nitrogen input in a semiarid meadow of China. Int. J. Environ. Res. Public Health 2019, 16, 397. [Google Scholar] [CrossRef]
- Mustafa, G.; Randoux, B.; Tisserant, B.; Fontaine, J.; Magnin-Robert, M.; Sahraoui, A.L.H.; Reignault, P. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza 2016, 26, 685–697. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C.; Huang, Y. Interactive impacts of earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Funneliformis mosseae) on the bioavailability of calcium phosphates. Plant Soil 2015, 396, 45–57. [Google Scholar] [CrossRef]
- Miransari, M. Soil microbes and the availability of soil nutrients. Acta Physiol. Plant. 2013, 35, 3075–3084. [Google Scholar] [CrossRef]
- Robdrup, M.; Hubbard, M.; Gorim, L.Y.; Gorzelak, M.A. Arbuscular mycorrhizal fungi under intercrop, regenerative, and conventional agriculture systems. In Arbuscular Mycorrhizal Fungi and Higher Plants; Ahammed, G.J., Hajiboland, R., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.; Xu, H.; Ai, Z.; Zhang, J.; Liu, G.; Xue, S. Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi, as influenced by soil phosphorus availability using a (13) C and (15) N dual-labelled organic patch. Plant J. 2021, 108, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhang, L.; Zhou, J.; George, T.S.; Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 2021, 230, 304–315. [Google Scholar] [CrossRef]
- Adomako, M.O.; Roiloa, S.; Yu, F.H. Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganism 2022, 10, 2399. [Google Scholar] [CrossRef]
- Bei, S.; Xu, M.; Lyu, X.; Chen, C.; Li, A.; Qiao, X. Arbuscular mycorrhizal fungi enhanced coix responses to phosphorous forms but not for faba bean in intercropping systems, under controlled environment. Agron. J. 2021, 113, 2578–2590. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Bei, S.; Li, D.; Li, H.; Christie, P.; Bender, S.F.; Zhang, J. Enrichment of nosZ-type denitrifiers by arbuscular mycorrhizal fungi mitigates N2O emissions from soybean stubbles. Environ. Microbiol. 2021, 23, 6587–6602. [Google Scholar] [CrossRef] [PubMed]
- Adedibu, A.P. Ecological problems of agriculture: Impacts and sustainable solutions. ScienceOpen 2023, in press. [Google Scholar] [CrossRef]
- Yu, Y.; Stomph, T.J.; Makowski, D.; Zhang, L.; van der Werf, W. A Meta-Analysis of Relative Crop Yields in Cereal/Legume Mixtures Suggests Options for Management. Field Crops Research 2016, 200, 1–10. [Google Scholar] [CrossRef]
- Raza, M.A.; Khalid, M.H.B.; Zhang, X.; Feng, L.Y.; Khan, I.; Hassan, M.J.; Ahmed, M.; Ansar, M.; Chen, Y.K.; Fan, Y.F.; et al. Effect of Planting Patterns on Yield, Nutrient Accumulation and Distribution in Maize and Soybean under Relay Intercropping Systems. Scientific Reports 2019, 9, 4947. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Carlsson, G.; Englund, J.E.; Flöhr, A.; Pelzer, E.; Jeuffroy, M.H.; Makowski, D.; Jensen, E.S. Grain Legume–Cereal Intercropping Enhances the Use of Soil-Derived and Biologically Fixed Nitrogen in Temperate Agroecosystems: A Meta-Analysis. European Journal of Agronomy 2020, 118, 126077. [Google Scholar] [CrossRef]
- Chamkhi, I.; Benali, T.; Aanniz, T.; El Menyiy, N.; Guaouguaou, F.E.; El Omari, N.; ElShazly, M.; Zengin, G.; Bouyahya, A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol. Biochem. 2021, 167, 269–295. [Google Scholar] [CrossRef]
- Jones, D.L.; Hinsinger, P. The rhizosphere: Complex by design. Plant Soil 2008, 312, 1–6. [Google Scholar] [CrossRef]
- Yousefi, M.; Marja, R.; Barmettler, E.; Six, J.; Dray, A.; Ghazoul, J. The Effectiveness of Intercropping and Agri-Environmental Schemes on Ecosystem Service of Biological Pest Control: A Meta-Analysis. Agronomy for Sustainable Development 2024, 44, 15. [Google Scholar] [CrossRef]
- Thompson, J.B.; Döring, T.F.; Bellingrath-Kimura, S.D.; Grahmann, K.; Glemnitz, M.; Reckling, M. Spatial Arrangement of Intercropping Impacts Natural Enemy Abundance and Aphid Predation in an Intensive Farming System. Agriculture, Ecosystems & Environment 2025, 378, 109324. [Google Scholar] [CrossRef]
- Fuchs, K.; Kraus, D.; Houska, T.; Kermah, M.; Haas, E.; Kiese, R.; Butterbach-Bahl, K.; Scheer, C. Intercropping Legumes Improves Long-Term Productivity and Soil Carbon and Nitrogen Stocks in Sub-Saharan Africa. Global Biogeochemical Cycles 2024, 10, e2024GB008159. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, P.; Li, C.; Wang, D.; Ming, C.; Chen, L.; Zhou, L.; Zhu, Q.; Tang, L.; Zhou, Y.; et al. Intercropping Achieves Long-Term Dual Goals of Yield Gains and Soil N2O Emission Mitigation. Resour. Environ. Sustain. 2025, 20, 100210. [Google Scholar] [CrossRef]
- Rosenblueth, M.; Ormeño-Orrillo, E.; López-López, A.; Rogel, M.A.; Reyes-Hernández, B.J.; Martínez-Romero, J.C.; Reddy, P.M.; Martínez-Romero, E. Nitrogen Fixation in Cereals. Front. Microbiol. 2018, 9, 1794. [Google Scholar] [CrossRef] [PubMed]
- Vanlauwe, B.; Giller, K.E. Popular myths around soil fertility management in sub-Saharan Africa. Agric. Ecosyst. Environ. 2006, 116, 34–46. [Google Scholar] [CrossRef]
- Izaba, O.F.R. Value-Added Strategies in the Specialty Crop Industry: Exploring Farmers’ Drivers and Strategies at the Farm Level. Master’s Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2021. [Google Scholar] [CrossRef]
- Kumara, G.; Perera, M.D.D.; Hasara, R.; Wasantha, G.L.; Mohammed, M.M.I. Market Orientation and market participation of farmers in Awlegama, Wariyapola, Sri Lanka: Constrains and potentials for crop diversification and commercial transformation. Int. J. Soc. Econom. Res. 2015, 5, 132–149. [Google Scholar] [CrossRef]
- Schroth, G.; Ruf, F. Farmer strategies for tree crop diversification in the humid tropics. A review. Agron. Sustain. Dev. 2014, 34, 139–154. [Google Scholar] [CrossRef]
- Choudhary, A.; Rijhwani, S. Microbial diversity in selected agroforestry systems of Central Rajasthan. Int. J. Life Sci. Pharma Res. 2020, 10, 65–73. [Google Scholar] [CrossRef]
- Picone, R.; Pietramellara, G.; Guggenberger, G.; Pathan, S.I.; Gentsch, N. The contemporary plant-soil feedback in legume-cereal intercropping systems: A review of carbon, nutrient, and microbial dynamics. Plant Soil 2025, 1–21. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, C.; Yu, Y.; Shen, J.; van der Werf, W.; Zhang, F. Intercropping Legumes and Cereals Increases Phosphorus Use Efficiency: A Meta-Analysis. Plant and Soil 2020, 448, 1–19. [Google Scholar] [CrossRef]
- Kumar, R.R.; Park, B.J.; Cho, J.Y. Application and environmental risks of livestock manure. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 497–503. [Google Scholar] [CrossRef]
- Bloch, S.E.; Ryu, M.H.; Ozaydin, B.; Broglie, R. Harnessing atmospheric nitrogen for cereal crop production. Curr. Opin. Biotechnol. 2020, 62, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Khanal, U.; Stott, K.J.; Armstrong, R.; Nuttall, J.G.; Henry, F.; Christy, B.P.; Mitchell, M.; Riffkin, P.A.; Wallace, A.J.; McCaskill, M.; et al. Intercropping—Evaluating the Advantages to Broadacre Systems. Agriculture 2021, 5, 453. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Jensen, E.S. Does Intercropping Enhance Yield Stability in Arable Crop Production? A Meta-Analysis. European Journal of Agronomy 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Pinto, P.; Cartoni-Casamitjana, S.; Cureton, C.; Stevens, A.W.; Stoltenberg, D.E.; Zimbric, J.; Picasso, V.D. Intercropping legumes and intermediate wheatgrass increases forage yield, nutritive value, and profitability without reducing grain yields. Front. Sustain. Food Syst. 2022, 6, 977841. [Google Scholar] [CrossRef]
- Wu Jinpu Bao, X.; Zhang, J.; Lu, B.; Zhang, W.; Callaway, R.M.; Li, L. Temporal Stability of Productivity is Associated with Complementarity and Competitive Intensities in Intercropping. Ecol. Appl. 2023, 33, e2731. [Google Scholar] [CrossRef]
- Gkalitsas, T.; Papathanasiou, F.; Lazaridou, T. Intercropping of Cereals with Lentil: A New Strategy for Producing High-Quality Animal and Human Food. Agronomy 2025, 15, 1658. [Google Scholar] [CrossRef]
- Von Cossel, M.; Scordia, D.; Altieri, M.; Gresta, F. Spotlight on agroecological cropping practices to improve the resilience of farming systems: A qualitative review of meta-analytic studies. Front. Agron. 2025, 7, 1495846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisodia, P.; Gryta, A.; Pathan, S.I.; Pietramellara, G.; Frąc, M. Roots to Riches: Unearthing the Synergy of Intercropping, Microbial Interactions, and Symbiotic Systems for Sustainable Agriculture: A Review. Agronomy 2025, 15, 2243. https://doi.org/10.3390/agronomy15092243
Sisodia P, Gryta A, Pathan SI, Pietramellara G, Frąc M. Roots to Riches: Unearthing the Synergy of Intercropping, Microbial Interactions, and Symbiotic Systems for Sustainable Agriculture: A Review. Agronomy. 2025; 15(9):2243. https://doi.org/10.3390/agronomy15092243
Chicago/Turabian StyleSisodia, Priyal, Agata Gryta, Shamina Imran Pathan, Giacomo Pietramellara, and Magdalena Frąc. 2025. "Roots to Riches: Unearthing the Synergy of Intercropping, Microbial Interactions, and Symbiotic Systems for Sustainable Agriculture: A Review" Agronomy 15, no. 9: 2243. https://doi.org/10.3390/agronomy15092243
APA StyleSisodia, P., Gryta, A., Pathan, S. I., Pietramellara, G., & Frąc, M. (2025). Roots to Riches: Unearthing the Synergy of Intercropping, Microbial Interactions, and Symbiotic Systems for Sustainable Agriculture: A Review. Agronomy, 15(9), 2243. https://doi.org/10.3390/agronomy15092243